
This article has appeared at the ICDCS’99 conference.

Replicated Directory Service for Weakly Consistent Distributed Caches

Mesaac Makpangou, Guillaume Pierre, Christian Khoury and Neilze Dorta
INRIA SOR group – 78153 Le Chesnay Cedex – France

{makpangou,pierre,khoury,dorta}@sor.inria.fr

Abstract

Relais is a replicated directory service that improves
Web caching within an organization. Relais connects a dis-
tributed set of caches and mirrors, providing the abstrac-
tion of a single consistent, shared cache. Relais is based
on a replication protocol that exploits the semantics of user
requests to guarantee cache coherence. The protocol also
exploits the semantics of origin servers to optimize band-
width requirements. At the entry point for a client, Relais
maintains a directory of the contents of each Relais data
provider; this minimizes look-up latency, by making it a lo-
cal operation. The cost of maintaining the directories con-
sistent is minimized thanks to a weak consistency protocol.
Relais has been prototyped on top of Squid; it has been in
daily use for over a year.

1 Introduction

It is nowadays common to see the personnel of different
divisions of large organizations share documents provided
by servers located abroad. Examples include general pur-
pose documents (e.g. electronic news papers, stock quotes)
and documents related to the enterprise activities (e.g. stan-
dards, information on clients and suppliers). However, ac-
cessing electronic documents located abroad is slow and ex-
pensive. In addition, these documents are not always avail-
able. Problems are due to asynchronous communication,
server load, network congestion, communication latency,
and the characteristics of the Internet (network partitions,
server disconnections and communication failures, for ex-
ample).

To improve the access response time while reducing
the economic cost, divisions cache external documents at
nearby intermediate providers (e.g. mirrors or caching prox-
ies [5]). We argue that a location service capable of dis-
covering all documents cached within the organization’s
boundaries and of binding each user’s request to the replica
offering the best response time is needed in order to benefit
from these intermediate providers. To achieve that, interme-

Relais System

Cache

Mirror

Cache

Mirror

External
Server

External
Server

UserUser

O
rg

an
iz

at
io

n 
bo

un
da

ri
es

Figure 1. Concrete Representation of a Dis-
tributed Cache

diate providers need to cooperate in order to share contents.
The cooperation must preserve the autonomy of each divi-
sion. That is, each division’s intermediate provider should
function even if it can no longer communicate with other di-
visions’ intermediate providers. Letting different intermedi-
ate providers progress independently may lead to the pres-
ence of different versions of a document in the enterprise.
This raises the problem of which version should be returned
when a client requests the document. A blind choice may
lead to delivering a version which is older than one already
retrieved. This behavior is confusing and could encourage
users to bypass intermediate providers for future accesses.

Although the need of such a location service has already
been identified [1], existing solutions, especially in the con-
text of the Web [3, 4, 7, 13, 18], have limitations. First,
although they provide transparent access to caching prox-
ies, accessing a mirror site is not transparent. Second, the
query procedure introduces additional latency during docu-
ment access. Third, existing systems do not provide guar-
antees regarding the consistency of document versions de-
livered. In particular, a client may retrieve a version which
is inconsistent with respect to previously retrieved versions.

This paper presents Relais, a directory service for large

1



organization-wide distributed caches. Relais connects to-
gether the intermediate providers, offering the abstraction
of a shared distributed document cache. Figure 1 shows an
example of a distributed cache composed of two caching
proxies and two mirrors.

Relais provides a distributed directory service, i.e. it re-
solves the name of a document (a URL) into a location;
furthermore it provides the “best” location among a set of
replicas for that document within the organization’s bound-
aries. To do so, it maintains a directory of the contents of all
intermediate providers in the organization. The directory is
replicated, ensuring that name resolution is always a cheap,
local operation.

Relais relies on an abstract document model; interface
objects are responsible for converting the service API, for
instance HTTP requests or the filing service interface, into
the Relais directory generic interface. This architecture
enables Relais to connect different kinds of intermediate
providers (e.g. Web caching proxies, replicated file systems,
and replicated databases).

Relais offers its users two consistency guarantees: Read
Monotonic and Read Your Writes [16].1 Relais also guar-
antees that once a newer version of a document has been
noticed by any intermediate provider, all its neighbors will
rapidly be informed in order to update their copies as well;
this improves individual cache consistency with respect to
the servers and the group coherency as well. Group co-
herency is important for example when several persons
from different divisions need to have a common view on
some evolving documents located abroad.

