
Autonomous Resource Provisioning for
Multi-Service Web Applications∗

Jiang Dejun
Vrije Universiteit

Amsterdam, The Netherlands
jiangdj@few.vu.nl

Guillaume Pierre
Vrije Universiteit

Amsterdam, The Netherlands
gpierre@cs.vu.nl

Chi-Hung Chi
Tsinghua University

Beijing, China
chichihung@mail.tsinghua.edu.cn

ABSTRACT
Dynamic resource provisioning aims at maintaining the end-
to-end response time of a web application within a pre-
defined SLA. Although the topic has been well studied for
monolithic applications, provisioning resources for applica-
tions composed of multiple services remains a challenge.
When the SLA is violated, one must decide which service(s)
should be reprovisioned for optimal effect. We propose to as-
sign an SLA only to the front-end service. Other services are
not given any particular response time objectives. Services
are autonomously responsible for their own provisioning op-
erations and collaboratively negotiate performance objec-
tives with each other to decide the provisioning service(s).
We demonstrate through extensive experiments that our sys-
tem can add/remove/shift both servers and caches within an
entire multi-service application under varying workloads to
meet the SLA target and improve resource utilization.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems; C.4 [Performance of systems]: Design
studies; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software.

General Terms
Performance.

Keywords
Resource provisioning, Multi-service application

1. INTRODUCTION
Major web sites such as Amazon.com and eBay are not

designed as monolithic 3-tier applications but as a complex
group of independent services querying each other [5, 11]. A
service is a self-contained application providing elementary
functionality, such as a database holding customer informa-
tion or an application serving search requests. Web pages
delivered to the users are generated by composing the results
of many such services based on pre-defined workflows [11].

∗This work is partially supported by the 863 HighTech Pro-
gram of China under award #2008AA01Z12.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

Services hide their internal implementation details from the
outside world and expose functionality through standard in-
vocation interfaces. Services participating in an application
are typically composed in a directed acyclic graph.

To provide acceptable performance to their customers, ap-
plication providers often impose themselves a Service Level
Agreement (SLA) which defines for example the maximum
average response time that the application should offer. One
can then apply dynamic resource provisioning to respect the
SLA target by adding resources when necessary to maintain
the response time objective, and removing resources when
possible without violating the SLA.

An essential question in resource provisioning of multi-
service web applications is to select which service(s) should
be (de-)provisioned such that the whole application main-
tains acceptable performance at minimal cost. This is a chal-
lenge because multi-service applications involve large num-
ber of components that have complex relationships with each
other. For example, adding a cache to one service does not
only improve its own response time, but also causes less traf-
fic to the backend services it invokes.

One possible approach models the entire application as a
single queuing network. However, when dealing with multi-
service applications, such a model can become extremely
complex to capture all services relationships and techniques
such as caching. Another approach assigns a fixed SLA
to each service separately. The SLA of the front-end ser-
vice is trivially defined as the response time objective of the
whole application. However, we show in Section 4.3.2 that
no choice of internal service SLAs can match the perfor-
mance of our system: the per-service SLA approach neces-
sarily wastes resources as it makes certain services struggle
to maintain their SLAs when an equivalent gain of end-to-
end performance could be gained easier by reprovisioning
another service.

We claim that only the front-end service should be given
an SLA. A user commonly does not care about the per-
formance of each particular service involved in the appli-
cation, but only in the end-to-end response time that she
observes. On the other hand, no service other than the front-
end should have a specific SLA. Instead, each service should
be autonomously responsible for its own provisioning by
collaboratively negotiating its performance objectives with
the other services to maintain the front-end’s response time
within the SLA. Negotiation between services is based on
“what-if analysis:” each service continuously estimates the
performance it would have in case it was assigned more/less
resources, or if it received more/less traffic. The front-end

service finally selects the optimal service(s) for resource pro-
visioning from the perspective of the whole application.

We show that our system allows one to effectively pro-
vision resources to both traditional multi-tier web applica-
tions and complex multi-service applications. To our best
knowledge, no other published algorithm addresses complex
service invocation graphs. Our scheme also supports the
provisioning of cache instances. Furthermore, in the case of
subtle changes in workload patterns, a previous provisioning
decision may need to be revoked without adding or remov-
ing resources, but by reassigning resources from one service
to another. Our system allows such resource reorganization
so as to accommodate long-term changes in user behavior.

This paper is organized as follows: Section 2 introduces
the related work. Then, Section 3 presents our resource pro-
visioning system, and Section 4 evaluates its performance for
both multi-tier and multi-service web applications. Finally,
Section 5 concludes.

2. RELATED WORK
Many research efforts address resource provisioning for

single-tier [1, 4] or multi-tier Web applications [7, 10, 12,
14, 15, 17]. Some of them only model the most constrained
tier of the web application [10, 17], or considerably sim-
plify the operation model of each tier [7]. Others model
the interactions across tiers and thus address the bottle-
neck shifts across tiers [12, 14, 15]. These models capture
the performance impacts of techniques such as caching and
database replication. In addition, Urgaonkar et al. handle
session-based workload and concurrency limits at different
tiers [14]. These works inspire our own performance model.
However, they all assume that web applications consist of
one or more tiers organized in a single line. We focus here
on multi-service web applications constructed as directed
acyclic graphs, which is largely different from these works.

Few works address provisioning in multi-service applica-
tions. Wu et al. model workflow patterns within multi-
service applications to predict future workloads of each ser-
vice component [18]. One can derive the number of required
servers per service. However, this model assumes that each
server has a fixed maximum capacity, which we consider as
largely equivalent to assigning an SLA to each service.

A related topic is to decide when resources should be pro-
visioned [15, 16]. The issue there is that provisioning re-
sources takes time so advance planning is necessary. How-
ever, as virtualization is increasingly applied to provision
web applications, allocating new resources becomes much
faster: on-the-fly cloning of hundreds of virtual machine can
happen within sub-second [9]. In contrast, we focus on se-
lecting which service(s) to provision rather than when.

