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Abstract

NoSQL Cloud data stores provide scalability and high availability
properties for web applications, but do not support complex queries such
as joins. Developers must therefore design their programs according to
the peculiarities of NoSQL data stores rather than established software
engineering practice. This results in complex and error-prone code, es-
pecially when it comes to subtle issues such as data consistency under
concurrent read/write queries. CloudTPS implements support for join
queries and strongly consistent multi-item read-write transactions in a
middleware layer which stands between the Web application and its data
store. CloudTPS supports the two main families of scalable data layers:
Bigtable and SimpleDB. Performance evaluations show that our system
scales linearly under a demanding workload composed of join queries and
read-write transactions.

Keywords: Scalability, web applications, cloud computing, join queries,
secondary-key queries, NoSQL.
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1 Introduction

Non-relational Cloud databases such as Google’s Bigtable [5], Amazon’s Sim-
pleDB [1] and Facebook’s Cassandra [17] are at the heart of many famous Web-
sites. The increasing popularity of these Cloud data stores (also often called
NoSQL databases) originate in their near-infinite scalability properties: one
can always accommodate higher workloads by simply adding extra hardware.
This good property however comes at a cost: Cloud data stores only support
very simple types of queries which select data records from a single table by their
primary keys. More complex queries such as joins and secondary-key queries
are not supported.

The success of Cloud data stores demonstrates that one can program a wide
range of useful applications using this limited query API. For example, a join
query can often be rewritten into a sequence of primary-key queries. However,
such translation is not a trivial task at all. First, one must design data schemas
carefully to allow such query rewrite. Second, and more importantly, program-
mers need sufficient understanding of subtle concurrency issues to realize and
handle the fact that a sequence of simple queries is equivalent to the original
join query only in the case where no update of the same data items is issued
at the same time. Although skilled programmers can effectively develop good
applications using this data model, we consider that program correctness should
not be an optional feature left under the sole responsibility of the programmers.
Correctness should as much as possible be provided out of the box, similar to
the idiotproof strong consistency properties of relational databases.

This paper aims to support join queries that are strongly consistent by de-
sign, relieving programmers from the burden of adapting their programs to
the peculiarities of NoSQL data stores. At the same time we must retain the
good scalability properties of the cloud data stores. We implement join queries
in a middleware layer which sits between the Web application and the Cloud
data store. This layer, called CloudTPS, is in charge of enforcing strict ACID
transactional consistency on the data, even in the case of server failures and
network partitions. We presented the transactional functionalities of CloudTPS
in a previous publication [26]. However, in this early work, join queries were
not supported. This paper discusses CloudTPS’s support for consistent join
queries, while retaining the original scalability and fault-tolerance properties of
the underlying Cloud data store.

CloudTPS supports a specific type of join queries known as foreign-key equi-
joins. These queries start by extracting one or more database records by their
primary keys, then join with other tables by following references to other pri-
mary keys found in the first record. A typical foreign-key equi-join is “SELECT
* FROM book, author WHERE book.id = 10 AND book.a id = author.id.” This
query first retrieves one record of table “book” by its input primary key, then
uses attribute “a id” to identify the related record in table “author”.

Note that support for this family of join queries also allows us to implement
secondary-key queries: CloudTPS only needs to maintain a separate index ta-
ble that maps secondary key values back to their corresponding primary keys.
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Secondary-key queries are then translated into equivalent join queries. When
the main table is updated, its associated index table must be atomically updated
as well.

The scalability properties of CloudTPS originate in the fact that most queries
issued by Web applications (including transactions and join queries) actually ac-
cess a small number of data items compared with the overall size of the database.
This property is verified in all real-world Web applications that we studied: be-
cause database queries are embedded in the processing of an end-user HTTP
request, programmers tend to naturally avoid complex and expensive queries
which would for example scan the entire database.

We demonstrate the performance and scalability of CloudTPS using a real-
istic workload composed of primary-key queries, join queries, and transactions
issued by the TPC-W Web hosting benchmark. This benchmark was originally
developed for relational databases and therefore contains a mix of simple and
complex queries similar to the way Web applications would exercise their NoSQL
data store if they were given the opportunity. We show that, with no change
of the initial relational data schema nor the queries addressed to it, CloudTPS
achieves linear scalability while enforcing database correctness automatically.

