
Differentiated strategies for replicating Web documents

G. Pierrea,* , I. Kuzb, M. van Steena, A.S. Tanenbauma

aDivision of Mathematics and Computer Science, Vrije Universiteit, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
bFaculty of Information Technology and Systems, T.U. Delft, Zuidplantsoen 4, P.O. Box 356, 2628 BZ Delft, The Netherlands

Abstract

Replicating Web documents reduces user-perceived delays and wide-area network traffic. Numerous caching and replication protocols
have been proposed to manage such replication while keeping the document copies consistent. We claim, however, that no single caching or
replication policy can efficiently manage all documents. Instead, we propose that each document be replicated with a policy specifically
tailored to it. We have collected traces on our university’s Web server and conducted simulations to determine the performance such tailored
policies would produce, as opposed to using the same policy for all documents. The results show a significant performance improvement with
respect to end-user delays, wide-area network traffic and document consistency. We also present how these results can be used to build
adaptive replicated Web documents, capable of automatically selecting the policy that best suits them.q 2001 Elsevier Science B.V. All
rights reserved.

Keywords: Web documents; Replication protocols; Document consistency

1. Introduction

Every Web user has experienced slow document trans-
fers. To reduce the access time, one possible solution is to
replicate the documents. This balances the load among the
servers and prevents repetitive transfers of documents over
the same network links. However, after a document is
updated, users should not access stale data; the replicated
copies should be either destroyed or updated.

There are numerous protocols available to help achieve
such consistency. In this paper, we assume that all updates
to a document happen at the same location, which we call
the master; the other locations (the replicas) are called
slaves. Consistency policies for replicating Web documents
generally fall into the “pull” or the “push” categories. Push
strategies require the master (or the server hosting it) to keep
track of all slaves, and to contact each slave when the docu-
ment is updated. In such cases, it is possible to multicast the
new version, or to request stale copies to be destroyed. Pull
strategies require that slaves check the master to detect
updates. Strategies differ in when to check for consistency:
it can be done periodically or each time a copy is read. A
commonly used variant is for a copy to destroy itself when it
suspects it is out-of-date without even checking the master.

Another classification of replication strategies can be
done regardingreplicas and caches. A replica site always

holds the document; a cache site may or may not hold it.
Replica sites are sometimes called mirrors.

Which replication strategy is the best suited for Web
documents? This is a difficult question, and much research
is being done to answer it. The main obstacle to a good
solution is the heterogeneity of documents. For example,
document sizes, popularity, the geographical location of
clients and the frequency of updates vary greatly from one
document to another [19]. Most approaches try to find
replication strategies that can deal with such diverse
characteristics.

In this paper we take a different point of view. We claim
that no single policy can be good enough in all cases. So,
instead of designing some kind of “universal policy”, we
argue that several specialized policies should be used simul-
taneously. Depending on its characteristics, each document
should be replicated using the best-suited policy for that
particular document.

We will not discuss here how multiple replication strate-
gies can be supported and integrated in the current World-
Wide Web (WWW). This issue has already been addressed
in papers about GlobeDoc [24]. Using GlobeDoc, Web
pages (or groups of pages) are encapsulated into distributed
objects. This encapsulation allows one to easily associate an
object with any replication policy [23]. A specialized proxy
can then act as a gateway between the HTTP protocol used
by the browsers, and the distributed-object protocols used
by the documents.

Computer Communications 24 (2001) 232–240

0140-3664/01/$ - see front matterq 2001 Elsevier Science B.V. All rights reserved.
PII: S0140-3664(00)00319-4

www.elsevier.com/locate/comcom

* Corresponding author.



Although the mechanisms for associating custom replica-
tion policies with Web documents are up and running, the
need for differentiated strategies has not been addressed so
far. The aim of this paper is not to present a complete repli-
cation system, but rather to demonstrate that it makes sense
to differentiate replication strategies. To do so, we moni-
tored our university’s Web server by keeping track of client
requests as well as document updates. Then, for each docu-
ment in these traces, we simulated how it would have
behaved if replicated by one of several policies. We
compared the resulting performance of “one-size-fits-all”
strategies with custom strategies. In the first case, all docu-
ments were replicated using the same strategy; in the second
case we chose the “best” strategy for each document, based
on a perfect knowledge of future requests. The results show
that custom strategies provide a clear performance improve-
ment compared to any one-size-fits-all strategy.

