
Aggregate Queries in NoSQL Cloud Data Stores

Master’s Thesis, PDCS
Submitted to the Department of Sciences, Vrije Universiteit, Amsterdam,

The Netherlands

Plamen Nikolov (2000229)
August 2011

Guillaume Pierre
Principal Advisor

ii

Abstract

This thesis work describes the design and implementation of an aggregate view mainte-
nance mechanism for web applications in the Cloud. Maintaining consistent views and
ensuring fault and partition tolerance is generally hard as the CAP theorem postulates that
these three properties cannot hold simultaneously. Nevertheless, web application transac-
tions are often characterized by short-lived transactions touching only a few data items.
Specific examples are shopping cart updates, user name and password look-ups, and online
visitor statistics. The small sized updates allow for an efficient aggregate view maintenance
solution based on incremental updates via change tables. The change table mechanism can
be readily implemented at a transaction coordinator node which can carry out the entire
computation because of the small-sized view change tables.

This thesis elaborates on using the two-phase commit protocol and simple equi-join
queries to implement a synchronous and asynchronous version of the change table algo-
rithm. In this work we will argue that the heavy workloads introduced by the synchronous
approach can be decreased by relaxing the view freshness requirements. Thus, the perfor-
mance of the proposed mechanism can be controlled by exploiting the whole consistency
range from immediate updates to deferred refreshing which can be carried out at arbitrary
time intervals.

Contents

ii

1 Introduction 1
1.1 From Relational Databases to NoSQL . 1
1.2 Scalable and Consistent R/W and Equijoin Queries in the Cloud 3
1.3 Motivation . 4
1.4 Aggregate Queries for Large-Scale Web Applications 5
1.5 Thesis Structure . 7

2 Background 8
2.1 Motivating Example . 8
2.2 Data Model . 11
2.3 Execution Environment . 12

3 State of the Art Data Aggregation for the Cloud 14
3.1 Aggregation with the MapReduce Framework 14
3.2 Aggregate Queries in Cloud-based Web Applications 16

4 Materialized View Maintenance—A Theoretical Perspective 17
4.1 Materialized Views . 17
4.2 Notation and Terminology . 18
4.3 View Maintenance via Change Tables . 19

4.3.1 Change Tables . 19
4.3.2 Refresh Operator . 20
4.3.3 Change Table Computation . 20
4.3.4 Change Table Propagation . 22

5 System Design and API 23
5.1 Overview of CloudTPS . 23
5.2 Aggregate Queries for CloudTPS . 24
5.3 Implementation . 25

i

5.3.1 Synchronous Computation . 26
5.3.2 CloudTPS Aggregate View Refresh Operator 29
5.3.3 Asynchronous Computation . 29

5.4 Aggregate View Maintenance API . 30

6 Evaluation 31
6.1 Experimental Setup . 31
6.2 Correctness . 32
6.3 Micro-benchmarks . 33
6.4 Macro-Benchmarks . 35

7 Conclusion 36

Bibliography 38

ii

List of Tables

2.1 Aggregate Query Row Access Counts . 11

4.1 Change Propagation Equations [15] . 22

iii

List of Figures

1.1 LinkedIn and WordPress Platform monthly traffic measured in people per
month (Source: Quantcast.com) . 2

1.2 Data Flow within a Web Application . 4
1.3 Aggregate View Maintenance via Summary Tables 6

2.1 Web Application Accounting for User Clicks and Page Views 9
2.2 SQL Query Plan . 10
2.3 Data Cube . 12

3.1 MapReduce Framework . 15

4.1 Change Table Derivation after a Base Table Update 21

5.1 CloudTPS Architecture . 24
5.2 Synchronous Computation Two-Phase Commit Protocol 28

6.1 Aggregate View Maintenance Experimental Setup 32
6.2 Performance Evaluation of the Synchronous and Asynchronous View

Maintenance Algorithms (transactions per second vs update size) 33
6.3 Asynchronous View Maintenance with Different Refresh Frequencies

(transactions per second vs update size) 34
6.4 Performance Evaluation of the Synchronous View Maintenance Algorithm

with TPC-W (transactions per second vs update size) 35

iv

Chapter 1

Introduction

1.1 From Relational Databases to NoSQL
According to Moore’s law transistor density doubles every two years while semicon-
ductor prices decrease steadily [19]. The exponential growth in computer power and
cost-performance ratio has led to an increased availability of commodity computers and
widespread usage of cluster and on-demand computing on the Cloud. The shift from ex-
pensive state-of-the-art machines to inexpensive commodity hardware necessitates rethink-
ing web application models from resource provisioning to storage engines in order to allow
for user base expansions and handling hardware failures in a distributed environment. With
the increase of computational power, the application’s user base grows as well (Figure 1.1),
challenging web services with millions of users demanding low response times and high
availability. As in reality users increase asymptotically faster than transistor density, sys-
tem architect wizards have to resort to increasingly sophisticated tricks in order to address
the scalability issues in the data storage tier.

Generally, database scalability can be achieved by either vertically or horizontally scal-
ing the database tier:

• Vertical Scalability: When scaling vertically, the database tables are separated
across different database instances on potentially distinct machines so that each
server is assigned a specific task. While this approach results in efficient I/O load-
balancing, vertical scalability depends on the presence of logically separable compo-
nents of the database and the ability to constantly upgrade the existing hardware;

• Horizontal Scalability: When scaling horizontally, the database structure remains
unchanged across all the database instances. Achieving horizontal partitioning re-
quires a consistent maintenance between the different instances and their replicas,
efficient load balancing, and I/O aware query algorithms so that the data transfer

1

CHAPTER 1. INTRODUCTION 2

(a) LinkedIn Traffic (b) WordPress Traffic

Figure 1.1: LinkedIn and WordPress Platform monthly traffic measured in people per
month (Source: Quantcast.com)

latency is minimized. Theoretically, the achieved database speed-up by horizontal
scaling is proportional to the number of newly added machines.

For Cloud-based web-applications, vertical scalability is not a viable solution as it involves
adding new resources to a single node in the system. While the prices of off-the-shelf com-
ponents have radically decreased over the last several years, there is a limit to the number of
CPUs and memory a single machine can support. Typically, systems are scaled vertically
so that they can benefit from virtualization technologies; a common vertical scalability
practice is placing different services and layers on separate virtual machines to facilitate
migration and version management.

One of the biggest challenges facing web applications is not the lack of computa-
tional power but efficiently and resiliently processing a huge amount of database query
traffic [22]. More than 30 years old, RDBMSs represent the perfect storage solution on
high-end multi-core machines equipped with enormous hard drives. With their impressive
feature set, transaction management, and query capabilities relational database solutions
are able to handle nearly any imaginable task. However, problems start arising once these
databases have to become distributed in order to handle the more demanding traffic; coming
from the era of mainframes, they were never designed to scale. Below are listed only some
of the issues causing relational databases to lose the lead in large scale web applications:

• Behemothian data volumes require applying a heavy data partitioning scheme across
a huge number of servers, also referred to as sharding1, leading to a degraded perfor-
mance of table joins;

1A popular distributed database design is horizontal partitioning in which the database rows are distributed
across different partitions. Each partition belongs to a shard which might be located on a different database
server.

CHAPTER 1. INTRODUCTION 3

• Systems with heavyweight transaction management cannot handle efficiently con-
current queries;

• Relational databases cannot handle efficiently data aggregation from large shard vol-
umes due to high communication costs.

Many of the described scalability issues can be addressed by relaxing the consistency re-
quirements and dropping the relational schema. This argument is especially pertinent to
web applications as they exhibit a different data access behavior than enterprise data min-
ing platforms. A typical model-view-controller web application uses a small subset of SQL
with fine-grained data access patterns and performs very few writes compared to the num-
ber of read operations. Thus, the data model can be readily expressed as key-value pairs
or simple document corpora which can be accommodated by data stores such as Google’s
BigTable [8], Amazon’s SimpleDB [3], and open-source projects such as HBase and Cas-
sandra. These and other similar storage solutions go under the umbrella name of NoSQL.

1.2 Scalable and Consistent R/W and Equijoin Queries in
the Cloud

Currently most NoSQL databases provide extremely limited functionality as they do not
support atomic updates, join, and aggregate query capabilities. Often when consistency is
not a key requirement, porting the storage tier of an application from a relational database to
a non-relational solution such as Hadoop only requires denormalizing the data model [7].
This is the case for applications using “approximate” information2 (e.g. approximate num-
ber of a website page views). On the other hand, there are many applications which cannot
use a weak data consistency model. For example, overselling a physical item in an online
store is a highly undesirable event at best.

Providing strong consistency in non-relational stores is generally a hard problem. Intu-
itively, the distributed nature of the data results in a higher cost to synchronize all changes
made by a transaction into a known single state. More formally, these challenges are cap-
tured by Brewer’s theorem postulating the impossibility for a distributed system to simul-
taneously provide consistency, availability, and partition tolerance [10]. Nevertheless, web
applications exhibit certain data access patterns which ease the strong consistency problem.

The CloudTPS middleware introduces a novel approach for achieving strong consis-
tency in NoSQL by taking advantage of the short-lived, relatively small queries character-
istic to web applications [23]. The proposed framework uses multiple transaction managers
to maintain a consistent copy of the application data to provide developers with a means

2The database operations in the “approximate” reads scenario are not serializable. The final outcome is
not equal to the outcome of a serial execution of the operations.