2 Related Work

The simplest way to store structured data in the cloud is to deploy a relational
database such as MySQL or Oracle. The relational data model, typically im-
plemented via the SQL language, provides great flexibility in accessing data,
including support for sophisticated join queries. However, the features of flex-
ible data querying and strong data consistency prevent one from partitioning
data automatically, which is the key for performance scalability. These database
systems rely on full data replication techniques and therefore do not bring extra
scalability improvement compared to a non-cloud deployment [16, 2].

Cloud data stores, such as Google Bigtable [5], Amazon SimpleDB [1], Ya-
hoo PNUTS [6], and Cassandra [17], are being praised for their scalability and
high availability properties. They achieve these properties by using simplified
data models based on attribute-value pairs, and by supporting only very re-
strictive types of queries to retrieve data items by their unique key. This allows
data stores to automatically partition application data, which is the key for
performance scalability.

Cloud data stores however also receive heavy criticism for the demands they
put on programmers to manualy handle consistency issues (see for example [13]).
Recently, a number of systems appeared to support strongly-consistent multi-
item ACID transactions: Percolator [21], Megastore [3], Deuteronomy [18], G-
Store [10], Scalaris [22] and ecStore [25], each with their own focus. Percolator
focuses on incremental processing of massive data processing tasks. Megastore
supports transactional consistency within fine-grained partitions of data, but
only limited consistency guarantees across them. Deuteronomy operates over
a wide range of heterogeneous data sources. G-Store proposes key grouping
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Figure 1: An example data model for CloudTPS

protocols, allowing for transactions to run within pre-defined groups. Scalaris
is a DHT which uses Paxos to support transactions across any number of key-
value pairs. ecStore supports range queries. However, none of these systems
discusses support of complex queries such as join queries.

H-Store [24, 14] is a distributed main memory OLTP database. A salient fea-
ture of H-Store is that it implements the SQL language, and therefore supports
join queries. However, H-Store’s scalability relies on careful data partition across
executor nodes, such that most transactions access only one executor node. H-
Store does not support join queries which span multiple data partitions.

Similar to H-Store, ElasTraS automatically partitions data across a number
of database nodes, and supports complex queries within each partition [9, 8].
Schism analyzes a query log to propose a data placement which minimizes the
number of partitions involved in transactions [7]. These approaches are inter-
esting in that they reduce the number of servers that need to be involved in
any particular transaction. As such, they are complementary to the work on
CloudTPS. However, they do not address the specific problem of join queries
where the list of nodes which take part in a query can only be found while
executing the transaction.

3 Database Model

Join queries, in the most general case, can range from simple operations match-
ing two records from different tables to very complex data-mining queries which
scan the entire database for hours. CloudTPS focuses on the most common
types of joins only. We now detail the CloudTPS data model, the type of join
queries it supports, and the way they are expressed by programmers in our
system.

3.1 Data Model

Different Cloud data stores employ similar yet different data models to define
how the data are organized. However, one goal of CloudTPS is to offer consistent
join queries for a wide range of data stores indifferently. For example, Bigtable

5



and SimpleDB use similar data models with tables, rows and columns; however,
Bigtable requires defining column-families as a prefix for column names, while
SimpleDB does not impose any schema; SimpleDB supports multiple values for
a column, while Bigtable supports only a single value for one column but with
multiple versions. Similar to AppScale [4] (which also aims to unify access to
many different NoSQL databases), CloudTPS must define a single data model to
be mapped over different data store models. To handle different requirements of
Cloud data stores, CloudTPS automatically transforms the “logical” attribute
names from queries into “physical” attribute names used in the specific Cloud
data store it is using. CloudTPS can be deployed to new Cloud data stores
easily by developing a new “adapter” which maps CloudTPS’s data model and
APIs onto specifics of the new data store. However, while AppScale defines its
unified data model as simple key-value pairs with queries spanning only a single
table, CloudTPS needs a more structured data model to support complex join
operations across multiple tables.

CloudTPS defines its data model as a collection of tables. Each table con-
tains a set of records. A record has a unique Primary Key (PK) and an arbitrary
number of attribute-value pairs. An attribute is defined as a Foreign Key (FK)
if it refers to a PK in the same or another table. Applications may use other
non-PK attributes to look up and retrieve records. These attributes are de-
fined as Secondary Keys (SK) and are supported in CloudTPS by creating a
separate index table which maps each SK to the list of PKs where this value
of the SK is found. A secondary-key query can thus be transformed into a join
query between the original table and the index table. To support join queries,
CloudTPS expects applications to define the table schema in advance, with
the table names, the PK, all the SKs and FKs together with their referenced
attributes.