Demonstrating that differentiating replication strategies
makes sense does not solve the issue of how to find the
best strategy for an individual document. This paper also
addresses the question whether past access patterns can be
used to predict which replication policy will be optimal in
the near future. We propose usingadaptiveWeb documents
that are capable of selecting their own optimal policy. To
that end, each adaptive document is implemented as a
distributed object encapsulating its state as well as past
access data for deciding on the best replication policy.
The document adapts its current policy as appropriate.

We have simulated adaptive documents. The results show
that the predictions are accurate in most cases. However, our
traces do not contain fast traffic pattern changes commonly
known as “flash crowds”. Further work is needed on this
subject.

This paper is organized as follows: Section 2 describes
the configurations we worked with; Section 3 describes our
experimental setup; Section 4 discusses the methods we
designed for associating optimal strategies to documents

and presents the simulation results; Section 5 presents
related work. We conclude in Section 6.

2. System configurations

In our experiment, the documents were hosted by one
particular server (the Web server of our computer science
department). Clients located worldwide retrieved the docu-
ments from the server, or from intermediate servers (caches
or replicas). We investigated the effect of interposing repli-
cation protocols between the server and the intermediate
servers on the quality of service perceived by the users.

2.1. System model

2.1.1. Document model
We assume that all document are updated at the main

server. The only requirement is that the server can detect
such updates in order to propagate appropriate information
to the copies (if the replication policy needs it).

Although dynamic documents such as CGIs, ASPs and
PHPs are easily embeddable in GlobeDocs, the simulation
of replication for such documents is not straightforward. To
simplify our experiments, we considered only static
documents.

2.1.2. Placement of intermediate servers
To reliably simulate replication strategies, we first had to

figure out how many document copies are necessary and to
decide which client will use which copy. The extent to which
this choice is actually realistic strongly determines the validity
of the final results. Therefore, we wanted to take the actual
network topology into account in order to let adjacent clients
share a copy, minimize bandwidth, and so on.

We decided to group the clients based on the autonomous
systems that hosted them. Autonomous Systems (orASes)
are used to achieve efficient world-wide routing of IP pack-
ets [4]. Each AS is a group of nodes interconnected by
network links. Its managers are responsible for routing
inside their domain. They export only information about
their relations to other ASes, such as which ASes they can
receive packets from, and which ASes they can send packets
to. World-wide routing algorithms use this information to
determine the optimal route between two arbitrary machines
on the Internet.

An interesting feature of ASes from our point of view is
that they generally consist of relatively large groups of hosts
close to each other with respect to the network topology.1

Therefore, we can assume that the network connection
performance is much better inside an AS than between
two ASes.

This led us to decide to place at most one intermediate

G. Pierre et al. / Computer Communications 24 (2001) 232–240 233

1 Note that host proximity in terms of network topology does not imply
geographical proximity. For example, all of a company’s offices worldwide
may be topologically but not geographically close.

Fig. 1. System model.



server (cache or replica) per AS, and to bind all users to their
AS’s intermediate server (see Fig. 1). This rule has two
exceptions. First, it would be pointless to create an inter-
mediate server in the same AS as the master server: clients
located in this AS can directly access the master as well.
Second, we decided that the few clients for which we could
not determine the AS also access the server directly.

2.2. Configurations

For each document, we consider a number of setups likely
to optimize the access to that document. All configurations
are based on the same system model; the only difference
between them is the nature of the intermediate servers and
the consistency policy they use.

The first configuration acts as a baseline configuration:

NoRepl:This configuration uses no caching or replication
whatsoever. All clients contact the server directly, with-
out any intermediate servers.

2.2.1. Caching configurations
Caching configurations use proxy caches in place of inter-

mediate servers. We have considered configurations where
the caches use the following policies:

Check:When a cache hit occurs, the cache systematically
checks the copy’s consistency by sending anIf-
Modified-Since request to the master before answer-
ing the client’s request.
Alex: When a copy is created, it is given a time-to-live
proportional to the time elapsed since its last modification
[7]. Before the expiration of the time-to-live, the cache
can deliver copies to the clients without any consistency
checks. At the expiration of the delay, the copy is
removed from the cache. In our simulations, we used a
ratio of 0.2, as it is the default in the Squid cache [9].
That is:

Tremoved2 Tcached

Tcached2 Tlast_modification
� 0:2

AlexCheck:This policy is identical to Alex except that,
when the time-to-live expires, the copy is kept in the
cache with a flag describing it as “possibly stale”. Any
hit on a possibly stale copy causes the cache to check the
copy’s consistency by sending anIf-Modified-
Since request to the master before answering the
client’s request. This policy is implemented in the
Squid cache [9].
CacheInv:When a copy is created, the cache registers it
at the server. When the master is updated, the server sends
an invalidation to the registered caches to request them to
remove their stale copies. This policy is similar to the
AFS caching policy [22].