CHAPTER 1. INTRODUCTION 4

Se
rv

ic
e

Fr
on

t E
nd

D
as

hb
oa

rd
 C

en
te

r

Clicks

Views

150 events/s

600 events/s

Storage

Figure 1.2: Data Flow within a Web Application

to create web applications by following common engineering practices instead of circum-
navigating the peculiarities of NoSQL. For example, the TPC-W benchmark [18] can be
implemented on CloudTPS with a minimum number of modifications [23]. However,
CloudTPS lacks the implementation of an important query class–data aggregation.

1.3 Motivation
As data sets and user bases grow larger, so does the need for aggregate queries in the
Cloud. For example, Wikipedia and the Wordpress platform already use extensively MIN-
MAX queries. E-commerce web applications often provide real-time dashboards providing
functionality from aggregating the contents of a shopping cart to displaying sophisticated
analytics about clicks, impressions, or other user events. Figure 1.2 shows a simplified
scheme of a large scale web application providing real time analytics for user events. With
several hundred events per second, performing real time data aggregation using a relational
database is an intimidating task due to the large number of write operations and reads
spanning numerous shards.

Formally, data aggregate queries are defined as functions where the values of multiple
rows are grouped together according to some criteria–a grouping predicate–to form a single
value of more significant meaning. By far, the most popular aggregate functions in web
applications are count, sum, average, minimum, and maximum over the result of a select-
project-join (SPJ 3) query:

• Count() returns the number of rows;
3An SPJ query represents a single SELECT-FROM-WHERE block with no aggregation or subqueries

CHAPTER 1. INTRODUCTION 5

• Sum() returns the sum of all values in a numeric column;

• Average() returns the average of all values in a numeric column.

Currently none of the existing approaches for computing aggregate functions in the Cloud
targets web applications using a generic data store. Instead, they exploit knowledge about
the data model, compute the result offline, or take advantage of the functionality present
in a specific data store; obviously, none of these approaches is applicable for the service
described on Figure 1.2.

1.4 Aggregate Queries for Large-Scale Web Applications
Many web applications such as Wikipedia, the WordPress platform, and the dashboard
application from Figure 1.2 use short-lived transactions spanning only a few rows in the
underlying data store. For example, in the dashboard application, each click results in the
update of the rows corresponding to the page being viewed. The relatively small size of
typical web application transactions allows the efficient maintenance of summary tables
containing the results of predefined aggregate queries. By using summary tables, incoming
aggregation requests are served by simply looking up the result in the appropriate sum-
mary table. Because the aggregation work has been delegated to the mechanism updating
the aggregate summary tables, the data store can treat all incoming aggregate queries as
simple read-only operations and take advantage of the underlying horizontal scalability.
Intuitively, the data in the aggregate summary table can be incrementally maintained; for
example, inserting a row in a table participating in a COUNT query may result in increasing
the aggregate result. This approach is shown on Figure 1.3a:

1. Initially, the summary tables are directly computed from the data available in the
application’s tables;

2. As updates, deletions, and insertions are coming in, the data store commits the mod-
ifications and computes change tables which “describe” how the updates affect the
summary tables; the new value of a summary table after an update is a function of
the old value and of the data present in the change table;

3. The data store uses the change tables to update the aggregate summary tables.

Figure 1.3b illustrates the change table approach for aggregate summary tables. Initially,
the Sales table contains three products which have been aggregated by category in table V
(View). At some point, the data store receives a transaction containing one insertion and
two deletions and computes the corresponding change table �V . As deletion operations
may decrease and never increase the number of rows participating in the aggregate result,
the numerical attributes participating in the aggregation have been negated; as shown on

CHAPTER 1. INTRODUCTION 6

Updates

Change
 Table

Combliner

Database

Aggregate
 Table

(a) Data Flow with Summary Tables

B
D

A 1
1
3

30
50

−20
V

B
D

A 1
1
3

20
30
50

Sales

V
Cat

2
1 50

10

Price

Sales
ID Cat

B
C

A 1
1
2

20
30
10

Price

V
new

Cat

2
1 60

10

Price

3 50

(b) Change Table Example

Figure 1.3: Aggregate View Maintenance via Summary Tables

the diagram, A ’s price in �V has been set to −20. It is easy to see how �V describes the
modifications which have to be applied to V in order to make the summary table become
consistent with the updates: each row from �V is matched with rows from V according
to the Category attribute and upon a successful match, the Price attribute is added to the
aggregate result. A natural observation is that the described “matching” operation is equiv-
alent to an inner join. Section 4 will provide a formal description of this approach.

The usage of change tables to maintain aggregate views has been studied extensively
in the relational database world [1], [12], [14], [20], [21]. The strongly consistent read-
only and read/write transactions in CloudTPS make the CloudTPS middleware suitable for
implementing the summary table mechanism for aggregate queries. This thesis extends the
change table technique to NoSQL data stores by adapting the view maintenance algorithm
for usage in CloudTPS. The approach shown on Figure 1.3a can be naively implemented by
merging the change and aggregate tables using only one server in the distributed environ-
ment. Unfortunately, this centralized solution would require shipping the entire aggregate
summary table and result in a high bandwidth usage and latency penalty.

A data store’s scalability can be captured informally by Amdahl’s law [4]. If P is
the portion of a program that can be parallelized, the maximum achievable speedup by N
processors is 1

(1−P)+ P
N

. Intuitively, the naive solution to the aggregate view maintenance

problem can be naturally improved by parallelizing the combiner process presented on
Figure 1.3a. As the aggregate view and change tables are automatically partitioned and
replicated by the CloudTPS middleware, in the following sections we will concentrate on
two view maintenance algorithms which generate the aggregate change tables and consis-
tently update their corresponding views.

CHAPTER 1. INTRODUCTION 7

1.5 Thesis Structure
Before proceeding with the aggregate query algorithms and their implementation, we will
start in Chapter 2 with a motivating example which will be used throughout this text. Chap-
ter 3 will introduce several existing solutions to the aggregate problem and their shortcom-
ings in the context of Cloud-based web applications. Next, Chapter 4 will review the theory
behind the proposed solutions. Chapters 5 and 6 will deal with the actual aggregation algo-
rithm implementation details and evaluation. Finally, Chapter 7 will recapture the aggregate
view maintenance approach and provide a conclusion.

Chapter 2

Background

2.1 Motivating Example
As discussed in the introduction section, large-scale web applications exhibit a different
behavior than data warehouse applications. Unlike large-scale enterprise OLAP (Online
analytical processing) platforms, web applications have short-lived queries which often
span only a few tables. The following example discusses a simple web application which
will be used for illustrating some major points throughout this thesis.

Figure 2.1 depicts the architecture of the accounting component of a simple e-
commerce application which displays products and receives revenue for product views and
clicks. Formally, the front end generates “click” and “view” events whenever a product is
clicked and viewed respectively and updates a database. The application’s database has the
following schema:

• Events(ID, Timestamp, ProdID, ShopID, Type, Cost) stores all user events. Each
event is represented by a unique ID, a Timestamp indicating the time at which it
occurred, the product’s and shop’s IDs (ProdID, ShopID), the event Type, and the
Cost which will be charged to the shop’s account.

• Categories(Id, Name, Parent) organizes the available products into categories–books,
videos, etc. Each category is represented by a unique ID, Name (e.g. “books” and
“videos”), and ParentID used for generating a category tree.

• Products(ID, ShopID, CatID, Name) stores all available products. Each product is
represented by its unique ID, the shop offering the product (ShopID), its category
(CatID), Name and Description, and cluster (ClusterID) grouping products which
are instances of the same product (for example, two books with the same ISBN would
have different IDs and equal ClusterIDs).

8

CHAPTER 2. BACKGROUND 9

Se
rv

ic
e

Fr
on

t E
nd

D
as

hb
oa

rd
 C

en
te

r

Clicks

Views

150 events/s

600 events/s

Storage

Name

ID

Parent

Categories

Products

ShopID

ProdID

CatID

Name

Desc

ClusterID

Events

ID

Timestamp

ProdID

ShopID

Type

Cost

Shops

ID

Name

Address

ShopID

Street

City

Province

Code

Country

Figure 2.1: Web Application Accounting for User Clicks and Page Views

• Shops(ID,Name) stores the shops advertising products via the service; each shop is
uniquely identified by its ID.

• Address(ShopID, Street, City, Province, Code, Country) stores the physical location
of each shop advertising products.

The web application features a “Dashboard Center” allowing various analytics queries.
For example, an end-user can examine the number of clicks and views a given product or
category received and the resultant revenue. If the back-end storage solution is a relational
database, finding the cost a specific merchant accumulated for the product views belonging
to some category can be accomplished by issuing the following query:

Listing 2.1: SQL-1
SELECT Sum(c o s t) AS Cost FROM Disp lay , Merchant , C a t e g o r i e s
WHERE D i s p l a y . m e r c h a n t I d =Merchant . m e r c h a n t I d AND C a t e g o r i e s .

c a t I d = D i s p l a y . c a t I d AND C a t e g o r i e s . c a t I d = ’ books ’ AND
Merchan t s . m e r c h a n t I d = ’ Kinokuniya ’

A typical query plan of the SQL query presented above is shown on Figure 2.2. In order
to find the cost accumulated by the “Kinokuniya” shop in category “books”, the database
scans the Merchant and Categories tables in order to retrieve the respective unique IDs.
Next, the first join operator, denoted by ./ID, outputs all rows from the Display table cor-
responding to products sold by “Kinokuniya”. The second join operator, ./category, yields
all products belonging to the “Books” category. Finally, the result is summed over the Cost
column.