Finally, Almeida et al. aim to determine short-term re-
source demands and long-term capacity requirements for
multiple applications sharing a common set of resources [2].
However, this problem is different from ours: the problem
there is to arbitrate between multiple disjoint applications
competing for the same resources. We take a different ap-
proach where resources are assumed to be infinitely avail-
able, as is typically the case in data centers or clouds. Here,
the issue is to maintain acceptable performance of individual
multi-service applications at minimum cost.

3. AUTONOMOUS PROVISIONING

Caches

Application servers
or Database servers

Load balancer

Load balancer

API

Figure 1: Hosting architecture of a single service

Provisioning
agent

Service 4

Provisioning
agent

Service 5

Provisioning
agent

Service 6

Service
Instances

Service
Instances

Service
Instances

Provisioning
agent

Service 7

Service
Instances

Pr

Invocation

Performance promise

ovisioning
agentService 3

Service
Instances

Provisioning
agent

Service 1

Service
Instances

Provisioning
agentService 2

Service
Instances

Performance
{N+1 machine
N−1 machine}

Performance
{N+1 machine
N−1 machine}

Figure 2: Resource provisioning system model

3.1 System model
We define a service as either a single-tier functional ser-

vice with an HTTP or SOAP interface hosted in an ap-
plication server, or a single-tier data service with an SQL
interface hosted in a database server. Although in real sys-
tems services may be composed of an application server and
a database server, for provisioning we consider these as two
separate services. Within a multi-service application, ser-
vices are commonly organized as a directed acyclic graph.
We assume that inter-service invocations are synchronous
and that the services of one application are not used si-
multaneously by other applications (which means that the
directed acyclic graph has a single root node).

Figure 1 shows how a service is typically hosted. A ser-
vice may have multiple instances representing multiple ap-
plication servers with a copy of the service code or multiple
database servers containing a replica of the service’s data.
To improve performance, a service may possibly employ one
or more machines as caches that intercept incoming requests
before accessing the service itself. We use consistent hashing
to distribute cached objects across multiple caches [8]. This
means in particular that increasing the number of caches at-
tached to a service generates the same hit rate as increasing
the storage space of a single cache.

We assume that some machines are always available to be
added to an application, as is commonly the case in clouds.
Our system relies on an exclusive provisioning model: each
resource can be assigned to only one service at a time. Such
resource may be a physical machine or a virtualized instance
with performance isolation as for example in Amazon EC2.

Figure 2 illustrates our approach based on an invocation
tree consisting of 7 services. Resource provisioning is done in
two steps. First, each service carries out “what-if analysis”
to predict its future performance in case it was assigned an
extra machine or removed one. These prediction results can
be seen as a performance promise made by the service to
its parent in the invocation tree. Predictions are realized by
a provisioning agent attached to each service. Each service
periodically sends its performance promises to its parent in
the invocation tree.

In the second step services negotiate resources with each
other. Each intermediate node in the invocation tree ne-
gotiates performance with its parent on behalf of itself and
all its children nodes. This intermediate service is respon-
sible for all local resource provisioning decisions among its
own subtree. A local decision consists of selecting the max-
imum performance gain (or minimum loss) among the ser-
vice’s children nodes and itself. For example, in Figure 2,
services 2 and 3 report their performance promises to ser-
vice 1 but the promise of service 2 is an aggregate among its
own promises and those of services 4, 5 and 6.

Finally, the root node selects which service(s) to provision
across the tree when the SLA is (about to be) violated, or to
deprovision when this is possible without violating the SLA.

3.2 Performance model of a single service
A good performance model in our system should not only

explain the current performance of a given concerned ser-
vice, but also predict its future performance if one more or
one less machine was assigned to host the service. Addition-
ally, it should predict future performance in case its received
request rate would increase or decrease. We first present the
model itself, then discuss its parameterization.

3.2.1 Performance model
We model a single-core machine as an M/M/1/PS queue,

which is widely adopted in practice [6]. Similarly, multi-core
machines distribute their load evenly on each CPU core.
Consequently, we use an M/M/n/PS queue to capture the
performance of an n-core machine. We assume that all CPU
cores of the provisioning machines are homogenous.

The performance model calculates the expected response
time after adding or removing one server (such as application
server or database server) as follows:

∆Rserver = R(n ± 1)server − R(n)server

R(n)server =
Sserver

1 − λSserver

n

where Rserver is the average response time of the service, n

is the number of CPU cores assigned to the service, λ is the
average request rate and Sserver is the mean service time of
the server.

A service may also use caches to offload some of the in-
coming requests from the service itself. This is especially
common in web applications when the request locality is
high. On the other hand caches may also waste useful re-
sources if the request locality is low. Adding caches poten-
tially improves response time for two reasons. First, cache
hits are processed faster than cache misses. Second, the ser-
vice itself and all children nodes receive less requests, and
can thus process them faster. After adding a cache, the ser-
vice response time consists of the cache fetching time and

-2

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90

Workload (req/s)

E
rr

o
r

(%
)

prediction error with 1st service time

prediction error with 2nd service time

prediction error with 3rd service time

Figure 3: Dynamic service time correction

the sojourn time in the service upon every cache miss. The
performance model calculates the caching impact on the re-
sponse time as follows:

∆Rcache = R(n ± 1)cache − R(n)cache

R(n)cache = pnScache(n) + (1 − pn)R(m)

where R(m) is the response time of the backend server across
m CPU cores, Scache is the cache service time, which is iden-
tical to the cache response time based on Little’s Law [13],
and pn is the expected cache hit ratio with n nodes.

3.2.2 Model parameterization
Most of the model parameters can be measured offline

or monitored at runtime. For example, the request rate
can be monitored by the administrative tools of application
servers and database servers. The cache service time can be
obtained by measuring cache response time offline. However,
the expected cache hit ratio pn and the mean service time
Sserver are harder to measure.

