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Abstract—To enable decentralised actions in very large dis-
tributed systems, it is often important to provide the nodes with
global knowledge about the values of attributes across all nodes.
This paper shows how, given an attribute whose values are
distributed across a large decentralised system, each node can
efficiently estimate the statistical distribution of these values.
Simulations using heavily skewed real-world node attribute
distributions show that our estimation methods outperform
the state-of-the-art heuristics by an order of magnitude with
an average error of 0.05% and a maximum error of 2%. To
obtain this accuracy, each node sends on average just 120 kB
of data independent of the system size. Our algorithms also
achieve this accuracy in the presence of heavy churn of system
membership. Furthermore, our algorithm enables self-tuning
by continuously estimating the accuracy of its own distribution
approximation.

I. INTRODUCTION

Large-scale distributed systems such as computing clouds,
Grids, and peer-to-peer overlays are increasingly relying on
decentralisation, by scattering application-level and system-
level information across a very large collection of loosely-
coupled nodes. While this design principle has demonstrated
its effectiveness in terms of scalability and robustness, it
introduces serious challenges for global-level tasks like
monitoring and optimisation. One important challenge is
to estimate global system properties, for example the total
available storage space or the average load on the machines.
Such global properties can be computed in a decentralised
fashion by using aggregation protocols [1].

Aggregation protocols allow for the computation of a
global scalar value – like a mean, a total count, or the
rank of a node compared to the others according to a given
metric. However, this is often not sufficient for effectively
monitoring and optimising a distributed system. In many
cases it is necessary to have a view of how properties vary
across the system’s nodes, by estimating their statistical
distribution. For example, in a fully decentralised load
balancing mechanism, any node can detect a global load
imbalance by monitoring the statistical distribution of the
load at all other nodes. Estimating the statistical distribu-
tion of attribute values also allows identifying outliers and
clusters, which can be used to detect hardware and software
defects or intrusion attempts [2].

The main challenge for a decentralised protocol that
estimates statistical distributions of attribute values is to
obtain good accuracy while maintaining low communication
overhead. Achieving good accuracy is particularly difficult in
real-world systems where sets of values are skewed and hard
to approximate by synthetic distributions. Although some
solutions for decentralised estimation of statistical distribu-
tions have been recently proposed, they suffer from poor
accuracy for skewed distributions or high communication
overhead [3], [4].

This paper presents Adam2, a new decentralised protocol
to accurately estimate the distribution of an attribute with a
low communication cost1. Our algorithm continuously mon-
itors the accuracy of its own distribution estimation. This
feedback mechanism allows an application to dynamically
tradeoff estimation accuracy to further reduce overhead.

Adam2 is based on a gossip communication model.
Gossip protocols provide scalable and robust information
dissemination, while achieving a low overhead [1]. We
use a gossip-based method to efficiently and autonomously
estimate the fraction of nodes in the system whose attribute
value is lower than a certain threshold. By applying this
method to a set of thresholds, each node quickly estimates
the distribution of the attribute across the whole system. The
set of thresholds determines the accuracy of the distribution
approximation. To improve accuracy, our algorithm refines
the set of thresholds across multiple consecutive instances.
The thresholds of an instance are based on the results from
the previous instance. Nodes execute the entire algorithm
autonomously without any designated coordinator.

We evaluate our algorithm through simulations using real-
world attribute distributions with different characteristics [5].
We show that even for heavily skewed distributions it
reduces the maximum vertical distance between the real
distribution curve and the estimated one to about 2%, and
the average distance between the two curves to about 0.05%,
while each node sends on average 120 kB of data indepen-
dent of system size. This level of accuracy is one order of
magnitude better than current state-of-the-art systems.

1Adam2 was named after Adam1, who increased world population by
one on October 28th, 2009. For obscure reasons, Adam Sacha v1.0 was
registered at the municipality with no release number.



This paper is organised as follows. Section II discusses
related work. Section III presents our system model. Sec-
tions IV, V, and VI describe the algorithms that estimate an
attribute distribution using one aggregation instance, refine
the set of interpolation points between multiple instances,
and estimate the approximation accuracy. Section VII dis-
cusses our evaluations, and Section VIII concludes.

II. RELATED WORK

The task of data aggregation, or synopsis construction,
has been well-studied in the past in the areas of sensor
networks [6] and distributed databases [7]. However, most of
the proposed algorithms are reactive. Each time a node re-
quests aggregation, a dissemination tree (or weighted graph)
is constructed between nodes in order to collect the required
data from the system. Such graphs are neither robust to
failures of nodes near the sink nor do they efficiently
disseminate the result to all nodes.