CHAPTER 2. BACKGROUND 10

Scan
Display Categories

Select

Scan

Select
Name=’Kinokuniya’ Category=’Books’

Sum(Cost)

Merchant
Scan

id

category

Figure 2.2: SQL Query Plan

The Scan and Join operations on Figure 2.2 exhibit data access patterns which have to
be considered when looking into the performance of a Cloud implementation of the “Dash-
board Center” web-application. In particular, the scalability of an application is largely
influenced by the frequency at which it accesses different data items as well as by the
physical data distribution across multiple hosts. The Scan operator makes only one pass
through the table, emitting blocks matching the specified predicate. Moreover, the number
of rows scanned is proportional to the table size. The asymptotic performance of the Join
operator depends on the underlying database implementation. For example, a naive imple-
mentation would compare each tuple from the outer relation with each tuple in the inner
relation, resulting in a quadratic cost of the comparisons required. A more sophisticated
approach, hash joining, requires reading the entire inner relation and storing it into a hash
table which is queried for each tuple present in the outer relation. Nevertheless, in both
cases each table row has to be accessed at least once, leading to complications in cases
where the same query has to be repeatedly executed in a distributed environment, as we
shall see shortly. Table 2.1 estimates the number of row accesses per operation in order to
compute the aggregate query on Figure 2.2.

It is easy to see that the query shown on Listing 2.1 conforms to web-application query
properties. First, it is short-lived as the query results needs to be delivered in “real-time”.
Second, unlike enterprise data warehouse aggregations, the aggregation query plan does
not involve sifting through terabytes of data.

The “Dashboard Center” described above is a typical relational database application
with data flowing from an online transaction processing database into the data warehouse
on an hourly basis. As evident from Table 2.1, even a simple aggregate query such as

CHAPTER 2. BACKGROUND 11

Operation Accessed Items Result Size
R1 = SelectName=′Kinokuniya′(Merchant) 2000 1

R2 = JoinID(R1,Events) 300,001 10,000
R3=SelectCategory=′Books′(Category) 175 1

JoinCategory(R2,R3) 10,000 8,000
Total 312,176

Table 2.1: Aggregate Query Row Access Counts

the one shown in Listing 2.1 can generate a huge amount of traffic in a distributed en-
vironment. Standard SQL solutions such as database mirroring and replication increase
only the database’s availability but not its scalability. To deal with the latter problem, the
database has to be partitioned horizontally. Horizontally partitioned tables distribute sets of
rows across different databases often residing on different servers. This scheme decreases
the level of contention between read and write operations at the expense of consistency and
increased bandwidth requirement of composite queries such as the one used in the aggrega-
tion example. The rest of the chapter will provide an overview of the available approaches
to tackle the aggregation problem in the NoSQL world as well as their limitations.

2.2 Data Model
The data model used in Section 2.1 can be formally described via data cubes. In online
analytical processing, a data cube defines the data model in several dimensions so that the
stored information can be manipulated from different perspectives. There are two table
types– dimension tables and fact tables. The former type stores non-volatile information
while the latter represents time-variant data.

Figure 2.3 shows the data cube describing the data from the example in Section 2.1. As
evident from the diagram, there are three dimension tables describing the information in
terms of advertised items and their corresponding categories and sellers. Even though the
data stored in these tables is not immutable, changes occur very rarely and are triggered by
events such as user account creations or modifications. The facts from which the cost is
computed are present in the Events table which is periodically updated.

It is not difficult to see how data cubes can be used for web-application aggregate
queries as measures can be performed at any dimension intersection. Informally, the cube
dimensions are presented by the GROUP BY statement in SQL and the model can readily
be applied for representation of totals such as the total sales from a specific category, web
page visits by users from a given country, or the best performing seller for some product.
The next few paragraphs will look into several existing ways in which this problem can be
tackled.

CHAPTER 2. BACKGROUND 12

Shop N
am

e

CategoryIte
m

Cost

Figure 2.3: Data Cube

2.3 Execution Environment
Unfortunately, computing the aggregate query shown on Listing 2.1 is far from trivial even
with a modest amount of traffic such as several hundred views per second. The main reason
for the poor performance is the fact that queries involving large tables requiring join and
aggregate operations are expensive both in terms of computational cost and communication
latency. As noted in Section 2.1, the system’s performance can be perceivably improved
by scaling horizontally the application’s database tier. First, a very large fact table will
be distributed across multiple servers, decreasing the workload on any specific instance.
Second, the aggregate computation ideally is offloaded to multiple nodes. These two goals
cannot be achieved by standard RDBMSs as their heavy-weight transaction handling re-
sults in a poor performance and they cannot take advantage of the elasticity achieved by
relaxing consistency requirements. The rest of this thesis will investigate data cube ag-
gregate computations for web-applications using a key-value data store such as HBase for
their database tier.

HBase is an open-source, distributed, large-scale, key-value data store based on
Google’s BigTable. The data is organized in labeled tables; each data point is referred
to as a cell. As cells are simple byte arrays, the data types widely used by RDBMS are
eliminated and the data interpretation is delegated to the programmer. Each table cell is
indexed by its unique row key and each row can have an arbitrary number of cells.

Intuitively, an HBase application has to use a data model resembling a distributed,
sparse, multidimensional hash table. Each row is indexed with a row key, a column key, and
a time-stamp. A table allows maintaining different data versions by storing any number of
time-stamped versions of each cell. A cell can be uniquely identified by its corresponding
row key and column family and qualifier, and time-stamp. The column keys are in the form

CHAPTER 2. BACKGROUND 13

”column-family:qualifier”, where the column-family is one of a number of fixed column-
families defined by the table’s schema, and the qualifier is an arbitrary string specified by
the application.

It is easy to see why an HBase-like data store is suitable as the storage tier of a web
application in the Cloud. New resources are automatically handled by the data store as
all operations happen on a per row basis and theoretically, the data store can achieve un-
limited horizontal scalability. Nevertheless, aggregate functionality cannot be implemented
directly without a framework for breaking-up the queries so that local resources are utilized
as much as possible without sacrificing bandwidth.

Chapter 3

State of the Art Data Aggregation for the
Cloud

This chapter reviews the MapReduce framework which has been studied extensively and is
widely used for large-scale data analysis. Even though, it can efficiently process terabytes
of data, the MapReduce technique turns out to be unsuitable for web applications which
often have to perform a set of predictable aggregations with low-latency requirements.

3.1 Aggregation with the MapReduce Framework
The MapReduce framework is used for large-scale distributed computation on computer
clusters as well as on the Cloud. It can efficiently aggregate terabytes of data and yields
in theory unlimited scalability. The model achieves massive parallelization by splitting the
input into numerous pieces each of which is assigned to a computational node from the
cluster (Figure 3.1). The map function runs on each node and emits key/value pairs. These
are passed to the reduce function where the values are collated.

The MapReduce framework can be readily used for computing aggregate queries by
using the Map and Reduce functions to build an execution plan equivalent to the original
query. For example, the following SQL query,

SELECT CatId, SUM(Cost)FROM Events GROUP BY Category,
can be computed in two phases as follows:

1. The Map phase reads all records from the Category table and outputs records con-
sisting of a "key", to which the CatId value is assigned, and "value", equal to "1".

2. The Reduce phase consumes the key-value pairs generated by the Map function and
aggregates them so that records with the same key occur together. The Reduce phase
accumulate all the 1’s to compute the final count.

14

CHAPTER 3. STATE OF THE ART DATA AGGREGATION FOR THE CLOUD 15

Map

Map

Map

Map

Map

Map

Reduce

Reduce Result

Result

Merge

Input Shuffle & Sort

Figure 3.1: MapReduce Framework

Moreover, if the aggregate query is commutative and associative, this approach can be fur-
ther improved by computing in-network partial aggregtes–intermediate results which are
combined to generate the final aggregation [24]. The following algorithm uses “com-
biner” functions to generate the partial aggregtes within the MapReduce framework and is
applicable to Average, Count, Maximum, Median, Minimum, and Sum functions [9]:

1. Map: applied on all input files to extract keys and records;

2. InitialReduce: operates on a sequence of records of the same type and with the same
key to output a partial aggregation;

3. Combine: operates on a sequence of partial aggregations to output a combined partial
aggregation;

4. Reduce: operates on a sequence of partial aggregations to compute the final aggre-
gation result .

Based on the approach outlined above, any aggregate query can be expressed as:

Listing 3.1: Using MapReduce to compute an aggregate function
SELECT Reduce () AS R FROM (SELECT Map () FROM T) GROUP BY

Rkey

Another advantage of the MapReduce framework over RDBMS is its ability to handle
an arbitrary numbers of keys for each record per aggregate operation. Thus, MapReduce
can handle in a single pass more complex queries which usually require two passes over
the query data by SQL.

CHAPTER 3. STATE OF THE ART DATA AGGREGATION FOR THE CLOUD 16

The MapReduce Framework for Scalable Web Applications–Challenges While the
MapReduce framework theoretically provides unlimited horizontal scalability and fault tol-
erance, there are several challenges to utilizing the framework for aggregate queries in
Cloud-based web-applications. One of the major drawbacks of most MapReduce imple-
mentations such as the ones provided in Hadoop and MongoDB [17] is that they operate
in batch mode and are suitable only for enterprise analytics computations which often run
during the night at data warehouses.