2.2.2. Replica configurations
An alternative to having a cache in an AS is to have a

replica there. Replica servers create permanent copies of
documents. There are a relatively low number of such
servers, which allows us to apply strong consistency policies
that would not be affordable in the case of caches.

The traces we collected involve clients from a few
thousand different ASes, which led us to consider caching
systems with as many caches as ASes. However, it would
not be feasible to create so many replication servers. We
decided to place replication servers in the autonomous
systems where most of the requests came from. The
rationale for this choice is that most requests come from a
small number of ASes.

Fig. 2 shows the number of incoming requests per AS
(once the ASes were sorted by decreasing number of
requests). In our case, the top 10 ASes issued 53% of the
requests, the top 25 ASes issued 62% of the requests, and the
top 50 ASes issued 71% of the requests.

G. Pierre et al. / Computer Communications 24 (2001) 232–240234

Fig. 2. Number of requests per autonomous system.

Fig. 3. Replica configuration.



We decided to place replication servers only in the “top
ASes”. Clients located inside one of these ASes would be
bound to their local replica. Other clients would send their
requests directly to the server (see Fig. 3).

We distinguished three replica configurations depending
on the number of replicas created, which can be summarized
as follows:

Repl10(or Repl25, Repl50): Replicas are created in the
top 10 (or 25, 50) ASes. The consistency is maintained by
pushing updates: when the master is updated, the server
sends updated copies to the replica servers.

2.2.3. Hybrid configurations
In the replica configurations presented in the previous

section, many clients access the server directly (e.g. clients
from autonomous system 3 in Fig. 3). The AS of such clients
generates only a few requests to our server, so it is not
worthwhile installing a replica there. However, it might
benefit from a cache, which is cheaper to maintain than

a replica. To take this into account, we created “hybrid
configurations”.

A hybrid configuration is similar to a replica configura-
tion, but it includes a cache in each autonomous system
which does not have a replica (see Fig. 4). We defined
two hybrid configurations depending on the consistency
policy of the caches:

Repl501 Alex: Similar to Repl50, but the autonomous
systems which have no replica server use anAlex cache
instead.
Repl501 AlexCheck: Similar to Repl50, but the
autonomous systems which have no replica server use
an AlexCheckcache instead.

3. Experimental setup

The experiment consisted of simulating the replication of
each document with each of the ten configurations discussed
above. We ran one simulation per document and per
strategy, and measured: (i) the delay at the clients; (ii)
how many clients got stale copies; and (iii) the network
bandwidth consumed. We then accumulated each of these
values over all runs to determine the performance of any
configuration over the entire set of documents.

We kept our simulations as close as possible to the
real system. Therefore, they are not based on statistical
traffic models, but rather on real traces and performance
measurements.

3.1. Collecting traces

To simulate the replication of documents, we needed to
keep track of each event that can happen to a document:
creation, update or request. The Web server logs gave us the
necessary information about the requests for documents:
request time and IP address of the clients. We also moni-
tored the file system to detect any creation or update of a file
located in the Web server directories. This way, we obtained
information about the update times and the new sizes of
documents. Document creation was handled as a special
case of an update. We also measured the network perfor-
mance between the server and each AS in our traces.

3.2. Measuring the network performance

To measure the network performance from our server to
each AS in our experiment, we randomly chose five hosts
inside each AS. For each of these hosts, we sent a number of
“ping” packets of different sizes and measured the round-
trip time. By running a linear regression, we approximated
the latency and bandwidth of the network connection to
these hosts. The latency corresponds to half of the round-
trip delay for a packet of size 0; the bandwidth corresponds
to additional delays due to packet’s size (see Fig. 5). We

G. Pierre et al. / Computer Communications 24 (2001) 232–240 235

Fig. 4. Hybrid configuration.

Fig. 5. Determining the network performance to a host based on ping
samples.



assume symmetrical network performances: the perfor-
mance from the server to any host is considered equal to
the performance from this host to the server.

3.3. The simulations

The simulations were based on a modified version of
Saperlipopette, a discrete events simulator of distributed
Web caches [18]. It allows one to simulate any number of
caches, each cache being defined by its internal policies
(replacement, consistency, cooperation) and its dimension-
ing. When given information about the network perfor-
mance, Saperlipopette can replay trace files and calculate
a number of metrics such as the cache hit rates, document
access delays and the consistency of delivered documents.
We extended this version to implement permanent replicas
in addition to caches. We also added more consistency
policies, such as invalidation.