Adam2 is based on gossip protocols, which are renowned
for their scalability, robustness, and low cost [1]. These
protocols have been used to approximate simple system
properties such as minimum, maximum, and mean values
of an attribute. We extend them by allowing nodes to
approximate system-wide distributions and to assess and
improve the accuracy of these approximations.

Several algorithms allow nodes to estimate their own
ranks and slices [8]–[10]. While these solutions incur less
overhead, they provide more limited information than a
distribution estimation. For example, they do not enable
nodes to estimate whether an attribute distribution is skewed,
imbalanced, or contains outliers: node ranks by definition are
always assigned between 1 and N (system size), regardless
of the actual attribute distribution.

The problem of outlier detection is addressed using gossip
by [2]. Nodes gossip synopses of clusters and outliers to
enable both the removal of outliers and the discovery of
cluster formation. However, the cluster synopses do not
estimate the full distribution of node parameters. Adam2 is
also well-suited to other distributions without clusters.

A simple way to estimate an attribute distribution is to
draw a random sample of attribute values [4], [11]. However,
as we show section VII, such an approach is extremely
inefficient compared to Adam2.

Haridasan et al. estimate an attribute distribution by gos-
sipping synopses of equi-depth histograms [3]. Using equi-
depth bins, the system converges towards an accuracy around
7% in the absence of churn. Adam2 obtains a much better
accuracy under the same conditions. Furthermore, it also
estimates its own accuracy to enable a tradeoff of accuracy
for communication overhead.

III. SYSTEM MODEL

We consider a distributed system consisting of a large
number of autonomous nodes. The goal of Adam2 is to

estimate, in a scalable fashion, the cumulative distribution
of some discrete attribute A at every node in the system.
Nodes are called peers because we assume no central point
of control and all nodes participate equally in the algorithm.
The peers are organised in a P2P overlay where each peer
maintains links to a small number of randomly selected
nodes called its neighbours. The set of neighbours of a
peer changes over time, as peers exchange neighbour lists
to obtain robust connectivity [11].

The cumulative distribution function (CDF) for an at-
tribute A is defined as a function F : R → R such that
F (x) is equal to the fraction of nodes that have a value for
A at or below x:

F (x) =
1
N

∣∣∣{p : A(p) ≤ x}
∣∣∣

where N denotes the system size.
To approximate F , we estimate the function at a subset

of the discrete points, keeping the results in a data structure
similar to a cumulative histogram. Specifically, we define a
sequence of λ elements, called H, where the i’th element,
H(i), contains a pair (ti, fi) representing the fraction of
peers fi that have a value for A at or below the threshold
ti :

fi =
1
N

∣∣∣{p : A(p) ≤ ti}
∣∣∣

The thresholds can be chosen arbitrarily within the attribute
domain. Each element corresponds to a single CDF value,
since F (ti) = fi for 1 ≤ i ≤ λ. Hence, the CDF function
can be approximated by interpolating the points of H. We
discuss in the next section how to efficiently and accurately
obtain the pairs (ti, fi).

We measure the CDF approximation accuracy using two
classical metrics. The Kolmogorov-Smirnoff (or maximum
error) metric defines the distance between function F and its
approximation Fp at node p as: supx |F (x)−Fp(x)|. Given
that the attribute space in our system is discrete, we define
the maximum error of Fp as:

Errm(p) = max
x
|F (x)− Fp(x)|

Since different peers in the overlay can generate slightly
different distribution estimations, we calculate the corre-
sponding aggregate of these metrics over all peers:

Errm = max
p

Errm(p)

This error metric provides an upper bound on the approxi-
mation error of any peer in the system.

While Errm is useful to bound the error that any peer
observes, this bound is determined by a single point discrep-
ancy between F and Fp. Hence, it is quite sensitive to noise.
A common approach to summarise the error contributed
by all points calculates the area between the two curves:∫
x
|F (x) − Fp(x)| dx. In the discrete case, this metric

corresponds to a sum of |F (x) − Fp(x)| over all attribute



values. We use the average vertical distance between F and
Fp to allow comparisons of error across different attributes:

Erra(p) =
max∑
x=min

|F (x)− Fp(x)|
max−min

Again, we calculate an aggregate across all peers:

Erra = avg
p

Erra(p)

IV. CDF APPROXIMATION ALGORITHM

Our CDF approximation algorithm is based on periodic
gossip rounds, executed at roughly the same rate by all
nodes, where neighbouring nodes exchange information. A
sequence of several gossip rounds, called an aggregation
instance, generates a new CDF approximation at all nodes
in the system. Nodes occasionally initiate new instances to
improve the estimation accuracy and adapt to system churn.