Many web applications need to compute simple low-latency aggregations involving
their fact and dimension tables. From the discussion above, it is evident that the proposed
aggregate query implementation in Section 3.1 is not a silver bullet for light-weight aggre-
gations. First, not all NoSQL architectures are built upon the MapReduce framework; in
these cases, “partial aggregation” can be achieved by exploring standard solutions such as
the two-phase aggregation. Second, because the map function needs to inspect all input
rows upon each new query, the MapReduce framework is unsuitable for low latency ap-
plications. Third, MapReduce needs to perform a complete computation even if a fraction
of the input data has changed. And finally and most importantly, to be usable by a large
range of web applications, aggregate queries need to provide transaction guarantees–the
scalability of the MapReduce framework comes exactly because the framework provides
no strong consistency.

3.2 Aggregate Queries in Cloud-based Web Applications
Based on the short example at the beginning of last chapter and subsequent MapReduce
discussion, an aggregate query implementation for web applications in the Cloud should
have the following properties:

• Strong transaction guarantees and consistency (for instance, updating simultaneously
the fact and dimension tables should not lead to billing errors in the Dashboard ap-
plication);

• Online aggregate query processing. As most web application aggregate queries do
not involve heavy transactions, batch processing frameworks such as MapReduce do
not provide any advantages;

• Incremental updates. Web application aggregate queries may involve fact tables
which by definition are volatile; ideally the aggregate computation should not start
from scratch whenever a table used by the computation gets modified.

In the relational database world, the requirements listed above can be achieved by main-
taining materialized views–a commonly used technique. As we will see in the next chapter,
the theory behind incremental aggregate view maintenance can be readily used in non-
relational data stores and it serves as a foundation for this thesis.

Chapter 4

Materialized View Maintenance—A
Theoretical Perspective

4.1 Materialized Views
The motivating example from Chapter 2 illustrates a very common database problem con-
sisting of improving the query performance of a stream of repeating aggregate queries over
a set of changing tables. Intuitively, the results of queries such as the one shown on List-
ing 2.1 can be stored and updated only when the Events, Merchant, Products, or Categories
tables get modified. This approach eliminates the necessity of repeating all the computa-
tions and row access operations shown on Table 2.1.

Formally, the technique discussed in the previous paragraph is defined as materialized
views which precompute expensive operations prior to their execution and store the results
in the database. When the query from Listing 2.1 is executed, the storage engine creates
a query plan against the base tables participating in the aggregation. A materialized view
takes a different approach in which the query result is cached as a concrete table that is pe-
riodically updated. The view update itself can be either entirely re-computed from scratch
or maintained incrementally depending on the query properties. The latter approach is
significantly cheaper, especially when the updates are smaller than the base tables [6].
Incremental view maintenance for aggregate expressions has been extensively studied by
Gupta and Mumick [15]. This chapter provides an overview of aggregate view computa-
tion and propagation regardless of the underlying storage engine implementation. Before
continuing with the discussion of aggregate views, it is necessary to review some general
bag algebra notation relevant both in the relational world and schemaless storage engines
as all common database operations can be represented as bag algebra expressions.

17

CHAPTER 4. MATERIALIZED VIEW MAINTENANCE—A THEORETICAL PERSPECTIVE18

4.2 Notation and Terminology
A multiset is a generalization of a set allowing multiple membership. It can be also re-
ferred to as a bag. There are several bag algebraic operators and terms which are useful in
discussing aggregate view maintenance:

• The bag union operator,], is equivalent to the summation of items without dupli-
cate removal. For example, R1]R2 represents the concatenation of table rows in a
data store;

• The monus operator ·− is a variant of subtraction of one bag from another. For ex-
ample, B1 ·−B2 evaluates to a B such that for every d : s, count(d,B) = count(d,B1)−
count(d,B2) if count(d,B1) > count(d,B2); and count(d,B) = 0 otherwise [16]. In-
tuitively, an element appears in the difference B1 ·−B2 of two bags as many times as
it appears in B1, minus the number of times it appears in B2;

• M E denotes insertions into a bag algebra expression. In a storage engine, the ex-
pression evaluates the the rows inserted into the database;

• OE denotes deletions from a bag algebra expression. In a storage engine, the expres-
sion evaluates the the rows deleted from the database;

• σpE denotes selection from E on condition p. Informally, the expression picks rows
from the expression E if the condition expression p evaluates to true;

• ΠAE denotes the duplicate preserving projection on a set of attributes A from E’s
schema. Intuitively, the operator selects the data from all columns labeled with the
attributes enumerated in A;

• πa1···anE denotes the generalized projection operator over a set of attributes a1 · · ·an.
The generalized projection operator restricts all tuples in E to elements matching
a1 · · ·an. Informally, πAE is algebraically equivalent to a GROUP BY statement in
SQL [13];

• E1 ./J E2 denotes a join operation on condition J.

Using the introduced bag algebra notation, the SQL statement from Listing 2.1 on page 9
can be rewritten as πsum(cost)(σmerchantId=′Kinokuniya′(Events ./merchantId Merchant ./catId
Categories)). In this equation, the πsum(cost) expression represents an aggregate function
on the cost attribute; in other words, the operation describes a generalized projection over
a summation function. Intuitively, the sum over a set of GROUP BY attributes can be
incrementally maintained by memorizing the aggregate result and updating its value when-
ever a row is inserted or deleted from a base table. For example, whenever a new event

CHAPTER 4. MATERIALIZED VIEW MAINTENANCE—A THEORETICAL PERSPECTIVE19

is added to the Events table, the storage engine can compute any new tuples resulting
from σmerchantId=′Kinokuniya′(4Events ./merchantId Merchant ./catId Categories) and update
the summation result. Formally, depending on the memory requirements for re-evaluating
an aggregation after applying an update (M Bx,OBx) to some base relation B, aggregate
functions are classified into three categories [11]:

• Distributive functions produce results which after an update can be re-computed
from the preceding aggregate result;

• Algebraic functions yield results which can be computed after an update operation
by using a small constant storage;

• Holistic functions yield results which cannot be re-computed after an update by using
some bounded storage work space.

For example, the SUM and COUNT functions are distributive both for insert and delete
operations while MIN and MAX are distributive only for inserts. The latter two functions
may need to inspect all the records of the affected groups of a delete operation and are
therefore holistic functions with respect to deletions. The evaluation of AVG uses the
COUNT function which consumes constant space; therefore, AVG is an algebraic function.

This thesis work elaborates on distributive and algebraic aggregate functions for Cloud-
based web applications.

4.3 View Maintenance via Change Tables
Materialized views are a common approach for improving the performance of computa-
tionally and data intensive queries in large databases in the petabyte range. As discussed
in Section 4.1, an efficient way to update a materialized view after changes in its base
relations is to compute only the set of rows to be deleted and inserted from the view.
Update operations do not need a special implementation as effectively, an update oper-
ation on an existing table row can be transformed into deletion followed by insertion:
RA′1,A

′
2..A

′
n
→ RA”

1,A
”
2..A

”
n
≡ ORA′1,A

′
2..A

′
n
] M RA”

1,A
”
2..A

”
n
. In [15] Gupta and Mumick compute

the views of distributive aggregate functions by using incremental view maintenance via
change tables which are applied to the relevant views using special refresh operators. The
following sections outline this approach.

4.3.1 Change Tables
A change transaction t can defined by the expression Ri ← (Ri ·−ORi)]4Ri where R =
{R1..Rn} is the set of relations defining a database. In other words, t contains the set of
insertions and deletions in a database update operation. Let V be a bag algebra expression

CHAPTER 4. MATERIALIZED VIEW MAINTENANCE—A THEORETICAL PERSPECTIVE20

over R and New(V, t) = (V ·−O(V, t))]4(V, t) be the refresh expression used to compute
the new value of V after a change transaction t [12]. Intuitively, the last expression can
be interpreted in the following way: a change transaction t modifies a view V by removing
OV from V (monus ·− operation) and inserting4V . As each transaction can be rewritten as
a collection of insertions and deletions from the base relations, a natural way to capture the
4 and O operations is by using a change table �(V, t) representing the difference between
V and New(V, t).

Gupta and Mumick refine the expression for New(V, t) by introducing the refresh oper-
ator tU

θ
such that New(V, t) = V tU

θ
�(V, t). The refresh operator matches rows from the

change table �(V, t) with the original view V according to the join conditions specified in
θ and applies update functions U .

4.3.2 Refresh Operator
The refresh operator is defined by a pair of matching conditions θ and update func-
tion U . More specifically θ is a pair of join conditions J1 and J2 such that tu-
ples generated by V ./J1 �V are changed in V according to the update specification U
while matches generated by V ./J2 �V are deleted. Any unmatched tuples from the
change table �V are inserted into V. The update function U is defined as the collec-
tion U = {(Ai1, f1),(Ai2, f2)..(Aik , fk)} where Ai1..Aik are the attributes of V and f1.. fk
are binary functions. During the refresh operation, each attribute of V Ai j is changed to
f j(v(Ai j),�v(Ai j)), where v(Ai j) and �v(Ai j) denote the values of attribute Ai j in V and
�V respectively.

4.3.3 Change Table Computation
As previously discussed, whenever a base table receives an update consisting of insertions
and deletions, the result of an aggregate query involving the modified table needs to be
reevaluated. Formally, an aggregation over a Select-Project-Join query can be expressed
as πG, f (AggAttr∈A)(ΠA(σp(B1 ./J B2))), where G and A correspond to the GROUP BY and
projection attributes respectively. If R substitutes the result set produced by the SPJ relation
ΠA(σp(B1 ./J B2)), the aggregate change table capturing the “delta” between the old and
new results is

�V = πG, f (AggAttr∈A),sum(_count)(ΠG,A,_count=1(M R)]ΠG,Ā,_count=−1(OR)) (4.1)

The expression ΠG,A,_count=1(M R)]ΠG,Ā,_count=−1(OR) from Equation 4.1 selects all
GROUP BY and aggregation attribute values from the set of inserted and deleted rows
from the SPJ result set R. In case of row deletion (OR), the projected attribute values have
been negated so that the deletion is accounted for by the generalized projection π .