3.3.1. Simulating caching configurations
The idea behind the caching configurations is, of course,

not to deploy caches everywhere to access only our Web
server. These caches are supposed to be used within the AS
to access any Web server. As we reproduce onlypart of the
traffic managed by each cache, we cannot simulate cache
replacement policies; their behavior depends on the entire
traffic seen by each cache. Therefore, we simulated caches
without any replacement policy (i.e. caches of infinite size).
To roughly reproduce the behavior of the replacement
policies, we decided that a copy could not stay in a cache
more than seven days, independent of any consistency
consideration. This delay is a typical value of any docu-
ment’s time-to live inside a Web cache [16]. When the

time-to-live value expires, the corresponding copy is
removed from the cache.

3.4. Evaluation criteria

Choosing a replication policy requires making trade-offs.
Replicating a Web document modifies the access time, the
consistency of copies delivered to the clients, the master
server load, the overall network traffic, etc. It is generally
impossible to optimize all these criteria simultaneously.
Therefore, evaluating the quality of service of the system
should involve metrics that characterize the different aspects
of the system’s performance. We chose three metrics
representing the access time, document consistency and
global network traffic:

Total delay:This is the sum of all delays between the start
of a client’s request and the completion of the response
(in seconds).
Inconsistency:This is the total number of outdated copies
delivered to the clients.
Server traffic:This is the total number of bytes exchanged
between the server and the intermediate servers or the
clients. This metric measures all the inter-AS traffic,
which we consider as the wide-area traffic; we do not
take into account the traffic between the intermediate
servers and the clients, as it is considered as “local”.

One important remark is that all our metrics are additive:
we can simulate each document separately and add the
resulting values for each document in order to get the
quality of service of the complete system. This would not
be possible if the metrics were average values, for example.

4. Results

The result of our experiment is presented as follows:
Section 4.1 gives a brief overview of the traces we collected;
Section 4.2 shows the quality of service obtained when the
same strategy is associated to all documents; Section 4.3
discusses methods for associating each document with its
most-suited replication policy; Section 4.4 demonstrates the
performance improvement such methods provide. Finally,
Section 4.5 discusses the use of this method for building
adaptive Web documents.

4.1. Collected traces

We collected traces from Sunday, 29 August 1999 to
Saturday, 3 October 1999 (i.e. 5 weeks). Table 1 shows
some statistics about the resulting trace. We can see that
our server handles medium-size traffic, and that documents
are not updated very frequently (the average life-span is 67
days). We expect large servers, such as electronic-
commerce servers, to have more heterogeneous document
sets than ours. Therefore, they should benefit more than us

G. Pierre et al. / Computer Communications 24 (2001) 232–240236

Table 1
Characteristics of collected traces

Number of documents 17,368
Number of requests 2,118,572
Number of updates 9143
Number of unique clients 107,386
Number of different ASes 2785

Table 2
Performance of the one-size-fits-all strategies

Configuration Delay (h) Incons. (no.) Traffic (GB)

NoRepl 219.0 0 43.91
Check 229.2 0 23.60
Alex 96.4 5211 23.51
AlexCheck 96.6 4821 23.23
CacheInv 93.7 0 23.18
Repl10 177.4 0 43.60
Repl25 145.0 0 48.06
Repl50 121.9 0 55.55
Repl501 Alex 67.5 966 46.93
Repl501 AlexCheck 67.6 941 46.86



from the ability to choose the replication strategies per
document.

4.2. One-size-fits-all strategies

Table 2 shows the resulting performance when the same
strategy is applied to all documents (one-size-fits-all
strategies). As we expected, theNoReplstrategy has bad
results compared to the others in terms of delay and traffic.
On the other hand, it provides perfect consistency.

Most policies are good with respect to one or two metrics,
but none of them optimizes on all three metrics. For
example,Repl501 Alex and Repl501 AlexCheckprovide
excellent delays. On the other hand, they are not so good
with respect to inconsistency and traffic. Other configura-
tions have similar problems.

4.3. Assigning optimal strategies to documents

Is it possible to find a configuration that provides good
performance with respect to all metrics at the same time? To
answer this question, we propose that each document has its
own replication strategy. We first describe a method to
assign a strategy to each document. We then compare the
performance of custom configurations to those of one-size-
fits-all configurations.