An aggregation instance is started probabilistically by any
node, which selects a set of ti thresholds and epidemically
spreads the information about the new instance and the
thresholds to other nodes using gossip (see Figure 1). The
nodes run an averaging protocol wherein nodes exchange
their current values during each round of gossip and cal-
culate new values by averaging the current and received
values [1]. In order to calculate the fraction fi of nodes
that have attribute values below (or at) ti, a peer p enters
the averaging protocol with a value of 1 if A(p) ≤ ti and 0
otherwise. Through a sequence of gossip exchanges and the
corresponding averaging, the nodes estimate the mean of all
the introduced values, which is equal to fi.

Similarly, nodes estimate the system size N using the
averaging protocol: Each peer p enters the protocol with a
weight variable wp = 0, except the unique initiator q of the
instance which sets wq = 1. Over successive exchanges, the
mean approaches 1/N .

The accuracy of the averaging protocol increases exponen-
tially with time. After a fixed number of rounds, all nodes
update their CDF and system size estimations, and terminate
the aggregation instance.

We associate each aggregation instance with a unique
instance identifier id. The instances may overlap in time, and
thus a peer may participate in multiple independent instances
simultaneously. Since the instances are executed in isolation
from each other, we simplify the algorithm description and
assume only one running aggregation instance.

Starting an Aggregation Instance: Any peer in the
system may start a new aggregation instance. Other peers
learn of new instances through the regular gossip exchanges.
To prevent the system from being overwhelmed by new
instances, a peer starts a new instance with probability Ps
per round calculated as 1

NpR
. Np is the current estimation

of N at peer p generated in a previous aggregation instance
(nodes joining the system are bootstrapped by their initial
neighbours), and R is the system constant that regulates

1: // Executed by a probabilistically self-selected
2: // node at the beginning of an instance
3: StartInstance(p):
4: {ti} ← select λ interpolation points
5: Hp ← {(ti, fi) | fi = 1 iff A(p) ≤ ti; 0 otherwise}

6: // Run by each node in each round
7: Round(p):
8: q ← select random neighbour
9: sendRequest (Hp) to q

10: receiveResponse (Hq) from q
11: Merge(Hq)
12: while round has not finished do
13: receiveRequest (Hn) from n
14: sendResponse (Hp) to n
15: Merge(Hn)
16: end while

17: Merge(Hq):
18: if Hq 6= ∅ then
19: let Hq = {(ti, fi)}
20: if Hp = ∅ then
21: Hp ← {(ti, f ′i) | f ′i = 1 iff A(p) ≤ ti; 0 otherwise}
22: end if
23: Hp ← {(ti, fi+f ′i

2
)}

24: end if

Figure 1. Aggregation algorithm at peer p. For simplicity, the system size
estimation and instance termination mechanisms are not shown. The Hp

variable is initialised with ∅ at all peers.

the frequency of new aggregation instances. In a stable
state, with a steady number of peers in the system, a new
aggregation instance is created on average every R rounds.

For each aggregation instance, peer p stores the set of
interpolation points Hp and the weight wp that it uses to
estimate the system size. To start a new instance, peer p first
sets weight wp = 1, then selects a set of threshold values
ti using the SELECTPOINTS procedure described later, and
finally generates an initial set of interpolation points Hp =
{(ti, fi) | 1 ≤ i ≤ λ, fi = 1 if A(p) ≤ ti; 0 otherwise}.

Executing an Aggregation Instance: An aggregation
instance comprises a sequence of gossip rounds. A gossip
exchange between peers p and q is entirely symmetric:
Peer p sends Hp and wp to q, and peer q replies with
Hq and wq . Both peers then merge the received values in
the MERGE procedure. If either peer has yet not seen the
aggregation instance id, it joins the instance by sending an
empty set, initialising its data structures, and merging the
received values. The other peer then ignores the exchange
on receiving an empty set. When a peer joins an instance,
it initialises its data structures by setting weight wp = 0
and creating an initial set of interpolation points Hp =
{(ti, fi) | 1 ≤ i ≤ λ, fi = 1 if A(p) ≤ ti; 0 otherwise}.
Note that all peers use the same thresholds ti to initialise
Hp as assigned by the peer that started the instance. Finally,
both peers average the wp and wq weights and merge Hp

and Hq by averaging the corresponding fi values.



Terminating an Aggregation Instance: Every instance
is associated with a time-to-live counter, which is reduced by
one per round at each peer. For simplicity, this mechanism
is not shown in Figure 1. When an instance ends, each
peer p updates its estimation of the number of nodes in
the system Np = 1

wp
and approximates the whole attribute

CDF by interpolating the points of Hp. We use simple
linear regression between each consecutive pair of points
to obtain Fp, but more complex approaches are possible.
Finally, each peer deletes its Hp set and stops participating
in the aggregation instance.