Figure 1 shows an example data model which defines four data tables and
one index table. The table book defines book id as its primary key. The FK
author id of table book refers to the PK of table author. To support secondary-
key queries which select books by their titles, CloudTPS automatically creates
an index table indexOf bookTitle. Each record of table book matches the record
of table indexOf bookTitle of which the PK value equals its SK title. Therefore,
the SK title is also a FK referring to the PK of the index table indexOf bookTitle.
Other non-key attributes can be left undefined in the table schema.

3.2 Join Query Types

“A join query combines records from two or more tables in a database. It is
a means for combining fields from two tables by using values common to each
other. A programmer writes a join predicate to identify the record for joining.
If the evaluated predicate is true, the combined record is then produced” [28].
CloudTPS restricts this very general definition to support a specific class of
join queries known as foreign-key equi-join. These queries have the property of
accessing relatively small numbers of data items (which is essential for preserving

6



system scalability as we shall see). Meanwhile, they are by far the most common
type of join queries in real-world Web applications.

Join queries in CloudTPS must explicitly give the primary keys of a list
of initial records found in one table. These records and the table where they
are stored are referred to as the “root records” and “root table” of this join
query. This restriction excludes performing full table scans to join two tables
completely.

CloudTPS specifically supports equi-joins queries: the matching relationship
between two records is expressed as an equality between a FK and a PK (in
the same or another table). For example, one such constraint can be that the
author name found in the “book” record matches the author name found in the
matching “author” record. Equi-join queries are by far the most common join
queries, compared to other relationships such as “less than” or “greater than.”
Equi-join queries are often the result of database normalization methodologies.

This paper considers only inner-joins which return all records that have
at least one matching record, while the final combined record contains merged
records from the concerned tables. Other types of join, such as outer-join (which
may return records with no matching record), and semi-join (which only returns
records from one table), are out of the scope of this paper.

Some applications may require referential integrity, which means that the
value of a foreign key always refers to an existing record. We assume that the
referential integrity property is enforced in the logic of each read-write trans-
action. Therefore, CloudTPS maintains the referential integrity as long as the
ACID properties for transactions are guaranteed.

3.3 API

Web applications access CloudTPS using a Java client-side library, which offers
mainly two interfaces to submit respectively join queries and transactions.

CloudTPS expects join queries to be expressed as a collection of “JoinTable”
and “JoinEdge” Java objects. A JoinTable object identifies one table where
records must be found. It contains the table name, the projection setting (i.e.,
the list of attributes to be returned) and possibly a predicate (i.e., a condition
that a record must satisfy to be returned). A join query must designate one
JoinTable object as the root table, which contains the explicit list of primary
keys of the root records. Multiple JoinTable objects are joined together using a
JoinEdge object which matches the FK from one JoinTable to the PK of another.
One can write a self-join query by creating two JoinTable objects with the same
table name.

Figure 2 shows the SQL and CloudTPS representations of a join query which
retrieves information about two books and their authors. The book object is the
root table, and the primary keys of root records are 10 and 20. A JoinEdge starts
from JoinTable “book” to “author” indicating the FK “author id” in table “book”
refers to the PK of JoinTable “author”. The predicate of JoinTable “country”
shows that only books whose author comes from the Netherlands should be
returned.
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Figure 2: The input data structure representation of an example join query

CloudTPS also handles read-only and read-write transactions defined as a
“Transaction” java objet containing a list of “SubTransaction” objects. Each
sub-transaction represents an atomic operation on one single record. Each sub-
transaction contains a unique “className” to identify itself, a table name and
primary key to identify the accessed data item, and input parameters organized
as attribute-value pairs.

4 System Design

CloudTPS considers join queries as a specific kind of multi-row transactions. It
therefore enforces full transactional consistency to the data they access, even
in the case of machine failures or network partitions. However, the underlying
Cloud data stores do not guarantee strong consistency across multiple data
items.