CHAPTER 4. MATERIALIZED VIEW MAINTENANCE—A THEORETICAL PERSPECTIVE21

Timestamp

1308826396

1308826399

1308826405

1308826407

1308826408

ProdID

10

20

10

18

16

Cost

50

80

50

70

60

Type

1

1

1

1

1

ID

1

3

2

4

5

Events
ProdId

8

10

16

18

20

21

35

CatID

5

8

5

17

5

5

5

Name

Computer Networks

Nat Geo − 2000−2010

Distributed Systems

Seven Samurai

The Texbook

The Art of Computer Prog.

Operating Systems

Products

1308826399

1308826408

1308826413

1308826413

20

10

16

10

80

50

60

50

1

1

1

1

3

6

7

8

Cost

100

60

−80

Count

2

1

−1

CatID

5

8

17

Cost−Cat

Cost

170

60

80

CatID

5

8

17

Cost−Cat

Count

3

1

1

Events

Count

5

2

0

Cost

270

120

0

CatID

5

8

17

Cost−Cat

1

2

3

SELECT SUM(Cost), CatID FROM Events e, Products p WHERE e.ProdID=p.ProdID GROUP BY CatID

SELECT SUM(Cost), CatID FROM Events e, Products p

WHERE e.ProdID=p.ProdID GROUP BY CatID

Figure 4.1: Change Table Derivation after a Base Table Update

What remains to be computed are the rows to be inserted and deleted from the result of
the SPJ query. Effectively, the database engine can apply the selection and join operators
on a projection of the inserted and deleted rows from the base relation. The last follows
from equation 4.2:

σ(Bnew
1 ./ B2) = σ(((Bold

1 ·−OB1)] M B1) ./ B2)⇐⇒
σ(Bnew

1 ./ B2) = (σ(Bnew
1 ./ B2) ·−σ(OB1 ./ B2))]σ(M B1 ./ B2) =⇒{

M σ(Bold
1 ./ B2) =M R = σ(M B1 ./ B2)

Oσ(Bold
1 ./ B2) = OR = σ(OB1 ./ B2)

(4.2)

Figure 4.1 illustrates the usage of the expressions provided in Equations 4.2
and 4.1. The example evaluates “SELECT SUM(Cost),CatID FROM Events e, Products
p WHERE e.ProdID=p.ProdID GROUP BY CatID” which is the total cost per category,

CHAPTER 4. MATERIALIZED VIEW MAINTENANCE—A THEORETICAL PERSPECTIVE22

stored in the Cost-Cat table, from the Events fact table and Products dimension table. The
aggregation is performed in three phases discussed in the following paragraphs.

Initially, the Cost-Cat table has no entries. To compute the aggregation, the database
engine has to inspect the Events and Products tables from scratch as shown in 1© on Fig-
ure 4.1. In addition to the attributes specified in the original query, the aggregate result table
needs to maintain a counter for the SPJ rows grouped by the GROUP BY attributes. For
example, ΠProdID,Cost,CatID(Events ./ProdID Products) generates 3 results from category 5,
1 result from category 8, and 1 result from category 17.

After the initial aggregation has been computed, the database can readily maintain the
aggregate result via change tables (2© on Figure 4.1). The second phase computes the
change table �Cost-Cat from the Events insertions and deletions, prefixed with M and O
in the diagram. In the example shown on the diagram, there have been 3 insertions and
one deletion. The change table is computed by joining the insertions and deletions with
Products and aggregating the result. The aggregation attributes and counts resulting from
deletions have to be negated.

After the database engine has computed the aggregate result change table, it is ready
to apply it to the result itself (2© on Figure 4.1). In order to complete the update, the
database engine evaluates �Cost-Cat ./ProdID Cost-Cat. Any change table rows which
are not present in the join result set have to be inserted into the aggregate view table.
Otherwise, the matching attributes from �Cost-Cat and Cost-Cat are simply summed and
the corresponding aggregate view table row is updated or deleted if the count attribute is 0.

4.3.4 Change Table Propagation
Finally, change tables such as the one generated in the previous section can be readily
propagated through relational operators using the equations listed on Table 4.1 [15]. The
major relational operators used in data stores are Selection, Projection, Inner Join, Bag
Union, and Aggregation. Once a change table for an aggregation has been computed, it can
be propagated and applied without reevaluating the whole aggregate expression.

Table 4.1: Change Propagation Equations [15]
Type V Vnew Refresh �V

Selection σp(E1) σp(E1tU
Θ
�E1) V tU

θ
σp(�E1) σp(�E1)

Projection ΠA(E1) ΠA(E1tU
Θ
�E1) V tU

θ
ΠA(�E1) ΠA(�E1)

Inner Join E1 ./J E2 (E1tU
Θ
�E1) ./J E2 V tU

θ1
(�E1 ./J E2) �E1 ./J E2

Bag Union E1]E2 (E1tU
Θ
�E1)]E2 ((V −E2)tU

θ
�E1)]E2 �E1

Aggregation πG′,F(E1) πG′,F(E1tU
Θ
�E1) V tU3

θ3
πG′,F(�E1) πG′,F(�E1)

Chapter 5

System Design and API

This chapter discusses the implementation of the aggregate view maintenance techniques
from Chapter 4. The main algorithm for automatically keeping aggregate views can be im-
plemented either synchronously or asynchronously. The main difference between the two
approaches is that in the former case, the base table update and change table �V computa-
tion and application, E1tU

Θ
�E1, are carried out in the same transaction while in the latter

case,�V and E1tU
Θ
�E1 are deferred to a separate asynchronous transaction. Nevertheless,

in both cases the Cloud data store and its middleware need to support consistent read/write
transactions.

Currently, CloudTPS is the only middleware providing strongly consistent transactions
for web applications using non-relational data stores such as HBase and SimpleDB. The
rest of this chapter provides details about the implementation of the synchronous and asyn-
chronous view maintenance algorithms on CloudTPS.

5.1 Overview of CloudTPS

CloudTPS is a middleware for key-value data stores which provides strongly consistent
and fault-tolerant transactions for web applications. The read-only transactions support
look-ups by primary and secondary keys as well as equi-joins while the read/write trans-
actions support insertion, deletion, and update transactions on individual rows. The read
and write transactions are received by read/write and read-only transaction managers which
distribute the work over a set of local transaction manager (LTM) nodes (Figure 5.1). Each
LTM is responsible for handling a set of table rows identifiable by their primary keys. Both
read and write transactions are submitted to the LTMs using the two phase commit protocol
with the transaction manager serving as a coordinator. To ensure strong consistency, each
transaction receives a global timestamp which is used for creating an execution order on the

23

CHAPTER 5. SYSTEM DESIGN AND API 24

Local Transaction
Manager

R/W Transaction
Manager

R/O Transaction
Manager

Worker

Cloud Data Store

Figure 5.1: CloudTPS Architecture

LTMs: transactions with newer timestamps than the timestamp of the current transaction
are queued in FIFO order while all transactions with “old” timestamps are aborted.

To implement the synchronous and asynchronous change table view maintenance al-
gorithms, the CloudTPS architecture needs to support more complex read/write operations
consisting of transactions which execute an SPJ query plan and use the result as the input
of update, insert, or delete sub-transactions. This modification is necessary in order to en-
force consistency between the base relation updates and the maintained aggregate views.
The modified read/write transaction mechanism is similar to the existing approach towards
index table maintenance in CloudTPS and requires the implementation of a new transac-
tion manager which uses the two phase commit protocol to coordinate the read and write
sub-transactions. The next section discusses in detail the proposed CloudTPS modification.

5.2 Aggregate Queries for CloudTPS
The basic change table mechanism for CloudTPS is similar to the one pro-
vided by Gupta et al and discussed in Chapter 4. For a given aggregate query
π f unc(AggAttr),GB(σSelAtt(B1 ./JoinCond1 B2 ./JoinCond2 B3 · · ·)), CloudTPS needs to moni-
tor the base relations B1 . . .Bn for changes and re-evaluate the aggregate view upon update.
Algorithm 5.1 describes the synchronous version of this approach. Step 1 is executed
once during the system’s initialization and it computes from scratch all aggregate views.
After the initial step, all views can be incrementally updated from the old view and update
values. Step 2 as shown on the diagram is executed as a single transaction and thus the
performance of update queries is strongly dependent on the complexity of the materialized
views in which the updated base relations participate: the heavier the aggregate expression
is, the more intensive step 2.a is.

CHAPTER 5. SYSTEM DESIGN AND API 25

Algorithm 5.1 Basic Aggregate View Maintenance in CloudTPS .

1. Startup: Compute V as π f unc(AggAttr),GB(σSelAtt(B1 ./JoinCond1 B2 ./JoinCond2 B3 · · ·))

2. Coordinator LTM: Upon a base relation,Bk, update

(a) Compute �Bk, defined as M Bk]OBk

(b) Compute the aggregate change table, �V as
π f unc(AggAttr),GB,count(σSelAtt(B1 ./JoinCond1 B2 ./JoinCond2 B3 · · ·�Bk ./JoinCondk

...))