Extreme CDF Values: So far, for simplicity we have
ignored two special points in any approximation: the first
and last. Adam2 finds the minimum and maximum attribute
values to use in later aggregation instances. In order to
discover these values, the local minimum and maximum
at each node are added to H and treated specially. When
merging tuples, their corresponding minimum and maximum
values are chosen. All nodes then quickly converge on the
global minimum and maximum for all attribute values.

Multiple Attribute Values per Node: The aggregation
algorithm can be easily extended to handle cases where
individual nodes are allowed to have multiple attribute
values. For example, to estimate the distribution of file sizes
at all nodes in the system each node contributes its set of file
sizes. In this case, we define A(p) ⊂ A as the set of values
for attribute A at peer p and A as the set of all attribute
values at all nodes in the system. The CDF for attribute A
is defined as function F : R→ R such that

F (x) =

∣∣∣{a ∈ A : a ≤ x}
∣∣∣

|A|
As previously, the CDF is approximated by calculating
the value for F in a set of discrete points (ti, fi) where
F (ti) = fi. To calculate fi, nodes generate two values using
the averaging algorithm. First, each node p calculates avgi
– the average number of attribute values below ti per node
– by contributing |{a ∈ A(p) : a ≤ ti}| to the averaging
algorithm. Second, each node p calculates avg – the average
number of attributes per node – by contributing |A(p)| to the
averaging algorithm. Note that avg is independent of i and
can be calculated once for all the CDF points. The fi value
is then given as fi = avgi

avg .

V. INTERPOLATION POINT SELECTION

When starting a new aggregation instance, each peer needs
to decide on the placement of the interpolations points in
H. Initially a node may have no prior knowledge about
the attribute distribution. The simplest approach in this case
is to spread the interpolation points at uniform intervals
within the attribute domain. However, the distributions of
node characteristics in large-scale distributed systems are
often highly skewed [5], resulting in a poor approximation
using uniform intervals. We show in Section VII-B better

performance using attribute values found in a subset of
neighbours of the initiating node.

Once the system has a rough estimate of the attribute
distribution, it can further refine the selection of interpolation
points in future instances, and reduce the CDF approxi-
mation error. Different selection algorithms may be used
depending on the metric that the application tries to optimise.

A. Minimising the Maximum Error

One of the simplest threshold selection heuristics to
reduce Errm(p), which we call HCut, chooses the interpo-
lation points for a new aggregation instance such that they
divide the image of Hp into (λ + 1) equal size quantiles.
Since Errm(p) is determined by the maximum vertical
distance between interpolation points, this heuristic attempts
to bound the maximum error to 1

λ+1 , assuming the CDF
does not change between aggregation instances. Figure 2(a)
illustrates the HCut algorithm: the interpolation points for
the next aggregation instance (t1, t2, t3) correspond to 25%,
50%, and 75% quantiles.

The HCut algorithm is efficient for approximating smooth
CDFs. However, in many systems the number of possible
attribute values is small. For example, many PCs have
512 MB, 1 GB, or 2 GB of RAM, but relatively few current
machines have an amount of RAM that is between these
values. The CDFs of such real-world attributes are step
functions that are poorly approximated by HCut.

To approximate these CDFs, we propose MinMax – a
heuristic that attempts to identify and approximate steps in
a CDF curve. Figure 3 shows the pseudocode for MinMax.
MinMax iteratively finds the farthest two consecutive inter-
polation points by vertical distance, denoted n and n−1, in
the previous set of interpolation points Hold, and the closest
three interpolation points by vertical distance in H denoted
m− 1, m, and m+ 1. If the two farthest points are farther
apart than the closest three, the midpoint m of the closest
three is removed from both H and Hold, and a new point is
added to H at the new, interpolated midpoint between n and
n− 1. When no points satisfy the condition, the thresholds
in H are returned as the output of the algorithm.

A sample MinMax step is graphically illustrated in Fig-
ure 2(b). MinMax changes the interpolation points only if it
is expecting to reduce the interpolation error. By iteratively
splitting the steepest fragments in the interpolated curve over
multiple aggregation instances, MinMax efficiently identifies
steps in the CDF.

B. Minimising the Average Error

The HCut and MinMax heuristics attempt to minimise the
maximum vertical distance measured by Errm(p). However,
Erra(p) depends upon the area between the CDF and the
interpolation. To reduce the area, we consider the LCut
heuristic that selects the interpolation points based on their
Euclidean distance instead of vertical distance.