CloudTPS is composed of a number of Local Transaction Managers (LTMs).
To ensure strong consistency, CloudTPS maintains an in-memory copy of the
accessed application data. Each LTM is responsible for a subset of all data
items. We assign data items to LTMs using consistent hashing [15] on the item’s
primary key. This means that any LTM can efficiently compute the identity of
the LTM in charge of any data item, given its primary key. Transactions and
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Figure 3: CloudTPS system model

Forward SELECT * FROM author, book Root:
WHERE book.id = author.auth id book(10)
AND book.id = 10

Backward SELECT * FROM author, book Root:
WHERE book.id = author.auth id author(100)
AND author.id = 100

author
id(PK) (CloudTPS index attribute) (value)

100 Ref::book::auth id::10 10
Ref::book::auth id::30 30

101 Ref::book::auth id::20 20

book
id (PK) author id title

10 100 title1
20 101 title2
30 100 title3

Figure 4: The index data layout for the example application data

join queries operate on this in-memory data copy, while the underlying cloud
data store is transparent to them.

Figure 3 shows the organization of CloudTPS. Clients issue HTTP re-
quests to a Web application, which in turn issues queries and transactions to
CloudTPS. A transaction or join query can be addressed to any LTM, which
then acts as the coordinator across all LTMs in charge of the data items accessed
by this query. If an accessed data item is not present in the LTM’s memory, the
appropriate LTM will load it from the cloud data store. Data updates resulting
from transactions are kept in memory of the LTMs and later checkpointed back
to the cloud data store1. LTMs employ a replacement policy so that unused
data items can be evicted from their memory (the caching policy is discussed
in details in [26]).
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4.1 Join Algorithm

Foreign-key equi-join is the most common type of join query in Web applica-
tions. Considering the case of equi-join on two tables, for each pair of matching
records, one contains a FK which must be equal to the PK of the other. Intu-
itively, processing a join query spanning multiple tables consists of recursively
identifying matching records, starting from the root records (known by their
primary keys) and following JoinEdge relationships.

The methods to identify the matched records, however, differ according to
the role of the given records. If an already known record contains a FK which
references the PK of a new record, then the new record can be efficiently located
by its PK. We call this type of join queries “forward join” queries. On the other
hand, if the PK of an already known record is being referenced by the FK of
a new record to be found, then in principle it becomes necessary to scan the
full table and search for all records whose FK is equal to the PK of the known
record. Such table scans are however very expensive and should therefore be
avoided. We name such join queries “backward join” queries. To avoid a full
table scan for each “backward join” query, we complement the referenced table
with direct links to the PKs of matching records. This allows to translate such
queries into “forward join” queries. On the other hand, we now need to maintain
these indexes every time the tables are updated. If a data update changes the
reference relationships among records, the update query must be dynamically
translated into a transaction in which the indexes are updated as well.

Figure 4 shows an example index data layout to support a forward and a
backward join query. The underlying data schema is the same as in Figure 1.
The table book contains a FK auth id referring to the PK value of table author.
The forward join query can be processed directly without any indexes, as the FK
auth id of its root book record identifies that the PK of its matched author is 100.
The backward join query, on the contrary, starts by accessing its root record
in table author and requires additional indexes to identify the matching record.
The indexes are stored as arbitrary number of “index attributes” in each record
of the referenced table. Doing this does not require to change the data schema as
all Cloud data stores support the dynamic addition of supplementary fields onto
any data item. Each index attribute represents one matched referring record
with the corresponding FK. We name the index attribute name as Ref::{table
name}::{FK name}::{PK value}, while the value of the index attribute is the PK
of the matching record. CloudTPS creates these indexes upon the declaration of
the data schema, then maintains their consistency automatically. In Figure 4, in
the author record of PK(100), the index attribute Ref::book::author id::10 means
that this record has a matching book record of PK(10) referring by FK auth id.
With these complemented index attributes, the backward join query in Figure 4
identifies two matching book records with PK 10 and 30 for its root record.