We estimate the new cache hit ratio after a reconfiguration
if one machine was added to or removed from the caching
tier using virtual caches [12]. A virtual cache is a cache that
stores only metadata such as the list of objects in cache and
their sizes, but not the objects themselves. It receives all
requests directed to the service and applies the same opera-
tions as a real cache with the same configuration would. It
can thus estimate the hit ratio that a cache of any given size
would have under the current workload.

Another crucial parameter is the service time Sserver. Pre-
vious research works measure the service time via profiling
under low workload [12, 15]. However, we found that the
service time changes under different workloads, probably be-
cause of extra overhead in the server implementation that
is not captured by an M/M/n/PS queue. We illustrate this
in Figure 3. We first measure the service time of a database
service under a low workload of 1 req/s. We then use this
value to predict the response time of the service under other
workloads. The curve with the diamond label indicates the
prediction error under various workloads compared to the
corresponding measured value. The error initially remains
close to 0. However it later increases and finally reaches
14%, which is not acceptable for our purpose.

To achieve acceptable prediction results, we apply a clas-
sical feedback control loop to adjust the service time at run-
time. The system continuously estimates the service’s re-
sponse time under the current conditions and compares the
error between the predicted response time and the measured

Node 2 Decision:
MaxPerfGain {40 ms, 4}
MinPerfLoss {10 ms, 5}

6
{35 ms/25 ms, 6}

3

1

{50 ms/10 ms, 1}

{30 ms/5 ms, 3}2

54

{20 ms/20 ms, 4} {20 ms/10 ms, 5}

{10 ms/20 ms, 2}

{40 ms/10 ms, 2} {35 ms/5 ms, 3}

Node 3 Decision:
MaxPerfGain {35 ms, 6}
MinPerfLoss {5 ms, 3}

Node 1 Decision:
MaxPerfGain {50 ms, 1}
MinPerfLoss {5 ms, 3}

Push message

Invocation

V2,4 =2 V2,5=1

V1,2 =1 V1,3 =1

V3,6=1

{50 ms/10 ms, 1} {PerfGain/PerfLoss, NodeID}

Figure 4: Provisioning in hierarchical structures

one. One can define a threshold as a configuration param-
eter. When the prediction error exceeds the threshold, the
correction mechanism recomputes the service time:

S
′

server =
nRserver

n + λRserver

where S
′

server is the corrected service time, Rserver is the
latest measured response time, n is the number of current
CPU cores, and λ is the current request rate.

Figure 3 shows the effectiveness of this mechanism. We
define the error threshold as 5% and apply the correction
mechanism to the whole prediction process carried out for
the curve with diamond label. When the workload reaches
28 req/s, the prediction error exceeds the threshold. The
control system then recomputes the service time. The curve
with the square label presents the prediction error with this
second service time value. Compared with the error caused
by the original service time measured offline, this corrected
service time causes much fewer error when the workload in-
creases further. Similarly, the control system triggers the
correction again around 53 req/s. The curve with the trian-
gle label displays the further prediction error, which is again
within the limits.

The system also maintains a memory of the service time
values that should be used for various workload intensities.

3.3 Resource provisioning of service instances
Resource provisioning within a multi-service application

is based on negotiation among services, where services con-
tinuously exchange performance promises generated by the
performance model. We first discuss the case where services
are organized in a tree pattern and only service instances are
added or removed, then extend to directed acyclic graphs.

3.3.1 Hierarchical structure
Multi-service applications are often organized along a hi-

erarchical structure. To find out which service(s) should
be reprovisioned, services exchange their future performance
objectives if a resource reconfiguration would happen. Each
service reports performance promises to its parent on behalf
of its children and itself: it reports the best performance gain
(resp. loss) possible by adding (resp. removing) a server to
(resp. from) a service of the subtree consisting of its children
nodes and itself.

Figure 4 illustrates the decision processes within a typical
hierarchical structure. The decision process between ser-
vice 2 and its children 4 and 5 is the smallest decision unit
in the whole application. Here, services 4 and 5 are respon-
sible for reporting their performance promises to service 2.

To generate its own promises, service 2 must find the maxi-
mum performance gain (resp. minimum loss) that the entire
subtree can achieve with one more (resp. one less) machine.
Assuming a service i has k immediate children services, it
aggregates its own performance promises as follows:

MaxPerfGain = max{Vi,j · MaxPerfGainj} (1 ≤ j ≤ k)

MinPerfLoss = min{Vi,j · MinPerfLossj} (1 ≤ j ≤ k)

where Vi,j is the average number of service executions on
service j caused by one request from service i. For exam-
ple, in Figure 4 each request from service 2 results on av-
erage in two service executions on service 4 and only one
on services 5. This parameter can be measured online by
services 4 and 5 by comparing their local request rate with
that of their parent. The children nodes adaptively adjust
this parameter when they observe that the ratio changes.
Here, although service 4 would gain 20 ms if it was given
one more machine, the actual performance gain brought by
service 4 to service 2 is 40 ms due to the double invocation
ratio. Service 2 compares the received promises with its own
local ones, and makes the local decision: if given one more
machine, it should give it to service 4 which generates the
greatest performance gain overall. If requested to release
one machine, it should remove it from service 5 which would
incur the lowest global performance loss.

The same process is repeated at every level of the tree
up to the root, which has sufficient information to take pro-
visioning decisions upon variations in request rate. Here,
service 1 can finally make the global decision: if given one
more machine, it should keep it to itself as it can obtain
the maximum performance gain. If removing one machine,
it should remove it from service 3 as this causes minimum
performance loss. Once service 1 decides to change resource
allocation, it triggers the reconfiguration by sending a noti-
fication to the concerned service.

3.3.2 Directed acyclic invocation graphs
In real-world applications, multiple services may commonly

share the same backend. For example, in Figure 5(a) ser-
vice 4 may be a database accessed by multiple web services.
We define a shared service as an aggregation node in the
invocation path.