Finally, Relais tolerates network partitions and discon-
nections; it implements a lightweight protocol to recover
from short disconnections and a heavyweight protocol to
recover from long disconnections or failures.

The rest of the paper is organized as follows: Section 2
presents the background to our work. Section 3 describes
the directory replication protocol. Section 5 discusses re-
lated work. Finally, Section 6 draws some conclusions and
points at future work.

2 Background

We consider a document to be any kind of resource. It
might be a file, a Web document, a memory segment, an in-
stance of an abstract data type, or a cluster of objects. Each
document is designated by a URL. The document is the unit
of caching and consistency management. Each document is
owned by a single server, called its origin server.

A document can evolve over time (i.e. new versions of
documents can be created at any time). We assume that,

1The former guarantees that a client sees monotonically increasing ver-
sions of a document (i.e. time never moves backwards). The latter guaran-
tees that each client sees its own modifications in the appropriate order.

Mirror

Provider
Agent

Caching Proxy

Location

Provider
Agent

Proxy

Non-caching proxy

Location
Proxy

Location
Proxy

Provider
Agent

Legend

Access

Directory
Manager

Directory
Manager

Directory
Manager

Directory
Manager

Relais
Protocol

Point

Figure 2. The Relais Architecture

when a document is requested from its origin server, the
server delivers an up-to-date copy together with a times-
tamp that identifies the returned version.

Document copies can be stored at intermediate providers
within the organization’s boundaries. Examples of inter-
mediate providers include Web caching proxies, mirrors,
archives, file systems, etc. We refer to locations of in-
termediate providers as the organization replication sites.
Locations where users submit their document requests are
called access points. Note that a single location may play
both roles. For instance, a mirror provides information but
isn’t an access point; a non-caching proxy is only an access
point; a caching proxy plays both roles.

When an intermediate provider retrieves a version of a
document from the server, it becomes a primary replica
site for this version. Each document cached within the
system has a primary replica site: the notion is indepen-
dent of whether or not this site actually owns a replica of
the version. Note that a version may have several primary
replica sites if several intermediate providers independently
retrieved the same document from the server.

The remaining of this section introduces the Relais ar-
chitecture. Relais comprises three kinds of components:
provider agents, location proxies and directory managers
(see Figure 2). Provider agents interface intermediate
providers with other components of Relais, whereas lo-
cation proxies enable users to access documents from the
shared distributed cache. Directory managers replicate the
shared directory.

2.1 Provider Agents

A provider agent allows an intermediate provider to reg-
ister documents in their possession with the shared dis-



tributed directory. An intermediate provider notifies its
provider agent when adding or removing a document, and
when detecting a newer version of a document.

Provider agents manage document name aliases. For ex-
ample, a document stored in a mirror has a different name
(i.e. URL) than the original document. However, the users
wish such renaming to remain transparent, i.e. to designate
all copies uniformly. To solve this problem, the provider
agent registers a replica under its original name. It then
takes care of the mapping when a replica is requested under
its global name.

2.2 Location proxies

A location proxy enables a user to transparently ac-
cess the group of intermediate providers that make up the
organization-wide distributed cache. A user submits a doc-
ument name to his associated location proxy. We make the
hypothesis that a user doesn’t change his location proxy.

The location proxy first looks up the name in the direc-
tory. If the document is available in the system, the direc-
tory manager returns a list of locations where replicas can
be retrieved. The location proxy chooses a preferred replica,
either by itself or by delegating the choice to an external ser-
vice such as SPAND [14].

A location proxy also informs the local directory man-
ager when new versions of documents are observed or when
users update originals.

2.3 Directory Managers

The directory is replicated towards the organization ac-
cess points by the directory managers. They perform regis-
tration and removal of document locations, invalidation of
cached copies when their originals are updated, and lookup
of available locations.

Lookup requests are resolved by simply consulting the
local copy of the directory. All other requests (register, re-
move, invalidate) trigger notification messages to be sent to
other managers to keep directory replicas consistent.

The main contribution of Relais is the directory replica-
tion protocol. The rest of the paper focuses on that aspect.