(c) Apply �V to V using the special join operator

The write performance upon base table updates can be generally improved by modify-
ing the synchronous algorithm into Algorithm 5.2. The main difference between algorithms
5.1 and 5.2 is that the asynchronous version computes the aggregate view change table
asynchronously and maintains additional CloudTPS tables storing�B1,�B2 · · · ,�Bn. The
system initialization computes all aggregate views from scratch and clears the base relation
change tables. Step 2 is executed as a transaction whenever a base table is updated and
consists of updating the corresponding base relation change table �Bk and Bk itself. The
actual work performed by CloudTPS during write operations is significantly less than the
workload in the synchronous algorithm as the change table computation which performs
several join operations is postponed. The actual computation of �V and �V ’s application
to the aggregate view table is performed in the last phase. In Step 3, the algorithm com-
putes �V from the base table change tables and the current value of the base tables. The
asynchronous phase of the algorithm introduces a relatively heavy workload of O(n) join
query plans.

5.3 Implementation
The CloudTPS architecture supports equi-join read-only queries and simple read/write
transactions consisting of sub-transactions modifying at most one row. The two opera-
tions are handled by a read-only and read/write transaction manager respectively. Even
though this approach offers greater efficiency when handling the two query types, there
is no mechanism allowing transactional execution of update operations using the input of
read-only query plans. This problem can be addressed by either introducing table lock-
ing preempting concurrent same-table updates or a new transaction manager capable of
handling the new read/write query. Unfortunately, despite its simplicity, the former ap-
proach is prohibitively expensive as it sacrifices the read/write horizontal scalability by

CHAPTER 5. SYSTEM DESIGN AND API 26

Algorithm 5.2 Asynchronous Aggregate View Maintenance in CloudTPS

1. Startup:

(a) Compute V as π f unc(AggAttr),GB(σSelAtt(B1 ./JoinCond1 B2 ./JoinCond2 B3 · · ·))
(b) Clear �B1,�B2 · · · ,�Bn

2. Coordinator LTM: Upon a base relation,Bk, update

(a) Compute �Bk, defined as M Bk]OBk

(b) Commit �Bk as an ordinary CloudTPS table

3. Coordinator LTM: Asynchronous

(a) Retrieve base relations change tables �B1,�B2 · · · ,�Bn

(b) Compute �V = π f unc(AggAttr),GB(σSelAtt(�B1 ./JoinCond1 B2] B1 ./JoinCond1

�B2. ·−�B1 ./JoinCond1 �B2)

(c) Clear �B1,�B2 · · · ,�Bn

(d) Apply �V to V using the special join operator

decreasing the update transaction granularity. Thus the only viable solution is employing
a mechanism capable of executing update transactions consuming the output of read-only
operations. The rest of this section discusses the implementation of the new query manager
handling transactions similar to the ones described in steps 2 and 3 of algorithms 5.1 and
5.2.

5.3.1 Synchronous Computation
The synchronous version of the aggregate view maintenance algorithm maintains only one
CloudTPS table representing the materialized aggregate view V. Both the view and base
table change tables �V and �B1 . . .�Bn are maintained in memory only during the up-
date operations and do not require creating special CloudTPS tables. As the size of the
change tables is relatively small due to the small-sized transactions characteristic for most
web applications, these tables can be maintained on a single node serving as a transaction
coordinator. Similarly to the read-only and read/write transaction managers, the aggregate
view maintenance transaction manager uses a modified version of the two-phase commit
protocol in order to guarantee consistency. Thus, when a node crashes, the only penalty
incurred is restarting the computation. During the first phase of the protocol’s execution,

CHAPTER 5. SYSTEM DESIGN AND API 27

the coordinator node submits updates to the LTM participants. However, instead of send-
ing only ACK and NACK messages, the LTMs return additional information resulting in
adding more sub-transactions to the running transaction. The additional sub-transactions
implement the logic in the view maintenance algorithm. If all the LTMs, including the ones
which have been added later during the transaction’s course, send acknowledgments to the
coordinator, the transaction is ready to be committed. The second phase commits all base
table updates and the corresponding aggregate view table modifications.

The modified two phase commit protocol is shown of Figure 5.2. When a client-side
application submits a read/write transaction modifying table A and C (not shown), the
transaction manager executes the two phase commit protocol. The data item location and
the transaction management mechanism is similar to the one present in the unmodified
CloudTPS transaction manager:

1. In order to ensure consistency, each transaction is assigned a global timestamp which
is used for queuing conflicting transactions in FIFO order. Transactions with “stale”
timestamps are aborted;

2. The coordinator identifies all LTMs responsible for each sub-transaction and builds
all relevant sub-transaction groups to be submitted;

3. Each LTM votes whether its sub-transactions can be committed.

However, instead of simply committing the base table updates upon consensus among the
LTMs, the coordinator needs to compute sequentially the base table’s change tables, the
aggregate view change table (�V), and the updated view after the application of �V .
As the change tables can easily fit into a single node’s main memory, the coordinator
proceeds with the join algorithm used in the read-only transaction manager to compute
σAttributes�B1 ./ B2 . . .Bn. Finally, after�V = πAgg,Func,_countσAttributes�B1 ./ B2 . . .Bn has
been computed, the algorithm proceeds by adding to the current transaction more read-
write sub-transaction in order to apply �V . Upon failure, the coordinator aborts the trans-
action and consequently, the CloudTPS tables remain consistent as neither the base table
modifications nor the aggregate view is committed.

The approach described in the previous paragraphs is shown on Figure 5.2. As
shown on the diagram, A and B are base tables which participate in the join query
σID,Cost,Prod,CatA ./Prod B defined by some client application. At a certain point during
its execution, the web-application submits to LT M3 a read/write transactions modifying
tables A and C (not shown). LT M3 serves as the transaction’s coordinator and needs to
compute �A, �V , and apply the change table to V . The transaction is executed as follows:

1. LT M3 starts the two-phase commit protocol and submits the base table updates to the
responsible LTMs (LT M1,LT M2,LT M4) 1©. For simplicity, the CloudTPS secondary
key index maintenance mechanism has been omitted from the diagram;

CHAPTER 5. SYSTEM DESIGN AND API 28

LTM 1 LTM 2

LTM 3

LTM 4

1

{ A(R3, R4, R5)

C(R5)

1

Add A(R4), A(R5)

1

2

A
ID Cost

2
3

1 10
10
50

1
1
8

Prod

T1

T2

B
Cat

1 20
258

Prod

A

4
5

3 10
20
50

1
1
8

V
ID Cost

2
3

1 10
10
50

1
1
8

Prod Cat
20
20
25

LTM 5
3

Add A(R3)

3

1 Submit base table updates

2 Compute Base Change Table

3 Compute View Change Table

4 Apply View Change Table

V =

4
5

3 10
20
50

1
1
8

20
20
25

A B

LTM 6

4

5 Commit

5

5

5

5

Update Transaction

Add none

Submit A(R4,R5)

R/O

Vote

Submit V(3,4,5)
Add none

Submit A(R3)

Figure 5.2: Synchronous Computation Two-Phase Commit Protocol

2. LT M1,LT M2, and LT M4 piggyback on their ACK messages all the attributes associ-
ated with the base table being updated so that the coordinator can compute �A 2©.
This step is necessary because a read/write transaction should not necessarily contain
all the attributes of the rows to be updated. After all votes have been received, the
coordinator has the values of all attributes of rows 3,4, and 5 and can proceed to the
next step;

3. The coordinator, LT M3, submits read-only sub-transactions to LT M5 to compute
σID,Cost,Prod,Cat�A ./Prod B 3©. For simplicity, the CloudTPS secondary key queries
have been omitted from the diagram. The query mechanism is the same as the one
employed by the read-only transaction manager. The coordinator submits the query
to the LTMs responsible for the data items and if necessary new read-only look-ups
are added if secondary keys are used. After all votes have been received, the coordi-
nator computes �V = πCost,_countσID,Cost,Prod,Cat�A ./Prod B and is ready to submit
the final read/write sub-transactions in order to update the aggregate view table;

4. The aggregate view maintenance operator tU
Θ

is implemented as a special write op-
eration similar to insertion, deletion, and update and will be described in detail in
Section 5.3.2. After �V has been computed in the previous step, the coordinator is
ready to update the aggregate view as �V tU

Θ
V 4©. In the specific example, LT M3

submits a sub-transaction to LT M5 as LT M5 maintains the whole aggregate table;

CHAPTER 5. SYSTEM DESIGN AND API 29

5. After all involved LTMs have submitted their votes to the coordinator LT M3, the
transaction can be either committed or aborted.

5.3.2 CloudTPS Aggregate View Refresh Operator
As discussed in Section 4.3.2, the aggregate view refresh operator applies the aggregate
view change table �V to the aggregate view V in order to reflect any base table changes.
To this end, both the aggregate view and its change table need to maintain an additional
attribute, _count, which keeps track of the number of rows aggregated by the GROUP BY
statement. When applying the change table to the view itself, the refresh operator applies
the specified aggregate function with positive change table aggregate attributes for inser-
tions and negative values for deletions. If _count = 0 for some row in the aggregate view,
the row has to be deleted. Otherwise, the row needs to be either updated if it previously
existed in the view or inserted.

Matching rows from the aggregate view V with rows from its change table�V is equiv-
alent to an equi-join operation on the GROUP BY attributes. Moreover, the operation can
be sped-up by introducing a primary key consisting of the concatenation of the GROUP BY
attributes so that any secondary key look-ups and index table are eliminated. Thus, V and
the corresponding �V need to have two additional attributes used internally by CloudTPS:
_groupBy (primary key) and _count (count of aggregated rows). The refresh operator can
be readily implemented using the two-phase commit protocol as shown in Algorithm 5.3.