Any performance promise made by an aggregation node
or any of its children has the same effect to each invocation
path from the root node to the aggregation node. For ex-
ample, in Figure 5(a), there are two invocation paths from
root node 1 to aggregation node 4: 1 → 2 → 4 and 1 → 3 →
4. Assuming that aggregation node 4 would gain 20 ms due
to its own resource reconfiguration, then root node 1 would
gain a total performance improvement of 40 ms. The negoti-
ation mechanism should reflect the multi-path performance
effect of the aggregation node.

Aggregation nodes report their promises along each in-
vocation path with special “AGGR” identifications. In Fig-
ure 5(b), service 4 sends {AGGR, 20 ms/5 ms, 4}. This means
service 4 is an aggregation node, and would gain 20 ms with
an extra machine or lose 5 ms with one less machine.

“AGGR” messages are handled differently than regular
promises. Any node receiving such message should forward
it upwards to the root in addition to the regular promises. If
a node receives multiple “AGGR”messages originating from

1

4

32

V1,2 =1

V2,4 =1

V1,3 =1

V3,4 =1

Branch node

Aggregation node

Sequential node

(a) Directed acyclic invocation
graph

{AGGR, 20 ms/5 ms, 4}{AGGR, 20 ms/5 ms, 4}

{30 ms/8 ms, 2}
{AGGR, 20 ms/5 ms, 4}

{10 ms/15 ms, 3}
{AGGR, 20 ms/5 ms, 4}

Node 1 decision:
MaxPerfGain: Max(25, 30, 10, 2*20)
MinPerfLoss: Min(10, 8, 15, 2*5)

Message

Invocation

1

4

32

V1,2 =1

V2,4 =1

V1,3 =1

V3,4 =1

{25 ms/10 ms, 1}
{25 ms/10 ms, 1} {PerfGain/PerfLoss, NodeID}

(b) Resource provisioning process

Figure 5: Resource provisioning in directed acyclic graphs

the same node ID, it must add them together before forward-
ing. Finally the root node compares performance promises
from regular messages and the ones from “AGGR”messages
to make its global decision. For example, in Figure 5(b), ser-
vice 1 receives two “AGGR” messages with the same node
ID 4. It thus adds them as the performance promise of ser-
vice 4. As service 1 is the root node, it also compares other
performance promises with the merged result 2*20 ms, and
finds the maximum one as the final decision.

3.4 Resource provisioning of cache instances
Thus far we only discussed provisioning of service instances.

Provisioning cache instances is harder because it not only
changes the performance of the concerned service, but also
changes the traffic to its children, which in turn affects their
performance. Thus, each service should also calculate the
performance it would have if addressed more or less traffic.

When considering whether to add or remove a cache to
itself (instead of a service instance), each service must take
into account the future expected performance of all its chil-
dren services if they would receive more/less traffic.

In our system, each node operates two virtual caches with
different sizes matching the situations where the service would
be assigned one more or one less cache instance. Each ser-
vice periodically informs its children of the relative workload
decrease (resp. increase) it would address to them if it was
given one more (resp. one less) cache instance. This ex-
pected invocation ratio EIR on the node originating cache
reconfiguration is equal to the expected miss rate:

EIR = ExpectedMissRate

In such case the children can anticipate a decrease or in-
crease of the traffic they receive. We illustrate this infor-
mation exchange process for cache effect calculation in Fig-
ure 6(b), which features a complex situation with multiple
aggregation nodes. When a node j receives the “CACHE”-
labeled messages including expected invocation ratios from
its parents, it first computes its local expected workload in-
tensity as the sum of expected request rates promised by its
predecessors:

w
′

j =
k

X

i=1

Vi,j ∗ EIRi ∗ wi

where Vi,j is the average number of service executions on
service j caused by one request from service i, EIRi is the

expected invocation ratio of parent i, wi is the request rate
of node i, and k is the number of its predecessors in the
invocation graph. Then the node calculates its own expected
invocation ratio:

EIRj =
w

′

j

wj

For example, in Figure 6(b), node 4’s expected invocation
ratio is:

EIR4 =
w

′

4

w4

=
w2 + EIR3 ∗ w3

w4

The concerned node j forwards its expected invocation
ratio EIRj to its children, then calculates its own expected
performance under its expected workload intensity. Finally,
it returns calculated performance objectives to all its par-
ents.

In a directed acyclic graph, a performance change in an
aggregation node affects all its predecessor branches but also
other branches as well. For example, adding a cache to ser-
vice 2 in Figure 6(b) would change the performance of service
4, and thereby also affect service 3. The “AGGR” messages
are also employed to propagate information about these cas-
cading effect through the invocation graph.

Note that, even though the system may need to prop-
agate many “AGGR” messages simultaneously, there is no
combinational explosion: in the worst case, the number of
“AGGR”messages processed by a node is linear to the num-
ber of nodes in the invocation graph.

3.5 Shifting resources among services
In many cases, instead of provisioning extra resources, it

can be more efficient to simply reorganize resource assign-
ments within the application without retrieving machines
from the resource pool. Such reorganization may be neces-
sary to follow changes in access patterns. For example, in
Figure 4, the values V2,4, V2,5 and V2,6 may change due to an
update in the application code or a change in user behavior.
Our system should reorganize the resource assignments so
as to increase resource usage, and therefore improve appli-
cation performance.

One could imagine letting each intermediate service shift
resources autonomously within its children and itself. How-
ever, this could lead to inefficiencies such as having the ap-
plication from Figure 4 shift resources from service 4 to
service 5 (initiated by service 2), immediately followed by
shifting the same resource again from service 5 to service 3

Node 8 expected request rate
(0.9w6 +0.7w7)/(w6+w7)

Node4 expected
request rate 0.9w4

Node 3 virtual
cache hit rate 30%

1

2

V1,2 =1

V2,4 =2

V1,3 =1

3

6

54
V3,4=1

V4,6 =1

V3,5 =1

V5,7 =1

7

8

V6,8 =1 V7,8 =1

(a) Complex directed acyclic graph

{0.7, 3}

Message

Invocation

{CACHE, 0.9, 3}

{CACHE, 0.9, 3}

{CACHE, 0.7, 3}

{CACHE, 0.7, 3}

{CACHE, 0.7, 3}

Calculate cache performance effect
based on (0.9w6 + 0.7w7)/(w6+w7)

Node 3 virtual
cache hit rate 30%

1

2

V1,2 =1

V2,4 =2

V1,3 =1

3

6

54
V3,4 =1

V4,6 =1

V3,5 =1

V5,7 =1

7

8

V6,8 =1 V7,8 =1

{0.7, 3} {EIR,NodeID}

(b) Cache effect calculation

Figure 6: Cache instance provisioning in complex directed acyclic graphs

(initiated by service 1). We therefore prefer letting only the
root node be responsible for such reconfigurations.