3 Directory Replication Protocol

The replication protocol is implemented by the group of
directory managers. They cooperate with one another by
exchanging notifications. Notification types include: Add,
Delete, Invalidate and Probe. The three former are
notifications of application-related events, whereas the lat-
ter is used by the protocol itself (for example, Probe noti-
fications may be used to request the partner’s time).

3.1 Logical Clocks

Relais relies on logical clocks to timestamp notifications
exchanged within the group of directory managers. Relais
requires each directory manager to maintain a logical clock
that allows it to timestamp notifications that it generates
during its lifetime. Timestamps totally order the notifica-
tions from a given manager, such that the order is consistent
with the order in which the notified events occurred.

In practice, each directory manager maintains a local
logical clock of two components: a session component s

and a counter c. The session component corresponds to
the last restart time of the site. The counter component is
initialized at site restart time, then incremented at each oc-
currence of an interesting event (i.e. registration, removal,
invalidation or probe).

3.1.1 Global Virtual Time

Relais implements a reliable FIFO delivery of notifications.
Since notifications carry their timestamps, each directory
manager can approximate the time of its partners based on
the timestamps of notifications received from these partners.
These approximations constitute what the local manager’s
global virtual time [6].

More precisely, each manager approximates the global
virtual time of the group with a vector of clock values, one
entry per partner. The entry associated with each remote
partner contains the timestamp of the most recent event no-
tified by that partner; the entry corresponding to the local
manager contains its logical clock.

3.2 Basic Replication protocol

For the purpose of this article, we assume that Relais
is deployed on n sites, numbered 1, ..., n. To simplify the
presentation, we also assume that every site is both a repli-
cation site and an access point, and that there exists one
intermediate provider per site.

This section concentrates on the basic protocol. Initially
we also assume the absence of failures and disconnections,
and do not address consistency issues. These assumptions
will be relaxed later in the paper.

3.2.1 Basic Notifications

A local copy of the shared directory is up-to-date if the loca-
tions of all the accessible documents in the group are refer-
enced in the directory, and there are no dangling references.
For that, Relais managers must be informed whenever a new
copy is added to, or removed from, an accessible interme-
diate provider.

When the directory manager receives a registration (resp.
removal) request, a Add (resp. Delete) notification is



multicast to the group. The Add (resp. Delete) notifies
the arrival of a new (resp. removal of an old) copy at an
intermediate provider.

Each basic notification carries the following information:
its type (Add or Delete); the document URL; the provider
agent address; the version timestamp of the notified copy;
the identifier of the primary replica site of the version; and
the logical clock of the document’s primary replica site at
the registration time.2

3.2.2 Notification Protocol

The notification protocol enforces reliable delivery of noti-
fications in generation order. The Relais notification system
has two layers: the queuing layer and the transport layer.

The queuing layer maintains, for each destination, a
queue of notifications yet to be sent to this destination. Each
notification in the queue is timestamped with the local log-
ical clock of the notified event. A notification is removed
from the queue only after its delivery has been acknowl-
edged. Note that the length of the queue of outstanding no-
tifications for some destination provides a hint about this
partner’s connectivity: the longer it is, the higher the prob-
ability that the partner is disconnected.

For each partner, periodically (or when the length of the
queue reaches some limit) the transport layer sends a mes-
sage. Each message contains a sequence of queued notifi-
cations, starting from the oldest outstanding notification for
that partner.

To reduce bandwidth consumption, timestamps attached
to notifications are not packed in the transport message.
Rather, the transport message contains only the timestamp
of the youngest notification contained in the message. This
is sufficient because the sequence of notifications is deliv-
ered to the destination atomically; in addition, the delivery
system indicates the order in which the notifications were
originally sent.

The transport message also carries the timestamp of the
most recent event that occurred at the destination site and
which has been notified so far. This timestamp acknowl-
edges previous notifications received from this destination.
Hence, each manager knows which notifications have al-
ready been delivered to its partners and can remove them
from outstanding notification queues.

Conversely, if a message carries notifications that were
already delivered, the receiver will detect them by compar-
ing the virtual time of the sender and its view of that time.
When the view is greater than the announced virtual time,
the message is ignored.

2The last two items are needed by the heavyweight recovery protocol;
see Section 3.4.2 for details.

3.3 Monotonic Progress in Document Histories

Here, we consider a consistency guarantee, the Read
Monotonic guarantee. This guarantees that no client will
ever see successive versions of a document that go back in
time. To achieve that, each manager should remember a ver-
sion threshold for each document it has already delivered to
its users; this is a timestamp that identifies the most recent
version that was delivered to its users. Only a copy with a
version timestamp greater or equal to this threshold may be
referenced by a manager.