1Each LTM checkpoints data periodically irrespective of the current load of the cloud
data store. Implementing more sophisticated strategies such as [19] is part of our short-term
agenda.
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Secondary- SELECT * FROM book WHERE
Key query book.title=“bookTitle”
Translated SELECT * FROM book WHERE
join query indexOf bookTitle.title=“bookTitle”

AND book.title=indexOf bookTitle.title

Table 1: Translating a secondary-key query into a join query

Secondary-key queries are similar to the previous case: we need to ef-
ficiently identify records using one of its non-PK attributes. We apply a sim-
ilar solution by building explicit indexes. However, unlike foreign-key joins,
there exists no table where we can simply add index information. To support
secondary-key queries, we therefore create a separate index table for each SK.
A secondary-key query then translates into a forward join query between the
index table and the original table. Table 1 shows an example secondary-key
query which searches records by the SK title of table book. The separate index
table indexOf bookTitle for this SK is defined in Figure 1. The translated join
query first locates the root record in the index table by using the given SK value
“bookTitle” as the PK value. It then retrieves the PKs of the matched book
records. The result of the secondary-key query is obtained by retrieving each of
these matched book records.

4.2 Consistency Enforcement

To ensure strong consistency, CloudTPS implements join queries as multi-item
read-only transactions. Our initial implementation of CloudTPS already sup-
ported multi-item transactions [26]. However, it required the primary keys of all
accessed data items to be specified at the time a transaction is submitted. This
restriction excludes join queries, which need to identify matching data items
during the execution of the transaction. Besides, it also prohibits transparent
index management as programmers would be required to provide the primary
keys of the records containing the affected index attributes. To address this
issue, we propose two extended transaction commit protocols: (i) for read-only
transactions to support join queries, and (ii) for read-write transactions to sup-
port transparent index management.

Transactional consistency is defined according to the four ACID properties:
Atomicity, Consistency, Isolation and Durability. This paper uses the same
mechanism as in [26] to implement the Isolation, Consistency and Durability
properties:

The Consistency property requires that a transaction which executes on a
database that is internally consistent, will leave the database in an internally
consistent state. We assume that the consistency rules are applied within the
logic of transactions. Consistency is therefore ensured as long as all transactions
are executed correctly.
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Isolation means that the behavior of a transaction is not impacted by the
presence of other transactions that may be accessing the same data items concur-
rently. In CloudTPS each transaction is assigned a globally unique timestamp
by a centralized timestamp manager. LTMs are required to execute conflicting
transactions in the order of their timestamps. If an LTM receives a transaction
after having committed a conflicting transaction with a greater timestamp, it
votes “ABORT” to restart the late transaction with a new timestamp. Trans-
actions which access disjoint sets of data items can execute concurrently or in
any order.

The Durability property requires that the effects of committed transactions
will not be undone, even in the case of server failures. CloudTPS checkpoints
the updates of committed transactions back to the cloud data store, which
is assumed to be highly-available and persistent. During the time between
a transaction commit and the next checkpoint, durability is ensured by the
replication of data items and transaction states across several LTMs.

We now focus on the Atomicity property: either all operations of a trans-
action succeed successfully, or none of them does. Specifically, for a read-write
transaction, Atomicity means that the data updates must either all be com-
mitted or all aborted. For a read-only transaction, Atomicity means that, if
committed, all required records must be retrieved so that the client receives a
correct and complete result.

In CloudTPS, a transaction is composed of any number of sub-transactions,
where each sub-transaction accesses a single data item atomically. To enforce
Atomicity, transactions follow the two-phase commit protocol (2PC) across all
LTMs responsible for the accessed data items. As shown in Figure 5(a), in
the first phase, the coordinator submits all the sub-transactions to the involved
LTMs and asks them to check that the operation can indeed be executed cor-
rectly. If all LTMs vote favorably, then the second phase actually commits the
transaction. Otherwise, the transaction is aborted. To implement join queries,
we however need to extend 2PC into two different protocols respectively for
join queries as read-only transactions, and for transparent index management
in read-write transactions.

4.2.1 Read-Only Transactions for Join Queries

The 2PC protocol requires that the identity of all accessed data items is known
at the beginning of the first phase. However, join queries can only identify
the matched records after the root records are accessed. To address this is-
sue, we need to extend the 2PC protocol. During the first phase, when the
involved LTMs complete the execution of their sub-transactions, besides the
normal “COMMIT” and “ABORT” messages, they can also vote “Conditional
COMMIT” which requires more sub-transactions to be added to the transaction
for accessing new records. To add a new sub-transaction, the LTM submits it to
both the responsible LTM and the coordinator. The responsible LTM executes
this new sub-transaction, while the coordinator adds it to the transaction and
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Figure 5: Two-phase commit vs. the extended transaction commit protocols

waits for its vote. The coordinator can commit the transaction only after no
sub-transaction requests to add new sub-transactions.