5.3.3 Asynchronous Computation
As discussed in the beginning of this chapter, despite being strongly consistent, the syn-
chronous aggregate view maintenance approach introduces relatively heavy workloads and
can become expensive with larger read/write transactions. The main reason behind this
performance issue is the large number of sub-transactions the coordinator needs to add in
order to complete the a read/write operation on an aggregate base table. The asynchronous
version of the computation shown in Algorithm 5.2 offers greater flexibility at the expense
of allowing staleness in the aggregate views.

In the asynchronous version of the aggregation computation, CloudTPS needs to main-
tain base table change tables which are used for the deferred derivation of the aggregate
view. Just like in the synchronous algorithm, the coordinator node identifies the LTMs re-
sponsible for the data items to be updated and waits for receiving the complete rows after
submitting the sub-transactions. However, after receiving the LTM votes, instead of pro-
ceeding with computing �V , the coordinator adds sub-transactions updating the base table
change tables and waits for the final votes before committing. This approach decreases
considerably the number of sub-transactions submitted by the coordinator node and allows
for an asynchronous view update as it preserves enough information to compute �V .

CHAPTER 5. SYSTEM DESIGN AND API 30

Algorithm 5.3 Aggregate View Table Refresh

1. The coordinator generates and submits a refresh sub-transaction from each �V row
and uses the primary key to identify the LTM handling potential view table matches.

2. Each LTM performs one of the following:

(a) Inserts a row if there is no match on the _groupBy attribute

(b) Carries out the aggregate operations if there is a match on the _groupBy at-
tribute and does one of the following:

i. Deletes the row if _countnew = 0
ii. Performs an update if _countnew 6= 0

3. Upon LTM consensus the transaction is committed

The second phase of the asynchronous algorithm obtains and applies �V using
B1 . . .Bn. As in the synchronous algorithm, a random node is selected for a transaction coor-
dinator which computes �V = π f unc(AggAttr),GB(σSelAtt(�B1 ./JoinCond1 B2]B1 ./JoinCond1

�B2. ·−�B1 ./JoinCond1 �B2). The previous expression has a simple query plan which can
be readily handled by the logic of the read-only transaction manager. After the computa-
tion, tables B1 . . .Bn are cleared and the aggregate view change table is applied as described
in Section 5.3.2.

5.4 Aggregate View Maintenance API
The aggregate view maintenance programming interface closely resembles the CloudTPS
read-only query plan API. All aggregate queries need to be statically registered in advance
so that the initial aggregate views can be computed during the system’s initialization. An
aggregate query can be defined as a collection of “JoinTable” and “JoinEdge” objects which
have the same semantics as defined by Zhou at al. The only difference between declaring a
standard select-project-join query plan and aggregate query plan is the additional definition
of GROUP BY columns and aggregate functions.

Chapter 6

Evaluation

This section provides an experimental evaluation of the synchronous and asynchronous
aggregate view maintenance algorithms presented in Chapter 5. The modified CloudTPS
architecture was executed on top of HBase running on the DAS-3 computer cluster which
comprises 85 nodes running Linux on dual core 2.4 GHz CPUs and using 4 GB memory.
Each node used in the experiments functioned either as an LTM or load generator. The LTM
role is described in detail in Chapter 5 while the load generator submits update transactions
introducing controlled workloads to the CloudTPS framework.

The aggregate view maintenance aggregate algorithm was evaluated both in term
of micro-benchmarks covering specific implementation details and the standard TPC-W
benchmark providing a typical workload for an e-commerce web application.

6.1 Experimental Setup
Figure 6.1 shows the experimental setup for the aggregate view maintenance synchronous
and asynchronous algorithms. For each evaluation run, a subset of the DAS-3 nodes was
assigned either a load generator or local transaction manager role. Each load generator is
a single-threaded application generating update transactions modifying a specified number
of data items in CloudTPS-managed tables in the Cloud data store.

None of the load generators submits read-only query plans as evaluating an aggregate
query consists of a simple look-up in the aggregate view table. Thus both the micro-
benchmarks and TPC-W application simply populate their CloudTPS tables and subse-
quently send updates. As the LTMs are interconnected via a Gigabit LAN, any network
latency effects can be ignored. As the view maintenance table update implementation is
based on the CloudTPS secondary key index maintenance, based on the two phase commit
protocol, fault tolerance and network partitioning has been largely untested as these topics
are covered in detail in [23].

31

CHAPTER 6. EVALUATION 32

LTM LTM LTM LTM

HBase

LoadGenLoadGenA
synch C

oordinator

R
esult V

erifier

Figure 6.1: Aggregate View Maintenance Experimental Setup

Finally, the asynchronous computation of the asynchronous view maintenance algo-
rithm is driven by a centralized coordinator. In this setup, the coordinator node simply
sends view refresh requests to randomly chosen LTMs which serve as the actual trans-
action coordinators. For simplicity, the current implementation does not provide for any
failures at the asynchronous coordinator node. However, a new coordinator can be easily
chosen after a crash by using one of the numerous leader election protocols described in
the literature [2].

6.2 Correctness
The correctness of the implementation of the synchronous and asynchronous aggregate
view maintenance algorithms is done by the Result Verifier process which periodically
inspects the view tables for consistency issues. To this end, the load generators submit base
table updates according to several simple rules which result in an aggregate view table with
easily verifiable properties:

• Each load generator submits in arbitrary order n insertion and m deletion transac-
tions with a predetermined numerical value v for some attribute A. At the end of a
successful test run, the aggregate view table corresponding to the summation over A
will yield a result equal to countLT M× (n−m)× v;

• Each load generator submits numerical values divisible by some natural number N;
consequently, all intermediate results are divisible by N regardless of the transaction
interleaving.

CHAPTER 6. EVALUATION 33

 500

 1000

 1500

 2000

 2500

 5 10 15 20 25 30 35 40

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

(T
P

S
)

Update Transaction Size (Records)

Synchronous View Update

(a) Synchronous Algorithm

 1000

 2000

 3000

 4000

 5000

 5 10 15 20 25 30 35 40

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

(T
P

S
)

Update Transaction Size (Records)

Asynchronous Base Table Update
Asynchronous View Application

(b) Asynchronous Algorithm

Figure 6.2: Performance Evaluation of the Synchronous and Asynchronous View Mainte-
nance Algorithms (transactions per second vs update size)

The approach outlined in the previous paragraph is relatively light-weigh and guarantees
the absence of false negative results and is effective for discovering the presence of incon-
sistencies in the aggregate view tables.

6.3 Micro-benchmarks
The aggregate view maintenance algorithm was tested with a simple micro-benchmark

modeling the “Dashboard Application” presented in Section 2.1. Because of the relative
simplicity of the database schema (Figure 2.1), the load generators have complete control
over the complexity of the submitted update transactions. In this setup, the performance
of the view maintenance algorithms is entirely determined by the size of the read/write
transactions and underlying base tables. The load generator modifies the Events table while
the Categories, Products, Shops, and Address tables remain largely static. The micro-
benchmark was setup with 50 shops, 5000 products, 20 categories, and 5,000 events. Each
workload generator waits for approximately 1000 ms before sending the next transaction;
CloudTPS was deployed on 20 DAS-3 nodes serving as LTMs.

Figure 6.2 shows the performance of the synchronous and asynchronous algorithms
under the conditions described in the previous paragraph. The asynchronous view applica-
tion workload was measured by generating the base table change tables and applying them
until the 100 ms response time threshold has been exceeded. Intuitively, the synchronous
approach comprises considerably more sub-transactions than the asynchronous one as the
aggregate view table is updated in the same transaction as the underlying base tables. Thus

CHAPTER 6. EVALUATION 34

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5 10 15 20 25 30

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

(T
P

S
)

Update Transaction Size (Records)

50 ms
250 ms
500 ms

1000 ms
5000 ms

Figure 6.3: Asynchronous View Maintenance with Different Refresh Frequencies (transac-
tions per second vs update size)

the throughput with the synchronous algorithm is considerably lower than the throughput
with the algorithm’s asynchronous counterpart. On the other hand, the asynchronous al-
gorithm incurs a significant “penalty” which has to be paid during the algorithm’s second
phase–the actual view update. The last is evident from the curve representing the asyn-
chronous view update: when the change table needs to be applied, the coordinator does
much more work than the synchronous coordinator as it has to fetch the base tables change
tables first and execute heavier join query plans later.

Despite the heavy workload introduced by the second phase of the asynchronous algo-
rithm, the asynchronous view maintenance approach can be readily applied in applications
tolerating eventually consistent aggregate views and exhibiting query locality. Figure 6.3
shows the throughput of the asynchronous algorithm under different view refresh frequen-
cies when a set of 150 base table rows is being updated. The 50 ms curve is consistent
with the preceding discussion as the refresh interval is small enough for the algorithm’s
performance to degrade to to the synchronous case. However, the 500 ms graph shows
considerable speed-up. The performance of the asynchronous algorithm with a 5000 ms
refresh interval is close to the ideal write performance.

The achievable throughput for the asynchronous algorithm is strongly dependent on the
type of the read-write transactions submitted to CloudTPS. Update transactions modifying
a small subset of the present rows benefit from large view refresh intervals as the update
operations are aggregated in the base table change tables (Figure 6.3). On the other hand,
read-write transactions inserting new rows do not see improved performance with decreas-
ing the view refresh frequency as the number of rows present in the base table change tables
increase linearly with the count of submitted transactions.