One problem with this solution is memory consumption.
The number of documents accessed from each access point
is likely to grow quickly over time, but not all documents
that have been accessed so far need to be remembered.

When a document is no longer available within the orga-
nization, it is pointless to maintain an entry in the shared
distributed directory for that document. However, en-
try reclamation must preserve the guarantee of monotonic
progress. To achieve this, a manager may only reclaim an
entry in its copy of the shared distributed directory if the fol-
lowing two conditions are satisfied: (i) no copy of the corre-
sponding document is referenced any more; (ii) the manager
is certain that the current threshold version is stable within
the group of managers; this means that all managers know
either this version or a more recent one.

We can detect stable versions within a group of n man-
agers using a n ∗ n array that we name GS3 which each
manager owns a copy. GS is constructed as follows. Raw i

of GS corresponds to the last known global virtual time of
manager i. To update this row, each manager periodically
pushes its global virtual time vector to the entire group, us-
ing a Probe notification.

To determine whether a version carried by an Add no-
tification a, generated by manager k at the local time t, is
stable (that is, has already been received by all managers),
we only need to check the following condition:

∀j ∈ {1, . . . , n}, GS[j, k] ≥ t

Any notification carrying the version may be used to check
the stability of a version within the group.

Hence, to limit memory consumption, managers allocate
directory entries only for documents currently cached in at
least one intermediate provider, or for documents with un-
stable version thresholds. Once a manager has noticed the
stability of that version, it can no longer receive an Add
notification concerning a version older than the stable one.
When a manager receives a request for a document that it
doesn’t reference, it defaults to the origin server, which in
turn always delivers an up-to-date document. Therefore the
protocol preserves the Read Monotonic guarantee.

3GS stands for Global State



Connected Disconnected

FailedReconnecting

Lack of acknowledgments

Message received
Queue too large

Message received

End of
reconciliation

Startup

Figure 3. Manager State Transition Diagram

3.4 Recovery Protocols

In this section, we consider that Relais managers can dis-
connect from one another. We want to avoid consuming
network and memory resources with notifications to dis-
connected partners. For that, each manager monitors its
connections with its peers. Upon reconnection of a part-
ner presumed disconnected, managers run a recovery pro-
tocol. Relais implements a lightweight protocol to recover
from disconnections, and a heavyweight protocol to recover
from failures (or long disconnections)

3.4.1 State Transition Rules

From a manager’s viewpoint, another manager is consid-
ered to be in one of four states: Connected, Discon-
nected, Failed and Reconnecting. Figure 3 shows
the state transition diagram.

Let M1 and M2 be two Relais managers. M1 considers
M2 as Connected if M2 acknowledges notifications sent
by M1. If M2 does not acknowledge M1’s notifications in
time, M1 will consider M2 to be Disconnected. M1

will stop sending notifications to M2. Instead these notifi-
cations will be stored in a queue.

Periodically, M1 will send a probe notification. Probe
notifications contain the acknowledgment of the last notifi-
cation received from M2, the local clock of M1 and the pre-
sumed state of M2 (Disconnected). When M2 receives
a probe saying that it is considered Disconnected, it
simply acknowledges the probe along with any outstanding
notifications destinated to M1.

If M1 receives a message from M2, it re-enters a normal
notification mode with respect to M2. That is, M2’s state
record is changed to Connected, and M1 sends any out-
standing notifications to M2. We call this the lightweight
recovery protocol.

However, if M2 stays silent for a long period, the queue
of outstanding notifications destined for M2 might become
too large. When the cost of maintaining these notifications
becomes too high, M1 declares that M2 has Failed, and

M1

M2

M3

Add version 1

Partition({M
1},{M

2,M
3})

Add version 2

Delete version 2

Forget version 2

Reconnection({M
1,M

2,M
3})

End of reconciliations

Get version 1

Add version 1

Ad
d 

no
tif

ic
at

io
n

Add notification

This notif must not
be accepted!

Figure 4. Scenario that may lead to the vi-
olation of read-monotonic guarantee after a
recovery

deletes all resources dedicated to M2. This decision is local
and concerns only M1. One important consequence of this
decision is that M1 will no longer consider M2 when check-
ing whether a version threshold of a document is stable. In
other words, M1 may decide to reclaim an entry allocated
to a document without any information about the view of
M2.