(a) Interpolation point selection using HCut. The
grey curve represents F – the true CDF. The black
line represents Hp – the previous CDF interpola-
tion at p. The selected points are t1, t2, and t3.

(b) Interpolation point selection using Min-
Max. The vertical distance d1 is less than d2.
Moving the midpoint of the first segment to
the second at point t2 is thus likely to reduce
Erra(p).

(c) Interpolation point selection using LCut.
Points {t1, t2, t3} are chosen to divide
equally the Euclidean distance along the pre-
vious approximation H.

Figure 2. The HCut, MinMax and LCut heuristics

1: SelectPoints(H):
2: Hold ← H
3: loop
4: find n that maximises |fn − fn−1| in H
5: find m that minimises |fm+1 − fm−1| in Hold

6: if |fn − fn−1| > |fm+1 − fm−1| then
7: remove point (tm, fm) from H and Hold

8: add point (
tn+tn−1

2
,

fn+fn−1
2

) to H
9: else

10: return H
11: end if
12: end loop

Figure 3. MinMax interpolation point selection algorithm. The algorithm
iteratively attempts to split the widest vertical gap while removing the
midpoint from the narrowest cluster of three points.

Figure 2(c) illustrates the LCut heuristic. It first calculates
the length of the H linear interpolation curve for the previous
aggregation instance. Then, it divides the H curve into λ
equal length (by Euclidean distance) segments to determine
the new point placement. The horizontal axis is scaled by
max−min in order to equalise the horizontal and vertical
coordinate ranges. As shown later in Section VII-C, LCut
achieves lower average interpolation error Erra than HCut
and MinMax, but higher maximum error Errm.

VI. DYNAMIC CONFIDENCE ESTIMATION

Adam2 also allows each node to estimate its own CDF
approximation accuracy. This can be used to dynamically
tune the algorithm parameters – such as the number of
interpolation points and the number of executed instances
– according to application-specific accuracy requirements.

The accuracy estimation is based on the fact that nodes
estimate CDF values very accurately at the points of H. To
estimate the approximation accuracy, the node that starts the
instance generates an additional set of verification points V
similar to the interpolation points H where each element
in V is a pair (t′i, f

′
i) such that F (t′i) = f ′i . The extra V

points are added to aggregation algorithm to be gossipped
and merged along with the original H points.

The t′i thresholds for the verification points are chosen by
the node that initiates a new aggregation instance according
to the selected error metric. In order to estimate the average
CDF approximation accuracy Erra(p), the t′i thresholds
are selected uniformly between the attribute minimum and
maximum. At the end of an instance, each peer p estimates
the accuracy of its CDF approximation Fp as

EstErra(p) = avg
(t′i,f

′
i)∈Vp

|Fp(t′i)− f ′i |

The maximum approximation error Errm(p) is generally
more difficult to estimate compared to Erra(p) since it is
determined by a single point in the CDF. In order to estimate
Errm(p), the peer q that starts a new aggregation instance
selects the verification points Vq based on its current CDF
interpolation. Specifically, the Vq points are inserted between
the Hq points by iteratively dividing the farthest two points
in Hq by vertical distance. This way, peer q attempts to
find the attribute values at which the true CDF and the
interpolated curve most differ. When an instance ends, each
peer p estimates its approximation accuracy as

EstErrm(p) = max
(t′i,f

′
i)∈Vp

|Fp(t′i)− f ′i |

VII. PERFORMANCE EVALUATION

We evaluate Adam2 in PeerSim, a simulator for peer-to-
peer systems [12]. This allows us to evaluate systems with
100,000 nodes, which would be infeasible using a real-world
deployment. Unless specified otherwise, all evaluations are
based on 100,000 nodes and λ = 50 interpolation points.

We did not use a synthetic distribution of attribute values.
Synthetic distributions are typically smooth and therefore
easier to approximate. We instead use real-world data from
the BOINC volunteer computing project where skew and
discontinuities occur [5]. For each machine that partici-
pated in BOINC in 2008, we extracted several attributes,
including: measured CPU performance in FLOPS, measured
downstream bandwidth, amount of installed memory, and
amount of installed disk space. We filtered out samples
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from the trace that result from obviously faulty readings
(for example, a machine with a bandwidth capacity above
1031 bps or one with a negative amount of memory). For
ease of presentation, we present in this paper only the
experiments with the CPU and RAM attributes. The other
attributes generated similar results. Figure 4 shows the actual
CDFs of the CPU and RAM attributes. The CPU attribute
has a smooth distribution, while the CDF for RAM contains
visible steps. Step functions are harder to estimate accurately
because their curves are not suited to simple interpolation
algorithms.