To prevent oscillating behavior, one should first define a
performance improvement threshold as the criterion for de-
ciding whether to shift resources. In a hierarchical invo-
cation case, each service should compose its performance
objectives in case one machine was shifted from the service
having minimum performance loss to the one having maxi-
mum performance gain within the tree. These promises can
get aggregated up in the invocation graph such that the root
node finally selects the greatest reorganization performance
promise and triggers the reconfiguration

In a directed acyclic graph, only the root node has com-
plete information about performance promises from“AGGR”
messages. Any node receiving “AGGR” messages does not
compose performance objective for shifting resources. In-
stead, the root node is finally responsible for finding the
maximum performance gain and minimum performance loss
and composing these two values as the performance objec-
tive of shifting resources from the global perspective.

Note that when one shifts a cache resources upwards within
the same invocation path, the affected node to which re-
sources are shifted changes the traffic to all its children and
itself. To help generate performance promises in this special
case, each service should send expected performance objec-
tives if addressed with the expected request rate. In the
case a service shifted one machine upwards to any service in
the same path as a cache, this service would serve requests
with one less machine. Therefore, each service should send
its expected performance objectives under the expected re-
quest rates on both the original resource configuration and
the updated one.

4. EVALUATION
This section first validates the performance model dis-

cussed in Section 3.2. We then compare our system with two
representatives of the state of the art. Finally, we demon-
strate the unique features of our approach for provisioning
directed acyclic graphs of services querying each other.

4.1 Experimental setup
We evaluate our system using four reference applications

depicted in Figure 7. Figure 7(a) shows a classical two-

1

2

User info service
(app. server)

(DB server)
Product data service

(a) Two-tier

1 User interaction
(app. server)

3
(DB server)
service
Product data

2
(app. server)

service
User info

(b) Three-service

1
interaction
User

4
User
DB

5
XSLT
app.

6
Order

DB

7
Product

DB

32
service
Promotion

info
User

(c) Tree-based

1
interaction
User

32
service
Promotion

4
User, Order and Product

DB

+ XSLT
User info

(d) Shared-service

Figure 7: Web applications under test

tier application. The application server tier receives HTTP
requests and issues one query to the database to search for
items related to the last ones purchased by the concerned
client. It then applies CPU-intensive XSLT transformation
to transform XML templates into HTML.

Figure 7(b) shows a three-service application with sim-
ilar features to the first application. Here, however, the
“User interaction” servlet first invokes the “User info” ser-
vice through a SOAP interface and then the “Promotion”
data service through a SQL interface.

The application in Figure 7(c) follows a strict tree-like in-
vocation pattern. The root service invokes the left branch
for gathering user information, then the right branch for
promoting product information to the same user. The “User
info” service in turn accesses user data from the “User” data
service, then invokes an external “XSLT” service to trans-
form XML templates into HTML. The “Promotion” service
in the right branch first fetches users’ order histories from
the “Order” data service, then searches for items related to
users’ last orders using the “Product” data service in order
to recommend further purchases. Finally, the root service
combines the results from the two branches in one web page
and returns it to the client.

Table 1: Model validation for XSLT service
App. # Request Measured Predicted
servers Caches rate resp. time resp. time

1 0 36 req/s 488.3 ms N/A

1 1 36 req/s 172.3 ms 177.1 ms (+2.8%)
2 0 36 req/s 111.0 ms 116.0 ms (+4.5%)

2 1 90 req/s 125.6 ms 131.2 ms (+4.4%)
3 0 90 req/s 135.1 ms 139.8 ms (+3.5%)

Table 2: Model validation for Product service
DB # Request Measured Predicted
servers Caches rate resp. time resp. time

1 0 10 req/s 449.0 ms N/A

1 1 10 req/s 209.0 ms 219.0 ms (+4.8%)
2 0 10 req/s 263.1 ms 271.4 ms (+3.2%)

1 2 18 req/s 111.6 ms 112.7 ms (+1.0%)
2 1 18 req/s 199.8 ms 201.8 ms (+1.0%)

The last application in Figure 7(d) is similar to the third
one but is structured so that all “User”, “Order” and “Prod-
uct” data are stored in a single, shared data service. The
“User info” service also handles the XML transformation.

In all experiments, we emulate various numbers of end-
user browsers which send requests to the applications with
Poisson distribution of arrival times. This distribution has
been shown to be realistic for many Internet systems [17].
We implement the local performance monitor on application
server using the MBean servlet from JBoss. The database
server monitoring is based on performance data collected by
the admin tool of MySQL. We developed the negotiation
agent in Java using plain sockets.

All experiments are performed on the DAS3 cluster at
VU University Amsterdam [3]. This cluster consists of 85
nodes, each of which having a dual-CPU/dual-core 2.4GHz
AMD Operon DP 280, 4GB RAM and a 250 GB IDE hard
drive. Nodes are connected with a 10Gbps LAN such that
the network latency between nodes is negligible. During the
whole experiments, we set the prediction error threshold for
dynamically adjusting the service time to 3%.

4.2 Model validation for single service
Before focusing on resource provisioning, we first validate

our performance model using the“XSLT”and“Product”ser-
vices from Figure 7(c) separately. The two services are re-
spectively application server-intensive and database server-
intensive. We set the SLA of each service to a maximum
response time of 400 ms, and initially assign one server to
each. We then increase the request rates until the SLA is
violated. At that time, we issue performance predictions in
case one more machine was assigned as a server replica or
a cache, and compare predicted values with the measured
response times after applying adaptations. Tables 1 and 2
show the results at two prediction points for the two services
separately.