Later on, if M1 receives a probe or any other notification
from M2, it will initiate the heavyweight recovery protocol.

3.4.2 Heavyweight Recovery Protocol

When two managers reconnect after a long period of dis-
connection, each one may have documents that could in-
terest the other. Also, each manager may have reclaimed
certain entries of the shared repository during the discon-
nection. Hence the heavyweight recovery protocol has two
objectives.

Firstly, it allows the managers to inform each other of
the documents in their possession. Interesting documents
are those to which a manager can bind its users, without
violating the Relais consistency guarantees. A conservative
solution is, for a manager which has considered the other
Failed, to only reference documents (in the possession of
the presumed failed partner) for which it still remembers the
most recent version delivered to its users.

Secondly, the recovery protocol should guarantee that,
after the recovery, the recovered (or reconnected) manager
will not introduce inconsistencies. For instance, after the re-
connection of a system that has been partitioned, if different
partitions have observed different versions of a document
there is a risk of forcing certain sites that were in a separate
partition to “backup” to their past.

Figure 4 shows a scenario that illustrates this problem.



In this scenario, the organization has three sites. M1, M2

and M3 are managers of the replicated directory. Let us
suppose that the system has been partitioned for some time;
the partitions are {M1}, {M2, M3}. In our scenario, prior
to the partition, M3 retrieved version v1 of a document (say
d) and notified it to other managers. Suppose that:

• During the partition, M1 retrieved a new version v2 of
d, delivered it to its users, and then removed it from its
cache. Later on, it even reclaimed the directory entry
associated with d. Hence, M1 has no more information
about the oldest version of d it has ever delivered to its
users.

• During the lifetime of the partition, partition
{M2, M3} keeps version v1.

During the reconnection procedure, M1 can easily detect
that it should not accept a reference to the version of d held
by M3. One problem remains however: after the reconnec-
tion, M2 may retrieve a copy of version (v1) of document
d from M3, caches it and then sends an Add notification to
M1 and M2. This behavior respects the Relais guarantees
even though version v1 is outdated. If this notification were
accepted by M1, there would be a risk of serving this doc-
ument version to a user who had already observed a more
recent version (v2).

To avoid this problem, Relais managers implement a
conservative solution: after manager M2 recovers from a
Failed state (from the point of view of M1), Add notifi-
cations from M2 are acceptable for M1 only if the primary
replica site of the document had retrieved it after M2’s re-
covery. The problem is now to determine that a copy was
retrieved after M2’s recovery. At the end of the recovery
procedure, the manager that had suspected the other to be
in the Failed state sends a Probe notification p to re-
quest the others’ local time. The vector clock Πt(p) which
captures the logical time at each partner, at the moment it
receives the Probe notification p, partitions the Add notifi-
cations from each partner into two categories (see Figure 5):
those that occurred before the reception of p and those that
occurred after.

An Add notification, denoted a, from M2 is safe for M1

if
Πt(p)(a.prs) < a.prs time

where a.prs is a’s primary replica site and a.prs time is
the local time of a.prs at the time of the retrieval from the
server (both information are contained in the Add notifica-
tion; see Section 3.2.1).

To summarize, each manager keeps, for each other part-
ner, a vector clock that provides the global virtual time at
the moment it last reconnected to that partner. Each vector
clock partitions the Add notifications from the correspond-
ing partner into two categories and only those concerning

M1

M2

M3

Event pE
vent p

Refused!

A
dd

1

Accepted!

Add2

Add
2

A
dd

1

Πt(p)

Past Future

Figure 5. Event Global Time

versions retrieved after the last reconnection with that part-
ner are considered safe. Unsafe notifications are rejected by
each partner.

Note that, at startup time, each manager considers other
partners to be in the Failed state. The manager then
builds an up-to-date local copy of the shared directory
by running the previously described heavyweight recovery
procedure with each partner that it can contact.

3.5 Distributed Cache Coherency

Relais offers the abstraction of a distributed document
store. One objective of Relais is to ensure the rapid progress
of the overall distributed cache on each document history,
while letting each intermediate provider implement its own
consistency protocol.