We compare Adam2 with two other CDF estimation
approaches: the histogram-based EquiDepth heuristic [3] and
random sampling [4]. In the latter approach we construct an
attribute CDF based on a random subset of attribute values
drawn from the system. For each algorithm, we measure
the maximum approximation error Errm and the average
approximation error Erra. We show results from single runs
of the algorithms; multiple runs produce similar results.

A. Single-instance CDF Estimation Accuracy

Figure 6(a) plots the Erra and Errm metrics at each
protocol round within a single aggregation instance. We
compare the accuracy obtained at the interpolation points
with those of the entire CDF domain. For clarity, only
the RAM attribute is displayed – the algorithm generates
similar results for the CPU attribute. During the first few
rounds, not all nodes have joined the aggregation instance
and the error is equal to the maximum value of one. How-
ever, starting from round 10, the error at the interpolation
points decreases at an almost perfectly exponential rate, and
quickly becomes negligible. After 70 rounds it reaches the
level of hardware rounding errors. We consider 25 rounds
sufficient to accurately calculate the CDF at the interpolation
points. The standard deviation of our error metrics across all
system nodes remains below 10−5, and hence, in a single
aggregation instance all peers generate nearly identical CDF
approximations.

At the same time, the Errm and Erra error over the entire
CDF domain does not decrease below a few percent due to
interpolation errors. To further reduce the interpolation error,
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nodes need to either add new points to H or select a new
set of interpolation points that better fits the CDF curve.

Figure 6(b) plots the performance of EquiDepth in iden-
tical settings. Both algorithms observe similar errors over
the entire CDF (8% max for Adam2 and 10% max for
EquiDepth). However, the approximation error over time at
the selected bins does not improve in the EquiDepth ap-
proach. EquiDepth incurs a significant approximation error
due to sample duplication. The very high accuracy of Adam2
at the selected points is essential both to dynamically gauge
the accuracy of its own CDF estimation and to refine the
selection of points in later aggregation instances.

B. Initial Interpolation Point Selection

Section V discusses the selection of the initial set of
interpolation points in the absence of a previous CDF estima-
tion. Figure 5 compares two simple approaches: 1) assigning
interpolation points uniformly between the minimum and
maximum attribute value (labelled “Uniform Points”); and
2) using a random subset of the attribute values of the peer’s
neighbours in the P2P overlay (“Neighbour-Based Points”).

The results clearly demonstrate that the Neighbour-based
approach significantly improves the algorithm’s conver-
gence. We believe that since MinMax spreads the interpola-
tion points according to the attribute distribution, taking the
initial interpolation points from neighbours bootstraps the
algorithm with points already from the desired distribution.
Further, we also see that MinMax converges much faster
for the smooth CPU distribution than for the heavily-skewed
RAM distribution where a precise selection of interpolation
points is crucial for accuracy. Similar results hold for the
other refinement algorithms. In the next sections we always
use the neighbour-based approach to bootstrap aggregation
instances.

C. Convergence over Multiple Instances

We now compare Adam2 with EquiDepth and random
sampling over multiple aggregation instances. Figure 7
shows that multiple instances in Adam2 effectively improve
accuracy. All algorithms achieve good Errm results for
smooth distributions (CPU). For a heavily-skewed attributes
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Figure 8. Approximation error in EquiDepth over multiple phases.
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Figure 9. Approximation error for random sampling.



such as RAM, MinMax significantly outperforms the others
because it efficiently identifies the steps in the distribution.
We thus focus on the MinMax algorithm when minimising
Errm in the remaining experiments. For Erra, after 3
instances LCut achieves an order of magnitude improvement
compared to other algorithms. We similarly focus on LCut
when minimising Erra in later experiments.

The performance differences of MinMax and LCut for
each error metric demonstrates the difficulty of optimising
for both metrics simultaneously. Although LCut performs
best for Erra and also for Errm for smooth CDFs, it has
the worst performance for Errm for skewed CDFs where
precise point selection is crucial. Defining a single heuristic
that works well for both metrics and diverse CDF shapes
remains as future work.

We compare these results with those of EquiDepth and
random sampling, respectively in Figures 8 and 9. We
execute the EquiDepth phases with the same frequency, du-
ration, and number of bins as aggregation instances to make
comparison as fair as possible. Since EquiDepth does not
refine its histogram bins based on previous CDF estimations,
it generates the same error in every phase. Consequently,
EquiDepth’s Errm is a few times higher than MinMax,
particularly for step-like CDFs. For Erra it performs an
order of magnitude worse than Adam2 using LCut.