The first SLA violation of the“XSLT”service occurs around
36 req/s. Prediction errors of adding a server replica and
adding a cache are under 5%. Results clearly show that
adding a second server is more efficient in this case. We per-
form the adaptation and increase workload until 90 req/s
when the SLA is violated again. Here as well the prediction
errors remain under 5%. Similarly, the first SLA violation
of the “Product” service occurs around 10 req/s. Both pre-

diction errors are also under 5%. We add a cache to the
service and increase workload until 18 req/s when the SLA
is violated again. The prediction errors again remain very
low, which confirms the accuracy of our model.

4.3 Comparison with the state of the art
We now compare our system with two representatives of

the state of the art in resource provisioning. One of the most
cited papers on resource provisioning for multi-tier applica-
tions is [14]. This approach is based on analytic models and
thus we name it “Analytic” in this section while we name our
system “Autonomous” here. The second approach assigns a
fixed SLA to each service individually.

4.3.1 Comparison with Analytic
Analytic is designed to provision resources in multi-tier

web applications such as the two-tier application from Fig-
ure 7(a). We here demonstrate that both schemas work
equally well for such applications. We assign an SLA of
500 ms for the whole application, and initially assign one
application server and one database server to the applica-
tion. As the performance model in [14] is based on single-
core single-CPU machines, we run our experiments using
only one core of each hosting machine on the DAS3 cluster.

We provision both servers and caches to the tested web
application. We increase the workload to obtain two succes-
sive adaptations. We record provisioning decisions of each
schema and compare their predicted response times with
the measured ones. Table 3 shows that both schemas is-
sue slightly different performance predictions but take the
same provisioning decisions: at 12 req/s, both systems add
an application server to the application. At 18 req/s, both
systems add a database server.

In all cases the prediction errors are lower than 7%, which
confirms that both approaches can provision multi-tier ap-
plications with similar accuracy. On the other hand, Ana-
lytic does not address multi-service applications organized
in hierarchical or directed acyclic graph patterns.

4.3.2 Comparison with per-service SLA
We now compare our system with the per-service SLA ap-

proach. This approach is popular in complex multi-service
applications as in Figures 7(c) and 7(d). However, we claim
that it often uses unnecessary resources due to the impos-
sibility of defining suitable SLAs for internal services. We
illustrate this using the application in Figure 7(b). We de-
fine the global application SLA as 500 ms, and run the two
systems across three successive adaptations. For simplicity,
in this section we do not consider cache provisioning.

We first use our system to provision the test application.
As shown in Figure 8(a), our system adds an application
server to service 2 at 12 req/s, then a database server to
service 3 at 16 req/s, and finally another application server
to service 2 at 25 req/s.

We now show that it is impossible to give a fixed SLA
to service 2 such that the per-service SLA approach takes
optimal provisioning decisions. We set the SLA of the front-
end service to 500 ms, identical to the SLA of the whole
application. The best possible SLA for service 2 in this case
is 290 ms: it allows the system to reprovision service 2 at
12 req/s (which we know to be the optimal decision in this
case), just before the application would violate its global
SLA. Similarly, we set the SLA of service 3 to 365 ms.

Table 3: Resource provisioning of two-tier web application
APP # DB # App # DB Request Measured Autonomous Analytic
servers servers caches caches rate resp. time prediction prediction

1 1 0 0 12 req/s 552.6 ms N/A N/A

2 1 0 0 12 req/s 303.5 ms 309.1 ms (+1.8%) 296.2 ms (-2.4%)
1 2 0 0 12 req/s 419.8 ms 443.0 ms (+5.5%) 447.2 ms (+6.5%)
1 1 1 0 12 req/s 515.3 ms 543.2 ms (+5.4%) 503.4 ms (-2.3%)
1 1 0 1 12 req/s 405.0 ms 391.4 ms (-3.4%) 389.8 ms (-3.8%)

2 1 0 0 18 req/s 511.2 ms N/A N/A

3 1 0 0 18 req/s 481.4 ms 473.5 ms (-1.6%) 491.1 ms (+2.0%)
2 2 0 0 18 req/s 210.1 ms 223.3 ms (+6.3%) 197.3 ms (-6.1%)
2 1 1 0 18 req/s 498.7 ms 505.2 ms (+1.3%) 507.2 ms (+1.7%)
2 1 0 1 18 req/s 241.4 ms 230.6 ms (-4.5%) 243.2 ms (+0.7%)

Table 4: Prediction accuracy under increasing workload for tree application
Add a cache at 10 req/s Add a server at 10 req/s Add a cache at 18 req/s Add a server at 18 req/s

Serv. 1 520.9 ms (-1.1%) 522.5 ms (-1.3%) 492.2 ms (+1.2%) 500.8 ms (+1.6%)
Serv. 2 518.6 ms (+0.6%) 524.1 ms (-0.4%) 481.0 ms (+2.0%) 496.3 ms (+2.6%)
Serv. 3 493.3 ms (+2.3%) 501.9 ms (+1.9%) 503.3 ms (+1.8%) 510.8 ms (+1.9%)
Serv. 4 525.5 ms (-1.0%) 525.0 ms (-1.0%) 511.4 ms (+1.4%) 507.9 ms (+1.6%)
Serv. 5 489.2 ms (+2.9%) 409.1 ms (+3.3%) 453.2 ms (+3.0%) 401.9 ms (+2.8%)
Serv. 6 525.1 ms (-1.0%) 524.8 ms (-1.2%) 518.6 ms (+1.0%) 508.0 ms (+1.1%)
Serv. 7 305.3 ms (+5.0%) 399.1 ms (+3.8%) 449.5 ms (+2.0%) 463.8 ms (+1.6%)

Figure 8(b) shows the performance of the per-service SLA
approach. The first two adaptations are identical to those
of our own system. However, at 23 req/s service 2 violates
its internal SLA although the application as a whole does
not violate the global SLA. The per-service SLA strategy
therefore adds a server to service 2 at 23 req/s, which is
wasteful between 23 req/s and 25 req/s.