Let’s consider two provider agents P1 and P2, and a doc-
ument d. Consider the following scenario:

1. P2 retrieves a copy of d from the origin server and in-
forms its associated manager M2. M2 in turn, notifies
the storing (an Add notification) of the retrieved copy.

2. Later on, P1 receives an invalidation request from the
origin server indicating that d has changed. P1 invali-
dates its cached copy, then informs its associated man-
ager, M1 for example, which in turn updates its local
copy of the shared directory to no longer point to ob-
solete copies; M1 then notifies its peers, using the In-
validate notification type.

For example, if the server doesn’t indicate the current
version to P1, and if the Add notification sent by M2 ar-
rives after the treatment of the Invalidate notification
by M1, there is a risk of installing a reference to a copy of
an obsolete version of the document.



The problem we face here is how to determine whether
a copy referenced by the directory was effectively retrieved
before or after an invalidation. Furthermore,Invalidate
and Add notifications concerning the same document may
be concurrent.

When an Invalidate notification carries the current
version, the problem is easier and is treated as an Add notifi-
cation that does not indicate the address of a provider agent.
However, when the new version is not specified (which is
common for most invalidation-based cache consistency pro-
tocols), things get complicated.

In the current design, Relais implements a simple so-
lution. An Invalidate notification carries the old ver-
sion being invalidated and, if available, the up-to-date ver-
sion. When a manager receives an Invalidate notifica-
tion which specifies the new version, it treats it as an Add
carrying a new version: it forgets current locations and up-
dates the version threshold. If an Invalidate notifica-
tion doesn’t indicate the new version, each manager inval-
idates its local copy of the notified document if its version
is older or equal to old version specified by the notification.
Removals of copies are notified to the group using a normal
Delete notification.

4 Performance Evaluation

In this section, we assess some of the choices we made
in the design of the Relais protocol (directory service, con-
sistency guarantees). We compare Relais to ICP [18], a
widely used location protocol for objects4 within cooper-
ating caches. When ICP needs to locate a server for a docu-
ment in a group of cooperating caches, it broadcasts a mes-
sage to all the group asking if any member has a copy. The
first to answer positively is picked to be the suitable server.

We use simulation techniques because they allow repro-
ducible experiments. It is thus easy to compare different
configurations. We use Saperlipopette! [11], a distributed
Web cache simulator developed by our group.

4.1 Simulated Environment

The evaluated environment consists of five cooperating
caches, 250 MB storage size each, servicing a group of
clients. Network characteristics (i.e., latency and band-
width) between clients, caches and servers have been setup
to fake a realistic environment.

Saperlipopette! is a trace-based simulator. We collected
traces at INRIA for one month (≈ 900.000 requests). Since
we do not aim here at presenting a real case study, we use a
hash function to distribute the clients among the five caches
(each cache received ≈ 180.000 requests).

4Mostly Web documents

Table 1. Repartition of requests localization
ICP Relais

Nb of Requests 902 179 902 179
Local Hits 32.4% 32.4%
Neighbor Hits 7.3% 7.24%
False Hits 0% 0.0032%
Misses 60.3% 60.3%
Inconsistency/Server 1.122% 1.096%
Memory (MBytes/cache) 0 15.2 MB
Coop. Traffic (MBytes) 230.2 MB 167.2 MB
Coop. Traffic (Messages) 942 950 124 520

4.2 Metrics

As stated earlier, we do not try to evaluate all the facets
of Relais. We measure here the accuracy of the location
service provided by Relais. ICP provides, in this area, the
best possible results: it always sends location requests to
its partners at the time of the requests. On the other hand,
Relais asynchronously vehicles location data amongst co-
operating caches, thus allowing false locations. Local hits
(resp. Neighbor hits) ratio quantifies the percentage of re-
quests resolved by the local cache (resp. one of the neighbor
caches). False hits ratio quantifies false location.

We evaluate the amount of consistency provided by
ICP and Relais with respect to origin servers (Inconsis-
tency/Server). We are also interested in the “Monotonic
progress in document histories”. However, we do not ad-
dress it in this evaluation.

Finally, we quantify the cost of different resources used
by these location services: Memory usage (i.e. size of the
Relais shared directory) and network overhead.

4.3 Results and Interpretation

As we can see from table 1, Relais locates documents
with almost the same accuracy as ICP: local hits and neigh-
bor hits are almost equal. As stated earlier, Relais can pro-
duce false location information because of its asynchronous
propagation of location data. However, in these simula-
tions the false location phenomenon is almost inexistent
(≈ 0.0032%).