4.3.1. Assigning a strategy to a document
For a given document, finding the best replication

strategy consists of deciding which strategy provides the
best compromise between different metrics. We prefer a
strategy that is relatively good with respect to all metrics
rather than a strategy that is very good in one metric and
very bad in the others.

We proceed as follows: based on the simulation results,
each strategy is given a score. For a given document, the
strategy with the lowest score is declared “optimal”. The

score of a strategy is a weighted sum of the evaluation
metrics:

score� delay
a

1
incons

b
1

traffic
g

Choosing values fora ,b , andg allows one to determine the
relative weight of each metric. The larger a weight is, the
less the associated metric will influence the final result.
Because different metrics are expressed in different units,
the factorsa , b , andg are expressed such that a score is
always dimensionless.

This method is used to assign a strategy to each docu-
ment. Using it with the same parameter vector (a , b , g )
leads to what we call anarrangement: a parameter-specific
set of (document, strategy)-pairs. Thus for a given (a ,b , g ),
each arrangement has an associated value, which is
expressed as a vectorktotal(metric1),…,total(metricn)l
where total(metrick) denotes for metrick the value accumu-
lated over all documents in the arrangement.

An evaluation of our assignment strategy can be found in
an extended version of this paper [17].

4.4. Comparing one-size-fits-all to custom policies

Comparing arrangements is somewhat difficult because
the values of arrangements actually form a partially ordered
set. We prefer comparing each arrangement with an ideal
target point. This point corresponds to the best achievable
delay (obtained by selecting the policy providing the
smallest delay for each document) and the best achievable
traffic (obtained by selecting the policy providing the
smallest traffic for each document). Of course, for a given
document, the best policy in terms of delay and the best
policy in terms of traffic are not always the same. Therefore,
the target point is generally impossible to reach. Neverthe-
less, this point acts as an upper bound: it is impossible to

G. Pierre et al. / Computer Communications 24 (2001) 232–240 237

Fig. 6. Performance of arrangements vs. one-size-fits-all configurations.



obtain a better performance than the target. We can also use
the target point to compare the arrangements: the closer we
get to that point, the better the arrangement is.

To simplify matters, we chose to giveb a very small
value, making the optimization of consistency an absolute
requirement. By subsequently modifying the relative
weights of delay and traffic, we obtain a number of arrange-
ments which implement various delay/traffic trade-offs.

Fig. 6 shows the performance of arrangements, in terms
of total delay and server traffic. Each point corresponds to
the performance of one particular arrangement. Arrange-
ments where all documents are given the same strategy
are represented by a point. Custom arrangements provide
a set of points, each point being obtained with one particular
set of weights (a , b , g).

Among the one-size-fits-all arrangements, some have
good performance with respect to delay, but poor perfor-
mance with respect to traffic; some others behave the other
way round. However, none of them gets very close to the
target. On the other hand, we can see that custom arrange-
ments are very close to the target if we compare them to
one-size-fits-all configuration. This means that selecting
replication strategies on a per-document basis provides a
significant performance improvement over any one-size-
fits-all configuration.

4.5. Towards adaptive Web documents

The results presented so far are based on a post-mortem
analysis: knowing the past access pattern of a document we
can determine which replication policy would have been
optimal. Now, can we use our knowledge about past
accesses to determine which policy will be optimal in the
near future? Our hypothesis is that the traffic characteristics
do not change very fast. Therefore, a strategy known to have
been optimal in the recent past should stay close to the
optimum in the near future. In this section, we consider

“adaptive replicated documents” Such a document works
as follows:

• The author of the document must choose one particular
parameter vector (a , b , g ). The goal of the adaptive
object will be to select the strategy which optimizes the
score function, defined in Section 4.3.1.

• When creating a document, we do not know anything
about its future access pattern. The document uses a
default replication policy (in our simulations,Alex). It
also collects traces about the requests it receives.

• Periodically, the document has the opportunity to change
its replication policy. Based on the traces it has collected,
it simulates each replication strategy, calculates the score
for each strategy, and determines which one would have
performed the best. It then changes its replication policy
to use this “optimal” one instead of the current one.
Finally, it deletes the traces collected so far and starts
collecting new ones.

We decided to use a period of 12 days between adaptations,
so that our traces can be divided into three periods. Table 3
shows the performance of adaptive documents, compared with
one-size-fits-all configurations. The “optimal” line in the table
represents the performance of the optimal arrangement, based
on a posteriori analysis. The closer the adaptive document
performance is to the post-mortem performance, the more
accurate the a priori choice of policies in the adaptive
documents has been. The “distance from optimal” line
shows the accuracy of the predictions.