As read-only transactions do not commit any updates, LTMs can terminate
these sub-transactions immediately after all concerned LTMs return their votes
rather than waiting until the second phase. The coordinator therefore no longer
needs to send the “commit” messages to all involved LTMs. In this case, trans-
actional consistency is enforced by the timestamp ordering protocol: concurrent
read-only transactions which access non-disjoint sets of data items are executed
in the same order at all LTMs.

This extension allows join queries to access the root records first, and then
add matching records to the transaction during the query execution. Figure 5(b)
shows an example of the extended protocol to execute a join query. At the begin-
ning, the coordinator is only aware of the root records which are held by LTM 15
and LTM 66. After receiving and executing the sub-transactions, LTM 15 suc-
cessfully identifies a matching record which is hosted by LTM 34. LTM 15
submits the new sub-transaction to LTM 34 directly and also returns the new
sub-transaction along with its “Conditional COMMIT” vote to the coordinator.
On the other hand, LTM 66 identifies no matching record so it simply returns
“COMMIT.” Finally, LTM 34 executes the new sub-transaction and also re-
turns “COMMIT” with no more new sub-transactions. The coordinator can
then commit the transaction by combining the records into the final result and
returning them to the client.

In case of machine failures or network partitions, LTMs can simply abort all
read-only transactions without violating the ACID properties.

4.2.2 Read-Write Transactions for Index Management

CloudTPS transparently creates indexes on all FKs and SKs to execute join
queries efficiently. To ensure strong data consistency, when a read-write trans-
action updates any data items, the affected index attributes must also be up-
dated atomically. As each index attribute stands for a referring record matching
to its belonging record, when the FK of this referring record is inserted/updat-
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ed/deleted, the corresponding index attribute must also be adjusted. Specif-
ically, if the FK value is updated from value “A” into a new value “B”, its
corresponding index attribute stored in the referenced record “A” must be re-
moved, and a new index attribute must be added to the new referenced record
“B.” To enforce strong data consistency, these affected index attributes must be
updated within the same read-write transaction. Considering the example as
defined in Figure 4, a read-write transaction could insert a book record which
matches an existing record in table author. When this read-write transaction
commits, the primary key of this new book record must already be stored as an
index attribute into the corresponding author record.

CloudTPS creates the indexes automatically, so the index maintenance must
also be transparent to the programmers. Here as well, this means that trans-
actions must be able to identify data items to be updated during the execution
of the transaction. For example, a query which would increment a record’s sec-
ondary key needs to first read the current value of the secondary key before it
can identify the records it needs to update in the associated index table.

To implement transparent index management, we extend the transaction
commit protocol for read-write transactions to dynamically add sub-transactions
to the transaction for updating the affected index attributes. Similar to the ex-
tension for read-only transactions, during the first phase, LTMs can generate
and add more sub-transactions to access new data items. However, unlike in
read-only transactions, LTMs should not submit new sub-transactions to the re-
sponsible LTMs directly. In read-write transactions, if any sub-transaction votes
“ABORT,” the coordinator sends abort messages to all current sub-transactions
immediately, in order to minimize the blocking time of other conflicting trans-
actions. Allowing LTMs to submit new sub-transactions directly to each other
opens the door to ordering problems where the coordinator received the in-
formation that new sub-transactions have been added after it has aborted the
transaction. Therefore, in read-write transactions, the involved LTMs submit
new sub-transactions to the coordinator only. The coordinator waits until all
current sub-transactions return before issuing any additional sub-transactions.
The coordinator enters the final phase and commits the transaction when all
sub-transactions vote “COMMIT” and do not add any new sub-transactions. If
any sub-transaction in any phase votes “ABORT,” then the coordinator aborts
all the sub-transactions.

We can easily implement transparent index management with this protocol.
Whenever a sub-transaction is submitted and executed, the LTM in charge
of this data item automatically examines the updates to identify the affected
index attributes. If any FKs or SKs are modified, the LTM then generates new
sub-transactions to update the affected index attributes.

Figure 5(c) shows an example of the extended read-write transaction. In
phase 1, the coordinator LTM 07 submits sub-transactions to update data items
hosted in LTM 15 and LTM 66. LTM 15 identifies an affected index attribute
hosted by LTM 34, while LTM 66 identifies none. LTM 15 thus generates a
new sub-transaction for updating this index attribute and returns it back to
the coordinator along with its vote of “COMMIT.” After both LTM 15 and
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LTM 66 vote “COMMIT,” the coordinator then starts a new phase and submits
the new sub-transaction to LTM 34. After LTM 34 also votes “COMMIT,” the
coordinator finally commits the transaction in phase 3.