The number of cases where one of the caches answered
with an obsolete version of the document is slightly advan-
tageous to Relais. We can interpret it as a side effect of the
notification protocol.

The memory cost incurred by ICP is zero, as it doesn’t
store any kind of location information, whereas Relais re-
quired 15 MB/site. We argue that this amount of memory is
quite low compared to the total size of located documents



(1.25 GB). However, we expect it to be greater in a larger
group of bigger caches.

As for the network traffic, we can see that Relais gener-
ates 7.5 times less messages than ICP. This is due to the fact
that Relais aggregates location information in larger packets
making a good use of the network bandwidth.

To summarize, Relais provided us with almost the same
location results as ICP with better consistency and lower
latency, a small memory cost and a huge improvement of
network utilization.

5 Related Work

Our work tackles a number of issues that were addressed
by several other systems. These include the directory ser-
vice abstraction in large-scale settings, cooperative cache
protocols, consistency guarantees in a weakly consistent
system, and update propagation in a disconnected environ-
ment. Hereafter, we point out some of these systems and
compare their objectives and/or solutions to ours.

5.1 General Purpose Location Service

A number of general purpose location systems have been
proposed in the past, including the ClearingHouse [10],
DNS [8, 9] and the Globe location service [17]. These sys-
tems operate at a worldwide scale, which implies managing
a huge quantity of information. Consequently, they use tree
architectures, and propagate the location requests along the
branches of the tree.5 As the location mappings that they
manage don’t change often, caching techniques can easily
be used to minimize the number of requests to the location
system.

In contrast, the location information managed by Relais
changes very often. Relais places its use in smaller-scale
systems: each group should link together a relatively small
number of directory managers. This enables us to totally
replicate the location directory, and permits local lookups.
However, the size of Relais’ directory is still an issue when
managing large numbers of documents. We will address it
in our future research.

5.2 Cooperative Cache Protocols

Relais can be used to implement cooperative caches. A
number of cooperative cache protocols have already been
proposed, first in the file system area, and later for the
World-Wide Web.

Cooperative file system caches place themselves in lo-
cal area networks [2]. As the LAN is faster than the disks,

5The depth of the tree is fixed to 2 in ClearingHouse, and is variable in
the other systems.

when requesting a file (or a block), the server can redirect
the request to a neighboring cache rather than accessing its
disk. This approach differs from ours: the location informa-
tion can be centralized at the server point (possibly reusing
the invalidation callback references).

Cooperative Web caches are much closer to the issue we
address: considering that accessing the servers is costly,
how do a number of caches share their contents?

The simplest mechanism is “request on demand”: when
a cache misses a document, it queries its neighbors in or-
der to locate nearby copies. This technique is used by the
ICP protocol [18]. The drawback of this protocol is that it
suffers significant latency and generates a lot of traffic. To
reduce this problem, Crisp [4] proposes a mapping server
that maintains location related information. Now, when a
cache misses a document, it queries only the mapping server
to obtain alternative locations of the document. The Crisp
mapping server may be centralized, partitioned or replicated
at several sites.

Summary caches [3] and Cache Digests [13] pursue the
same goal as Relais: to make the shared directory available
locally to each member of the group so as to minimize the
location cost. While with Relais each cache logically no-
tifies all interesting events to its partners, Summary caches
and Cache Digests propose that each cache computes pe-
riodically a compressed representation of its contents and
sends it to its partners. The drawback is that the content
representations must be exchanged often in order to avoid
excessive inconsistencies.

None of these protocols address the document consis-
tency issue. However, distributed caching introduces prob-
lems such as the Read Monotonic guarantee violation. We
believe that such counter-intuitive cache behaviors should
be avoided; if we don’t address this point conveniently,
users might decide to bypass their caches.

6 Conclusion

We present Relais, a directory service that permits effi-
cient and transparent location of document copies cached
within the organization boundaries. Relais is a basic build-
ing block for efficient sharing of information among well-
delimited groups of users, possibly distributed at geograph-
ically separate sites. It exploits efficiently the internal re-
sources of an organization (such as communication links,
storage space, and CPU time) to improve performance and
availability, while reducing access to external resources
(e.g. public networks, Web servers, and databases).