During the first period, all adaptive documents use the
default Alex replication policy. Their performance is
therefore equal to that of theAlex policy. However, it is
far from optimal (e.g., the total delay is 37% higher than
the optimum). The “Period 2” column shows the
performance after the first adaptation. We can see that the
delay and traffic obtained by the adaptive documents are

G. Pierre et al. / Computer Communications 24 (2001) 232–240238

Table 3
Performance of adaptive documents

Configuration Period 1 Period 2 Period 3

Delay (h) Incons. (no.) Traffic (GB) Delay (h) Incons. (no.) Traffic (GB) Delay (h) Incons. (no.) Traffic (GB)

NoRepl 68.2 0 12.30 78.0 0 15.40 72.8 0 16.20
Check 71.4 0 6.63 81.4 0 7.95 76.4 0 8.03
Alex 30.9 25 6.66 33.8 1320 8.30 29.9 2197 8.16
AlexCheck 30.9 25 6.61 33.8 1214 8.20 29.9 2257 7.93
CacheInv 30.3 0 6.61 35.0 0 8.53 29.3 0 8.04
Repl10 56.4 0 10.80 62.1 0 14.06 58.9 0 15.45
Repl25 46.1 0 9.90 50.8 0 13.72 48.1 0 16.22
Repl50 39.2 0 9.32 43.5 0 12.83 39.2 0 16.96
Repl501 Alex 22.6 6 6.61 22.7 292 9.81 22.6 484 14.13
Repl501 AlexCheck 22.6 6 6.59 22.7 295 9.79 22.5 547 14.07

Adaptive 30.9 25 6.66 25.8 386 7.41 26.1 949 7.65
Optimal 22.6 0 5.34 22.8 0 6.47 23.5 0 7.12

Distance from optimal (%) 37 – 25 13 – 15 11 – 7



much closer to the optimum (the delay is only 13% higher
than the optimum). During period 3, the distance from the
optimum is only 11% from the optimum. Traffic figures
have a similar behavior. We can conclude that adaptive
documents are actually able to predict which policy will
achieve the best delay/traffic tradeoff in the near future.

The inconsistency figures, unfortunately, do not converge
to the optimal values. This is due to the low update rate in
our traces. Being infrequent, updates are very hard for the
adaptive objects to predict. In fact, most inconsistencies are
due to documents that are updated only once in the entire
trace. Such isolated updates are obviously impossible to
predict from the past traces, leading to suboptimal policy
choices.

One can argue that a few hundred inconsistencies are
acceptable, if compared to the total number of requests
(more than two million). In most cases, this should not be
much of an issue. However, even in the case where consis-
tency is considered very important, our research remains
valid: it suffices to remove the weak consistency policies
from the set of available policies. Adaptive objects would
then be able to select the most suited policy among a set of
strong consistency policies.

Another important remark is that our trace does not
contain high load peaks commonly known as “flash
crowds.” The problem for handling flash crowds is to
react as quickly as possible to a sudden traffic increase.
The adaptive documents presented here would react only
at the end of the period when the flash crowd happened;
in most cases, it would be too late to take any measures.
However, simple changes may be enough to solve the
problem: for example, instead of adapting the documents
at regular intervals, we can decide to adapt every time a
document receives a given number of requests or if the
request rate changes dramatically. This way, an adaptation
would be started soon after the beginning of the flash crowd.

5. Related work

A number of proposals have been made in the past to help
improve the quality of service of the Web by means of better
caching policies. Particularly relevant is the design of
scalable cache consistency policies. As an alternative to
the traditional Alex [7] and TTL policies, it has been
shown that invalidation policies can lead to significant
improvement of maintaining consistency at relatively low
cost in terms of delays and traffic [14]. Several variants have
been proposed. It is possible to propagate invalidations via a
hierarchy of Web caches [25] or by using multicast [26].
Another possibility is for the server to piggyback
information about recent document updates when caches
contact it for a request [13] or to combine invalidation
with leases [10].

Caches are an essential part of the Web infrastructure, but
their efficiency has limits. Moreover, it seems that this

efficiency decreases due to the long-term evolution of access
patterns [3]. One solution to this problem is to systemati-
cally create document replicas. Based on a good knowledge
of the access patterns, it is possible to place replicas close to
the clients, thereby reducing delays [2,5]. Such document
distribution can be done by the server itself, as in push
caches [11] and RaDaR [20], or by external services such
as Akamai [1] and Sandpiper [21]. All these proposals tend
to design a single policy which works well in all cases. In
contrast, we prefer choosing one policy per document,
depending on that document’s access patterns.