CHAPTER 6. EVALUATION 35

 500

 1000

 1500

 2000

 5 10 15 20 25 30

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

(T
P

S
)

LTM Count

TPS

Figure 6.4: Performance Evaluation of the Synchronous View Maintenance Algorithm with
TPC-W (transactions per second vs update size)

6.4 Macro-Benchmarks
Section 6.3 discussed the aggregate view maintenance algorithms in the context of a sim-

ple micro-benchmark—an approach allowing covering specific functionality such as syn-
chronous and asynchronous updates with specified transaction sizes. Unfortunately, the
Dashboard application cannot provide a typical web application workload. Instead, the
overall system scalability needs to be investigated in terms of the workload provided by a
typical e-commerce application such as the TPC-W benchmark.

TPC-W is a transactional web-application simulating an online book seller such as
Amazon.com. The benchmark is used for examining the total throughput of a system in
transactions per second and stresses all the components of a typical web application–web
servers, network, and the storage tier. To test the performance of the aggregate view main-
tenance algorithm, CloudTPS needs to register aggregate queries such as the total cost
of items in a shopping cart or ordered. The actual workload consists only of read-write
transactions modifying the base tables. To this end, upon startup the TPC-W tables are
populated with 12,000 item records and 100,000 customer records.

Figure 6.4 provides the CloudTPS throughput against the LTM node count when the
synchronous algorithm is used. As the diagram shows, adding LTMs increases linearly the
throughput. The primary reason for the last is the linear scalability of the underlying read-
only queries and read-write transactions. Increasing the LTM count results in spreading the
aggregate computation over more nodes. As the transaction cost is negligible due to the
high speed LAN, the query response time depends only on the number of accessed records
and the record distribution across the LTMs.

Chapter 7

Conclusion

This thesis presented two aggregate view maintenance algorithms for Cloud-based web
applications. The main idea behind the algorithms is based on Gupta’s work on incremental
aggregate view maintenance in relational databases [15]. However, instead of using a
centralized solution for carrying out the view maintenance, we demonstrated the feasibility
of distributing the workload over a set of local transaction managers. To this end, the
algorithm maintains several data structures and computes and applies aggregate change
tables via the two-phase commit protocol. This implementation approach has been derived
from the CloudTPS join and update operations which have been shown to be strongly
consistent and scale horizontally for small-sized transactions which are characteristic for
web applications.

As shown in Chapter 6, both the synchronous and asynchronous approaches are hori-
zontally scalable. The scalability property of the solution is the result of several factors.
First, because of the small-sized updates, all relevant change tables can readily fit into the
memory of a single coordinator node. Second, the equi-join and update queries essential for
the algorithm’s implementation are horizontally scalable and can be readily integrated.The
synchronous and asynchronous solutions fit several web application types. The former ap-
proach is suitable for web applications requiring consistent aggregate views while the latter
algorithm can be applied for scenarios tolerating view staleness. However, the exact refresh
frequency for the asynchronous algorithm is entirely application specific and needs to be
further researched.

The consistency and fault tolerance of the aggregate view maintenance are guaranteed
by the assigned global timestamps and two-phase commit protocol. In the worst case, when
a node crashes the computation will be lost and simply restarted.

The proposed algorithm’s efficiency can be increased by adopting base relation tagging
for the incremental view maintenance as proposed in [5]. Thus, instead of performing join
operations which may return zero rows, the coordinator will know beforehand which table
rows participate in the views and decrease the number of join operations at the expense

36

CHAPTER 7. CONCLUSION 37

of additional storage. And finally, the non-distributive aggregate query support has been
left for future research. In a naive implementation, the MIN and MAX functions need to
inspect all table rows upon deletion. A possible solution would be to maintain distributed
heap index structures for top-k queries and update them in the same transactional way as
the view maintenance base tables.

Bibliography

[1] AGRAWAL, P., SILBERSTEIN, A., COOPER, B. F., SRIVASTAVA, U., AND RA-
MAKRISHNAN, R. Asynchronous view maintenance for vlsd databases. In SIGMOD
Conference (2009), U. Çetintemel, S. B. Zdonik, D. Kossmann, and N. Tatbul, Eds.,
ACM, pp. 179–192.

[2] AGUILERA, M., DELPORTE-GALLET, C., FAUCONNIER, H., AND TOUEG, S. Sta-
ble leader election. Distributed Computing (2001), 108–122.

[3] AMAZON.COM. Amazon simpledb. Amazon.com, 2011.

[4] AMDAHL, G. M. Validity of the single processor approach to achieving large scale
computing capabilities. In Spring Joint Computer Conference (1967), pp. 483–485.

[5] BAILEY, J., DONG, G., MOHANIA, M., AND WANG, X. S. Incremental view main-
tenance by base relation tagging in distributed databases. Distrib. Parallel Databases
6, 3 (July 1998), 287–309.

[6] BLAKELEY, J. A., AND MARTIN, N. L. Join index, materialized view, and hybrid-
hash join: A performance analysis. In ICDE (1990), pp. 256–263.

[7] BORTHAKUR, D. The Hadoop Distributed File System: Architecture and Design.
The Apache Software Foundation, 2007.

[8] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH, D. A., BUR-
ROWS, M., CHANDRA, T., FIKES, A., AND GRUBER, R. E. Bigtable: a distributed
storage system for structured data. In 7th USENIX Symposium on Operating Systems
Design and Implementation (2006), pp. 15–15.

[9] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data processing on large
clusters. In 6th Conference on Symposium on Opearting Systems Design & Imple-
mentation (2004), pp. 10–10.

[10] GILBERT, S., AND LYNCH, N. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News 33, 2 (June 2002), 51–59.

38

BIBLIOGRAPHY 39

[11] GRAY, J., CHAUDHURI, S., BOSWORTH, A., LAYMAN, A., REICHART, D.,
VENKATRAO, M., PELLOW, F., AND PIRAHESH, H. Data cube: A relational aggre-
gation operator generalizing group-by, cross-tab, and sub-totals. Data Min. Knowl.
Discov. 1, 1 (January 1997), 29–53.

[12] GRIFFIN, T., AND LIBKIN, L. Incremental maintenance of views with duplicates. In
SIGMOD Conference (1995), pp. 328–339.

[13] GUPTA, A., HARINARAYAN, V., AND QUASS, D. Aggregate-query processing in
data warehousing environments. In VLDB (1995), pp. 358–369.

[14] GUPTA, A., MUMICK, I. S., AND SUBRAHMANIAN, V. S. Maintaining views in-
crementally. In SIGMOD Conference (1993), pp. 157–166.

[15] GUPTA, H., AND MUMICK, I. S. Incremental maintenance of aggregate and outer-
join expressions. Inf. Syst. 31, 6 (2006), 435–464.

[16] LIBKIN, L., AND WONG, L. Query languages for bags and aggregate functions. J.
Comput. Syst. Sci. 55, 2 (1997), 241–272.

[17] MEMBREY, P., THIELEN, W., PLUGGE, E., AND HAWKINS, T. The Definitive Guide
to Mongodb: The Nosql Database for Cloud and Desktop Computing. Definitive
Guide Series. Apress, 2010.

[18] MENASCÉ, D. A. Tpc-w: A benchmark for e-commerce. IEEE Internet Computing
6, 3 (2002), 83–87.

[19] MOORE, G. E. Cramming more components onto integrated circuits. Electronics 38,
8 (April 1965).

[20] QUASS, D. Maintenance expressions for views with aggregation. In VIEWS (1996),
pp. 110–118.

[21] SRIVASTAVA, D., DAR, S., JAGADISH, H. V., AND LEVY, A. Y. Answering queries
with aggregation using views. In VLDB (1996), pp. 318–329.

[22] STONEBRAKER, M., MADDEN, S., ABADI, D. J., HARIZOPOULOS, S., HACHEM,
N., AND HELLAND, P. The end of an architectural era: (it’s time for a complete
rewrite). In 33rd International Conference on Very large data bases (2007), pp. 1150–
1160.

[23] WEI, Z., PIERRE, G., AND CHI, C.-H. Consistent join queries in cloud data stores.
Tech. Rep. IR-CS-068, Vrije Universiteit, Amsterdam, The Netherlands, Jan. 2011.
http://www.globule.org/publi/CJQCDS_ircs68.html.

http://www.globule.org/publi/CJQCDS_ircs68.html

BIBLIOGRAPHY 40

[24] YU, Y., GUNDA, P. K., AND ISARD, M. Distributed aggregation for data-parallel
computing: interfaces and implementations. In ACM SIGOPS 22nd Symposium on
Operating systems principles (2009), pp. 247–260.

	
	Introduction
	From Relational Databases to NoSQL
	Scalable and Consistent R/W and Equijoin Queries in the Cloud
	Motivation
	Aggregate Queries for Large-Scale Web Applications
	Thesis Structure

	Background
	Motivating Example
	Data Model
	Execution Environment

	State of the Art Data Aggregation for the Cloud
	Aggregation with the MapReduce Framework
	Aggregate Queries in Cloud-based Web Applications

	Materialized View Maintenance---A Theoretical Perspective
	Materialized Views
	Notation and Terminology
	View Maintenance via Change Tables
	Change Tables
	Refresh Operator
	Change Table Computation
	Change Table Propagation

	System Design and API
	Overview of CloudTPS
	Aggregate Queries for CloudTPS
	Implementation
	Synchronous Computation
	CloudTPS Aggregate View Refresh Operator
	Asynchronous Computation

	Aggregate View Maintenance API

	Evaluation
	Experimental Setup
	Correctness
	Micro-benchmarks
	Macro-Benchmarks

	Conclusion
	Bibliography