Relais has been prototyped on top of Squid [15]. This
prototype has been used to locate Web documents in clus-
ters of caching proxies. In particular, it has been in daily
use in our institute for more than a year [12]. Although we
didn’t yet study the benefits of providing the Read Mono-



tonic and Read Your Writes consistency guarantees, we
consider them essential to users’ acceptance of caches.

Looking to the future, our objectives include three
points. Firstly, we will address the scalability issue. With
the current design, each manager has a huge state to main-
tain. We also want to get rid of the total replication of the
directory. We are working on structuring the cooperation
group into subgroups for building a kind of “cooperation
hierarchy”. Secondly, we are considering the use of Relais
for other application domains. In particular, we plan to use
Relais to enable efficient sharing in a large-scale file server,
when the number of clients is large. Another planned case
study is a large-scale distributed object store for cooperative
engineering in virtual enterprises. Thirdly, we are consid-
ering the refinement of the protocol to remove current limi-
tations; in particular, we should relax the requirement for a
user to be bound to a single location proxy once and for all.

7 Acknowledgements

We would like to thank Marc Shapiro, Ian Piumarta,
Georges Brun-Cottan and Jan Vitek for their helpful com-
ments on the paper. Éric Bérenguier and Stéphane Dugelay
have also been very helpful for the design and implementa-
tion of Relais.

References

[1] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and
M. F. Schwartz. The Harvest information discovery and ac-
cess system. Computer Networks and ISDN Systems, 28(1-
2), Dec. 1995.

[2] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Pat-
terson. Cooperative caching: Using remote client memory
to improve file system performance. In Proceedings of the
First Symposium on Operating Systems Design and Imple-
mentation, pages 267–280, 1994.

[3] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache:
a scalable wide-area Web cache sharing protocol. In Pro-
ceedings of the SIGCOMM ’98 conference, Sept. 1998.

[4] S. Gadde, M. Rabinovich, and J. Chase. Reduce, reuse, re-
cycle: an approach to building large Internet caches. In Pro-
ceedings of the HotOS ’97 Workshop, May 1997.

[5] A. Luotonen and K. Altis. World-Wide Web proxies.
In Proceedings of the 1st International WWW Conference,
Geneva, Switzerland, May 1994.

[6] F. Mattern. Virtual time and global states of distributed
systems. In Parallel and Distributed Algorithms, pages
215–226. Elsevier Science Publishers B.V. (North-Holland),
1989.

[7] J.-M. Menaud, V. Issarny, and M. Banâtre. A new proto-
col for efficient transversal Web caching. In Proceedings of
the 12th International Symposium on Distributed Comput-
ing (DISC ’98), Sept. 1998.

[8] P. Mockapetris. Domain names - concepts and facilities.
RFC 1034, Nov. 1987.

[9] P. Mockapetris. Domain names - implementation and speci-
fication. RFC 1035, Nov. 1987.

[10] D. C. Oppen and Y. K. Dalal. The Clearinghouse: a de-
centralized agent for locating named objects in a distributed
environment. In ACM Transcations on Office Information
Systems, volume 1, July 1983.

[11] G. Pierre and M. Makpangou. Saperlipopette!: a distributed
Web caching systems evaluation tool. In Proceedings of the
1998 Middleware conference, Sept. 1998.

[12] Relais home page. http://www-sor.inria.fr/
projects/relais/.

[13] A. Rousskov and D. Wessels. Cache digests. In Proceed-
ings of the 3rd International WWW Caching Workshop, June
1998.

[14] S. Seshan, M. Stemm, and R. H. Katz. SPAND: Shared
passive network performance discovery. In Proceedings of
the 1997 Usenix Symposium on Internet Technologies and
Systems (USITS-97), Monterey, CA, Dec. 1997.

[15] Squid home page. http://squid.nlanr.net/
Squid/.

[16] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer,
M. M. Theimer, and B. B. Welch. Session guarantees for
weakly consistent replicated data. In Proceedings of the
Third International Conference on Parallel and Distributed
Information Systems, pages 140–149, Austin, Texas, Sept.
1994.

[17] M. van Steen, P. Homburg, A. S. Tanenbaum, and F. J.
Hauck. Locating objects in wide-area systems. IEEE Com-
munications Magazine, pages 104–109, jan 1998.

[18] D. Wessels and K. Claffy. Internet cache protocol (ICP),
version 2. RFC 2186, Sept. 1997.