All the policies cited here are good candidates for being
incorporated in the set of differentiated strategies this paper
advocates. However, most of them require implementing
specific mechanisms. Invalidation protocols need various
types of callback interfaces, replica distribution systems
need to push document copies to the replica servers, and
so on. One could think of incorporating such mechanisms in
existing protocols. For example, many primitives for cache
management were incorporated in HTTP during the design
of version 1.1 [12]. However, such protocol modifications
take time to be widely used. In addition, they often increase
the protocol’s complexity [15].

This paper advocates the simultaneous use of a large
number of replication policies for different documents. In
some cases, an author should even be allowed to develop a
policy specially designed for a specific document. There-
fore, we need a way to implement policies without having to
modify HTTP or to build a specific infrastructure each time.
The solution consists of separating transport and replication
issues, by associating code with a document that can
manage its replication. Such an approach has been taken
in a number of projects. The active caches associate code
with a document to enable caching of dynamic documents
[6]. This proposal can be used to allow cached documents
(dynamic or not) to manage their own consistency. In the
W3Object system, highly visible caching mechanisms are
proposed that can be modified by end users [8].

6. Conclusions

Our experiment demonstrates that no single replication
policy is optimal for all Web documents. Instead, associat-
ing the most suited replication policy on a per-document
basis leads to significant performance improvement. In
addition to this, we showed that it makes sense to build
replicated Web documents capable of individually adapting
their replication policy, based on past-trace analysis.

The experiment presented was conducted over a large set
of caching, replica and hybrid configurations. However, this
set must be viewed only as a first example: a lot of other
caching or replication policies could be added as well. We
expect that increasing the number and diversity of policies
will improve the resulting performance.

In the future, we plan to deploy a set of GlobeDoc servers

G. Pierre et al. / Computer Communications 24 (2001) 232–240 239



and use the method presented in this article to decide on
optimal replication policies. In particular, we aim to conduct
studies on the traffic from other Web servers to see how the
specifics of each server influence the optimal arrangements.
A university Web server such as ours will likely not require
the same strategies as a commercial server, for example.

Finally, this work is to be extended to the replication of
other types of objects. We plan to investigate how the meth-
ods presented in this article can be applied to the replication
of dynamic Web documents. Such results would lead us to a
more general solution for choosing the replication policies
of distributed objects.

References

[1] Akamai, http://www.akamai.com/.
[2] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, P. Strum, Enhancing

the Web infrastructure — from caching to replication, IEEE Internet
Computing 1 (2) (1997) 18–27.

[3] P. Barford, A. Bestavros, A. Bradley, M.E. Crovella, Changes in Web
client access patterns: characteristics and caching implications, World
Wide Web 2 (1/2) (1999) 15–28 (Special Issue on Characterization
and Performance Evaluation).

[4] T. Bates, E. Gerich, L. Joncheray, J.-M. Jouanigot, D. Karrenberg, M.
Terpetra, J. Yu, Representation of IP routing policies in a routing
registry, RFC 1786, March 1995.

[5] A. Bestavros, C. Cunha, Server-initiated document dissemination for
the WWW, IEEE Data Engineering Bulletin 19 (1996) 3–11.

[6] P. Cao, J. Zhang, K. Beach, Active cache: caching dynamic contents
on the Web, Proceedings of the 1998 Middleware Conference,
September 1998, pp. 373–388.

[7] V. Cate, Alex — a global file system, Proceedings of the USENIX
File System Workshop, Ann Arbor, MI, May 1992, pp. 1–11.

[8] S.J. Caughey, D.B. Ingham, M.C. Little, Flexible open caching for the
Web, Computer Networks and ISDN Systems 29 (8–13) (1997)
1007–1017.

[9] A. Chankhunthod, P. Danzig, C. Neerdaels, M.F. Schwartz, K.J.
Worrell, A hierarchical Internet object cache, Proceedings of the
1996 Usenix Technical Conference, San Diego, CA, January 1996,
pp. 153–163.

[10] J. Dilley, M. Arlitt, S. Ferret, T. Jin, The distributed object consis-
tency protocol, Technical Report HPL-1999-109, Hewlett-Packard
Laboratories, September 1999.

[11] J. Gwertzman, M. Seltzer, The case for geographical push-caching,
Proceedings of the HotOS 1995 Workshop, May 1995, pp. 51–55.