The accuracy of random sampling depends on the sample
size. In our 100,000-node system, about 1,000 to 10,000
random samples are necessary to achieve an accuracy similar
to that of MinMax or LCut. Drawing these random samples
using [4] would however generate several network messages
per requested sample – a prohibitive cost compared to
our approach. We finally note that the error measurements
for random sampling are higher for heavily-skewed CDFs
compared to smooth CDFs.

D. Influence of the Number of Interpolation Points

One way to improve accuracy is to increase the number
of interpolation points. This section explores the tradeoff
between the number of interpolation points (and hence the
communication costs) and the obtained accuracy.

Figure 10 plots Errm and Erra after 4 instances (phases)
in Adam2 and EquiDepth when using between 10 and 100
interpolation points (bins). Clearly, more interpolation points
bring better accuracy. The slight variations in the graph can
be explained by the random component of our algorithms.
As previously, EquiDepth is outperformed by MinMax with
the Errm metric and LCut with the Erra metric.

50 points provide acceptable accuracy for many possible
applications: Errm ∼ 2% using MinMax, or Erra ∼ 0.1%
using LCut. However, for the applications that need higher
accuracy, increasing the number of points incurs modest
performance penalty: with 10 extra points, the size of the
messages increases by about 160 bytes; for current networks
this is almost negligible. Furthermore, if the CDF does not

change significantly over time, nodes can combine interpo-
lation points obtained over multiple aggregation instances to
further reduce the overall estimation errors.

E. Scalability

Figure 11 shows the relationship between the number of
nodes in the system and the CDF approximation accuracy
using Adam2. Due to randomisation, the Errm error varies
between the measurements, but the error remains in the same
order of magnitude. The Erra error decreases for larger
systems due to the longer tail of the distribution. Larger
populations of nodes have probabilistically higher maximum
attribute values, and the longer tails of the attribute CDFs
are easily approximated using linear interpolation. Since the
Erra error is calculated over all attribute values, CDFs with
longer tails produce lower approximation error.

Adam2 has only one configuration parameter that depends
on the system size: the instance time-to-live. During one
instance, the information about attribute thresholds ti needs
to be propagated to all nodes in the system, and all nodes
need to estimate the corresponding fi fractions using the av-
eraging protocol. However, since the propagation speed for a
push-pull epidemic is exponential and the mean estimation
algorithm converges at an exponential rate, we argue that
an instance duration of a few dozen rounds is sufficient to
obtain high CDF approximation accuracy even in extremely
large systems.

F. Dynamic Attribute Distributions

We have focused so far only on systems in which node
attribute values and attribute CDFs do not change over
time. In systems where attribute CDFs are dynamic, the
approximation accuracy depends not only on the aggregation
and interpolation errors but also on the rate at which the
actual CDF changes. In Adam2, a node evaluates its attribute
value only when it creates or joins a new aggregation
instance. The node then runs the protocol until the end of the
instance irrespective of any changes in the current attribute
value. The CDF estimation error at the end of an instance,
defined by the Errm and Erra metrics, thus depends both
on the accuracy of aggregation, which we have evaluated
in the previous sections, and the difference between the
attribute CDFs at the beginning and end of the instance,
which is entirely application specific.

The accuracy of dynamic CDF estimation can be im-
proved by decreasing the instance duration, for example
by reducing the gossip period. When nodes gossip more
frequently, they exchange data at a higher rate, but the total
communication cost per instance (and hence the cost of CDF
approximation) remains unchanged since nodes generate
exactly the same number of messages. The minimum gossip
period is determined by the message round-trip time, since
nodes need to exchange a pair of messages during each
gossip round.
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Figure 10. Influence of the number of interpolation points on aggregation accuracy.
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Figure 11. Influence of the system size on approximation accuracy.

G. Impact of Churn

Many large distributed systems exhibit a slow, continuous
change in membership called churn. Any monitoring system
must therefore adapt to such changes. We model churn by
randomly removing a fixed fraction of nodes in the overlay
with new nodes at each simulation round. We set a churn rate
typical of P2P systems [13]: Assuming a gossip periodicity
of one second and a mean session duration of 15 minutes,
approximately 0.1% of nodes leave the system per round
and rejoin with a different attribute value drawn from the
same distribution. We do not model changes in the attribute
distribution, as such changes are entirely application specific.

Figure 12(a) shows Errm and Erra in one aggregation
instance under churn. The evaluation metrics do not include
nodes that join the system during the instance execution,
since their CDF approximations are undefined. After an ini-
tial phase, when the instance is propagated to all nodes, the
approximation errors gradually decrease. Since some nodes
leave the system before their fi values are disseminated
and averaged, the approximation error at interpolation points
does not converge to zero. However, the obtained accuracy is
in the order of 0.01%, and is clearly sufficient to approximate
the CDF through interpolation.