Selecting other values for the internal SLAs leads to even
worse performance. If the SLA of service 2 was set lower
than 290 ms, then the per-service SLA approach would re-
provision service 2 too early at the first adaptation already.
On the other hand, if its internal SLA was set to a greater
value than 290 ms, then at the first adaptation this strategy
would reprovision the front-end instead of service 2, which
does not gain enough performance to maintain the applica-
tion within its global SLA.

The per-service SLA approach allows one to provision ar-
bitrary multi-service applications. However, even when con-
figured with the best possible internal SLA values, it uses
more resources than our proposed system.

4.4 Provisioning of multi-service applications
We now illustrate the unique features of our system using

the tree-based application from Figure 7(c) and the shared-
service one from Figure 7(d). We set the SLA to 500 ms.

4.4.1 Provisioning under varying load intensity
Figure 9 shows the response time of the two applications

when their request rates vary. Figure 9(a) depicts the test
scenario: the workload first increases from 2 req/s to 22 req/s,
then decreases back to 2 req/s.

Figure 9(b) shows the performance of the tree-based ap-
plication. Our system adds resources twice at 10 req/s and
18 req/s, adding a cache to service 7 then an application
server to service 5. When the workload decreases, opposite
decisions are taken at 16 req/s and 8 req/s. Figure 9(c)
shows similar results for the shared-service application.

For all reconfigurations proposed by the provisioning sys-
tem, we also verify the decisions by measuring the end-to-
end response time of all other possible adaptations. Tables 4
and 5 show the prediction accuracy under increasing work-
load for the two applications at their respective adaptation
points. In all cases the predictions remain very accurate and
allow one to make the optimal provisioning decision. Similar
accuracy is also obtained when decreasing the workload.

These results show that our provisioning system can cor-
rectly identify the most bottlenecked service within entire
tree-based or shared-service applications when their SLA
targets are violated. Meanwhile, our system can also save
resource usage by removing resources from the least affected
service while remaining within the SLA.

4.4.2 Provisioning under varying load distribution
We now turn to more subtle cases where the front-end’s

request rate remains stable but internal parameters such as
the invocation count from one service to another changes
over time. The relative utilization of assigned resources may
thus change over time. Figure 10(a) depicts the scenario for
the tree-based application: the workloads of services 2 and 3
first increase at the same rate. At time 35, the workload of
service 3 drops by a factor 10, while service 2 maintains
the same increase rate. We apply a similar scenario to ser-
vices 2 and 3 of the shared-service application. In these ex-
periments, we set the performance improvement threshold
before shifting resources to 30%.

Figure 10(b) shows the behavior of the tree-based appli-
cation. At time 25, our system proposes to add one cache to
service 7 due to an SLA violation. At time 40, the response
time of the whole application drops because less traffic is
issued to service 3. Then the response time increases again.
At time 70, the SLA is not violated but our system de-
cides to shift one machine from service 7 to service 5 so as
to gain 30% performance improvement with better resource
organization. Figure 10(c) shows similar behavior for the
shared-service application.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

R
es

po
ns

e
tim

e
(m

s)

Workload (req/s)

Add an App. server

response time is 294.7 ms

Add a DB server to S3
when its response time is 371.4 ms

Add an App server
to S2 when its response

End−to−end response time
SLA

to S2 when its time is 348.5 ms

(a) Autonomous provisioning

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

R
es

po
ns

e
tim

e
(m

s)

Workload (req/s)

when it violates its SLA

SLA
End−to−end response time

when it violates its SLA
Add a DB server to S3

Add an App server to S2
when it violates its SLA

Add an App server to S2

(b) Per-service SLA provisioning

Figure 8: Comparison between our system and per-service SLA

W
or

kl
oa

d
(r

eq
/s

)

Time (min)

Workload intensity
 24

 22

 20

 18

 16

 14

 12

 10

 8

 6

 4

 2

 0
 0 10 20 30 40 50 60 70 80 90 100

(a) Experiment scenario

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e(
m

s)
Add a cache
to service 7

from service 5
Remove a server

to service 5
Add a server

Remove a cache
from service 7

SLA
Measured reponse time

Time (min)

(b) Tree-based application

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0 10 20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
tim

e(
m

s)

Add a cache
to service 4

from service 4
Remove a cache

Remove a cache
from service 4

Time(min)

Measured reponse time
SLA

Add a cache to service 4

(c) Shared-service application

Figure 9: Resource provisioning under varying load intensity

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

W
or

kl
oa

d(
re

q/
s)

Workload of service 2
Workload of service 3

Time (min)

starts to decrease
Invocation rate on service 3

(a) Experiment scenario

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

R
es

po
ns

e
tim

e(
m

s)

Add a cache to service 7
due to SLA violation

Shift one machine from

for 30% performance gain
service 7 to service 5

Change
in traffic

Measured response time
SLA

Time (min)

(b) Tree-based application

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

R
es

po
ns

e
tim

e(
m

s)

from service 4 to service 2
Shift one machine

for 33% performance gain
to service 4

due to SLA violation

Add a cache

Time (min)

SLA

Change in traffic

Measured response time

(c) Shared-service application

Figure 10: Resource provisioning under varying load distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60

W
or

kl
oa

d
lo

ca
lit

y

The locality of service 3 starts to increase

Time(min)

Workload locality of service 3

Workload locality of service 2

(a) Experiment scenario

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40 45 50 55 60

R
es

po
ns

e
tim

e(
m

s)

Shift the cache from service 7
to service 1 for 35% performnce gain

due to SLA violation
Add a cache to service 7

Time (min)

Measured response time
SLA

(b) Tree-based application

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40 45 50 55 60

R
es

po
ns

e
tim

e(
m

s)

due to SLA violation
Add a cache to service 4

Shift the cache from service 4
to service 1 for 31% performnce gain

Measured response time
SLA

Time (min)