[12] B. Krishnamurthy, J.C. Mogul, D.M. Kristol, Key differences
between HTTP/1.0 and HTTP/1.1, Computer Networks and ISDN
systems 31 (11–16) (1999) 1737–1751.

[13] B. Krishnamurthy, C.E. Wills, Piggyback server invalidation for
proxy cache coherency, Computer Networks and ISDN systems 30
(1-7) (1998) 185–193.

[14] C. Liu, P. Cao, Maintaining strong cache consistency in the World-
Wide Web, IEEE Transactions on Computers 47 (4) (1998) 445–457.

[15] J.C. Mogul, What’s wrong with HTTP (and why it doesn’t matter)?,
Invited talk at the Usenix Technical Conference, June 1999.

[16] NLANR caches vital statistics, http://www.ircache.net/Cache/Statis-
tics/Vitals/.

[17] G. Pierre, I. Kuz, M. van Steen, A.S. Tanenbaum, Differentiated
strategies for replicating Web documents, Technical Report IR-467,
Vrije Universiteit, Amsterdam, November 1999.

[18] G. Pierre, M. Makpangou, Saperlipopette!: a distributed Web caching

systems evaluation tool, Proceedings of the 1998 Middleware confer-
ence, September 1998, pp. 389–405.

[19] J.E. Pitkow, Summary of WWW characterizations, Computer
Networks and ISDN Systems 30 (1-7) (1998) 551–558.

[20] M. Rabinovich, A. Aggarwal, RaDaR: A scalable architecture for a
global Web hosting service, Proceedings of the 8th International
World-Wide Web Conference, May 1999.

[21] Sandpiper, http://www.sandpiper.com/.
[22] M. Satyanarayanan, Scalable, secure, and highly available distributed

file access, IEEE Computer 23 (5) (1990) 9–18.
[23] M. van Steen, P. Homburg, A.S. Tanenbaum, Globe: a wide-area

distributed system, IEEE Concurrency (1999) 70–78.
[24] M. van Steen, A.S. Tanenbaum, I. Kuz, H.J. Sips, A scalable middle-

ware solution for advanced wide-area Web services, Distributed
Systems Engineering 6 (1) (1999) 34–42.

[25] J. Yin, L. Alvisi, M. Dahlin, C. Lin, Hierarchical cache consistency in
a WAN, Proceedings of the Usenix Symposium on Internet Technol-
ogies and Systems (USITS ’99), October1999

[26] H. Yu, L. Breslau, S. Shenker, A scalable Web cache consistency
architecture, Proceedings of the ACM SIGCOMM’99 Conference,
September 1999.

G. Pierre et al. / Computer Communications 24 (2001) 232–240240

Guillaume Pierre is a post-doc researcher at the Vrije Universiteit in
Amsterdam. He holds an engineering degree from the “Institut d’Infor-
matique d’Entreprise” and a PhD in Computer Science from INRIA and
the University of Evry-val d’Essonne. His main interests are flexible
computing systems and Internet performance optimization.

Ihor Kuz has an MSc in Computer Science (1996) from the Vrije
Universiteit in Amsterdam. He is currently a PhD student at the Delft
University of Technology, doing research in the field of worldwide
scalable distributed Web services. His research interests include
operating systems, scalable distributed systems, and Web-based
technologies.

Maarten van Steenis Associate Professor at the Vrije Universiteit in
Amsterdam. He received his MSc in Applied Mathematics from Twente
University (1983) and a PhD in Computer Science from Leiden Univer-
sity (1988). He has worked at an industrial research laboratory for
several years in the field of parallel programming environments. His
research interests include operating systems, computer networks,
(wide-area) distributed systems, and Web-based systems. Van Steen is
a member of IEEE Computer Society and ACM.

Andrew S. Tanenbaumhas an SB from Massachusetts Institute of
Technology and a PhD from the University of California at Berkeley.
He is currently a Professor of Computer Science at the Vrije Universi-
teit in Amsterdam and Dean of the interuniversity computer science
graduate school, ASCI. Prof. Tanenbaum is the principal designer of
three operating systems: TSS-11, Amoeba, and MINIX. He was also the
chief designer of the Amsterdam Compiler Kit. In addition, Tanenbaum
is the author of five books and over 80 refereed papers. He is a Fellow of
ACM, a Fellow of IEEE, and a member of the Royal Dutch Academy of
Sciences. In 1994 he was the recipient of the ACM Karl V. Karlstrom
Outstanding Educator Award and in 1997 he won the SIGCSE award
for contributions to computer science.