Figure 12(b) shows the approximation error produced by
an EquiDepth phase in the same system setup. EquiDepth
is not significantly affected by churn, but as previously, it

only reduces Errm to 10% and Erra to 1%, even at the
selected histogram bins.

Figure 13 shows the Errm and Erra errors incurred by
Adam2 and EquiDepth after 8 protocol instances (phases). In
this experiment, joining nodes are included in the evaluation
metrics since they receive initial CDF approximations –
generated in the previous aggregation instances – from
their neighbours. Joining nodes ignore aggregation instances
(phases in EquiDepth) that have started before they entered
the system in order not to distort the results from already
running aggregation instances.

Both systems show a very high resilience to churn, where
accuracy starts to significantly decrease only at rates of 1%
nodes per gossip round (i.e., 1% per second). This rate is
10 times higher than the rates observed in [13].

H. Confidence Estimation
As described in section VI, Adam2 allows nodes to assess

the accuracy of their own CDF approximations. We evaluate
the accuracy estimation algorithms by computing the average
difference between the nodes’ assessment of an error metric
and the actual value for that error metric. Given the true
CDF approximation accuracy Erra(p) at node p, and p’s
own estimation of its accuracy EstErra(p), we define the
error in accuracy estimation at node p as:

|Erra(p)− EstErra(p)|
Erra(p)
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Figure 12. Approximation accuracy in the presence of churn, for a single instance (RAM).
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Figure 13. Impact of churn rate on approximation accuracy.

Similarly, the error in Errm(p) at node p is defined as:

|Errm(p)− EstErrm(p)|
Errm(p)

Figure 14 shows the accuracy estimation results for these
two metrics. Using 20 verification points, nodes can estimate
their own average approximation accuracy with a 10% error.
This adds 40% traffic overhead to our CDF approximation
algorithm. As expected, more verification points are needed
to obtain an accurate estimation of Errm. However, the
experiment shows that even this difficult metric can be
roughly estimated using Adam2.

I. Cost Evaluation

An important objective for any monitoring algorithm
is to minimise communication costs. The network traffic
exchanged by a node in Adam2 is proportional to the number
of interpolation points (λ) and the number of gossip rounds.
For λ = 50 the size of a gossip message is approximately
800 bytes. At each round, a node starts exactly one gossip
exchange with a randomly chosen neighbour and is, on
average, contacted by one other node. Each gossip exchange
requires sending and receiving one message, resulting in 2
messages sent and 2 messages received on average every
round. Therefore, for one instance with λ = 50 and 25
rounds, each peer will send, on average, about 40 kB of

data (50 messages), and receive another 40 kB. Since three
aggregation instances are sufficient for MinMax and LCut to
converge, an accurate CDF approximation can be obtained
by sending 120 kB of data (150 messages) per node. This
cost does not depend on the system size.

The time required to generate a CDF estimation depends
on the gossip periodicity. If we consider a reasonable peri-
odicity of 1 second, then an accurate CDF can be obtained
in about 75 seconds (3 instances) using an average upstream
bandwidth of about 1.6 kB/s, and a downstream bandwidth
with a similar value. The CPU, memory, and topology
maintenance costs are negligible.

The costs of EquiDepth are very similar to those of
Adam2, as both systems send the same number of mes-
sages containing similar information. Although EquiDepth
converges faster with the same overhead, our refinement
algorithms quickly achieve lower error rates.

In random sampling, about 1,000 to 10,000 samples must
be obtained by a node in a 100,000-node system in order to
achieve a CDF approximation accuracy comparable to that
of MinMax or LCut. Using random walks [4], this requires
generating between 1,000 and 10,000 messages per node –
an order of magnitude more compared to Adam2.
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Figure 14. Accuracy estimation error for MinMax.

VIII. CONCLUSIONS

This paper introduced Adam2, an algorithm for efficiently
and accurately estimating the statistical distribution of an
attribute belonging to nodes in a large-scale distributed
system. Adam2 has a low cost on the order of 1.6 kB/s
traffic over 75 seconds, and generates approximations within
an average error of 0.05% and a maximum error of 2%.
Further, the algorithm can estimate its own accuracy, and
thanks to its use of gossip techniques, is quite resilient to
churn – obtaining roughly the same average error for very
high churn rates up to 1% per second.

These results follow the trend of using gossip-based
algorithms to efficiently spread information in very large
environments. We are confident that this trend will be pur-
sued with other out-of-the-box algorithms for decentralised
information aggregation. Future large-scale applications will
thus be able to easily implement monitoring and optimi-
sation functions by picking the needed mechanisms from
standard libraries, without the need to reinvent the wheel
each time.
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