(c) Shared-service application

Figure 11: Resource provisioning under varying load locality

Table 5: Prediction accuracy under increasing workload for shared-service application
Add a cache at 7.5 req/s Add a server at 7.5 req/s Add a cache at 15 req/s Add a server at 15 req/s

Serv. 1 400.2 ms (+1.5%) 493.6 ms (+2.1%) 428.1 ms (+2.2%) 481.3 ms (+0.9%)
Serv. 2 447.7 ms (+3.7%) 469.7 ms (+1.1%) 378.6 ms (-1.3%) 409.1 ms (+2.3%)
Serv. 3 465.3 ms (+1.3%) 489.1 ms (+1.8%) 452.7 ms (+0.8%) 473.4 ms (-0.7%)
Serv. 4 342.3 ms (+3.9%) 375.2 ms (+4.8%) 295.7 ms (+2.7%) 413.9 ms (+2.1%)

These results show that we can optimize resource orga-
nization without retrieving extra resources by identifying
potential improvements of resource utilization.

4.4.3 Provisioning with varying load locality
Another subtle form of change in workload is a variation

of workload locality. Here, the potential performance of a
cache varies over time. We define the locality as the hit
rate for a cache holding 10,000 objects. Figure 11(a) de-
picts the evaluated scenario for the tree-based application:
we first increase the workload until time 25 when the end-
to-end response time violates the SLA target. Immediately
after reconfiguration, we start changing the locality of ser-
vice 3. We apply a similar scenario to the shared-service
application.

Figure 11(b) shows that the tree-based application first
adds one cache to service 7 at time 25. When the locality of
service 3 changes, our system shifts the cache from service
7 to become a cache in service 1, such that the end-to-end
response time improves by 35%. Figure 11(c) shows similar
results for the shared-service application.

These results show that we can reorganize the cache as-
signment within a whole application to adapt to changes in
traffic locality and improve application performance.

5. CONCLUSIONS
Most Web resource provisioning approaches rely on a sin-

gle analytical queuing model to capture the application’s
performance features. However, applying such approaches
to multi-service web applications is a challenge due to com-
plex service relationships and the cascading effects of caching.
This paper takes a different stand and demonstrates that
provisioning resources for multi-service applications can be
achieved in a decentralized way where each service is au-
tonomously responsible for its own provisioning.

We propose to give an SLA only to the front-end service.
All other services collaboratively negotiate their future per-
formance objectives with each other to make provisioning
decisions. Resource provisioning is based on “what-if analy-
sis” where each service continuously reports its performance
promises in case if it was assigned more/less resources, or if it
received more/less traffic. The negotiation process occurs re-
cursively between levels of the whole invocation graph. The
root node is responsible for selecting service(s) to provision
so as to maintain the front-end service’s SLA and maximize
resource utilization.

We demonstrated through extensive experiments that our
scheme allows one to capture the cascading effects of re-
source provisioning in multi-service applications. To our
best knowledge, no other published resource provisioning
algorithm can match or outperform our approach. Should
major Web hosting businesses adopt our techniques instead
of a fixed SLA per service, they could drive accurate resource
provisioning at lower costs.

6. REFERENCES
[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance

guarantees for Web server end-systems: a
control-theoretical application. IEEE Transactions on
Parallel and Distributed Systems, 13(1), 2002.

[2] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and
M. Trubian. Resource management in the autonomic
service-oriented architecture. In Proc. ICAC, 2006.

[3] DAS3: The Distributed ASCI Supercomputer 3.
http://www.cs.vu.nl/das3/.

[4] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M.
Vahdat. Model-based resource provisioning in a Web
service utility. In Proc. USITS, 2003.

[5] J. Gray and W. Vogels. A conversation with Werner
Vogels. ACM Queue, 4(4), 2006.

[6] N. J. Gunther. Analyzing Computer System Performance
with Perl::PDQ. Springer, 2005.

[7] A. Kamra, V. Misra, and E. M. Nahum. Yaksha: a
self-tuning controller for managing the performance of
3-tiered Web sites. In Proc. Intl. Workshop on Quality of
Service, 2004.

[8] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
distributed caching protocols for relieving hot spots on the
World Wide Web. In Proc. ACM Symposium on Theory of
Computing, 1997.

[9] H. A. Lagar-Cavilla, J. A. Whitney, A. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan. SnowFlock: rapid virtual machine
cloning for cloud computing. In Proc. EuroSys, 2009.

[10] S. Ranjan, J. Rolia, H. Fu, and E. Knightly. QoS-driven
server migration for Internet data centers. In Proc. Intl.
Workshop on Quality of Service, 2002.

[11] R. Shoup. eBay’s architectural principles. http:
//jaoo.dk/london-2008/file?path=/qcon-london-2008/
slides/RandyShoup_eBaysArchitecturalPrinciples.pdf.

[12] S. Sivasubramanian. Scalable hosting of web applications.
PhD thesis, VU University Amsterdam, Netherlands, 2007.

[13] K. S. Trivedi. Probability and Statistics with Reliability,
Queuing and Computer Science Applications. John Wiley
and Sons, 2001.

[14] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An analytical model for multi-tier Internet
services and its applications. In Proc. SIGMETRICS, 2005.

[15] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and
T. Wood. Agile dynamic provisioning of multi-tier Internet
applications. ACM Transactions on Autonomous Adaptive
Systems, 3(1), 2008.

[16] T. Vercauteren, P. Aggarwal, X. Wang, and T.-H. Li.
Hierarchical forecasting of Web server workload using
sequential Monte Carlo training. In Proc. Conf. on
Information Sciences and Systems, 2006.

[17] D. Villela, P. Pradhan, and D. Rubenstein. Provisioning
servers in the application tier for e-commerce systems.
ACM Transactions on Internet Technology, 7(1), 2007.

[18] B. Y. Wu, C. H. Chi, and Z. Chen. Resource allocation
based on workflow for enhancing the performance of
composite service. In Proc. SCC, 2007.