4.2.3 Fault Tolerance

CloudTPS must maintain strong data consistency even in the case of machine
failures and network partitions. CloudTPS uses the same fault-tolerance mech-
anism as in our previous work. We therefore briefly introduce the main concepts
here, and refer the reader to [26] for full details.

To execute transactions correctly all LTMs must agree on a consistent mem-
bership, as this is key to assigning data items to LTMs. Any membership change
is therefore realized by a transaction across all LTMs. When one or more LTMs
fail to respond to transaction messages, and the remaining LTMs represent less
than half of the previous membership, then there is a possibility that no machine
has failed but the network has been partitioned. In this case CloudTPS rejects
all incoming transactions until the partition has been resolved. Otherwise, it
can exclude the unresponsive LTMs from the membership, and start accepting
transactions again after the system recovers from the LTM failures.

Recovering from an LTM failure implies that some surviving LTM fulfills the
promises that the failed LTM made before failing. Such promises belong to two
cases. In the first case, a coordinator initiated a transaction but failed before
committing or aborting it. To recover such transactions, each LTM replicates
its transaction states to one or more “backup” LTMs (chosen by consistent
hashing through the system membership). If the coordinator fails, its backups
have enough information to finish coordinating the ongoing transactions.

In the second case, a participant LTM voted “COMMIT” for some read-
write transactions but failed before it could checkpoint the update to the cloud
data store. Here as well, each LTM replicates the state of its data items to one
or more “backup” LTMs so that the backups can carry on the transactions and
checkpoint all updates to the data store. Assuming that each transaction and
data item has N backups in total, CloudTPS can guarantee the ACID properties
under the simultaneous failure of up to N LTM servers.

An LTM server failure also results in the inaccessibility of the data items it
was responsible for. Upon any change in membership it is therefore necessary
to re-replicate data items to maintain the correct number of replicas. Following
an LTM failure, CloudTPS can return to its normal mode of operation after
all ongoing transactions have recovered, a new system membership has been
created, and the relevant data items have been re-replicated.

5 Implementation

5.1 CloudTPS Architecture

CloudTPS is composed of any number of identical LTMs. The internal archi-
tecture of an LTM, shown in Figure 6, consists of four core components running
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inside a Tomcat application server. This potentially allows to run CloudTPS
on the same application servers as the Web application itself for improved com-
munication performance.

Each LTM has a “Read-Write” and a “Read-Only” transaction manager to
carry out the logics of transaction coordinators. The Read-Write transaction
manager also maintains coordination with other LTMs in charge of backup data
item replicas. To locate data items across CloudTPS, the membership manager
which maintains a consistent view of system membership. The data manager
manages the in-memory copy of data and executes sub-transactions in sequential
order according to transaction timestamps.

The implementation of LTMs is inspired from the SEDA architecture [27].
Similarly to SEDA, CloudTPS is designed to handle large number of concurrent
transactions with strong response time constraints. We implement the four
core components as single-threaded self-contained service components. Each
service component maintains a FIFO message queue for accepting messages.
The service component continuously listens to its message queue, and handles
incoming messages sequentially. Each service component is single-threaded to
avoid the need to lock private data structures.

Executing a transaction consists of sending a sequence of messages between
service components in the local or remote LTMs. Service components send
messages via the message router, which is not an active service component but
simply a passive set of Java classes. If the destination service component re-
sides in the local LTM, the message router simply forwards the message to the
corresponding message queue. Otherwise, the message router dispatches the
message to one of its “worker” threads to perform network messaging. Each
worker is implemented as a single-threaded service component which continu-
ously waits for network messages to send. At the other end, the message receiver
is implemented as a regular java servlet deployed in the application server.

Besides interacting with other components, the data manager also needs
to access the underlying cloud data store to load and checkpoint data items.
The data manager performs these operations by invoking the Adapter man-
ager, which dispatches each operation to one of its own worker service compo-
nents. The data items loading operations have higher priority than checkpoint-
ing. Loading a data item is in the critical path of a transaction which needs
this item to progress, while checkpointing can be delayed with no impact on
transaction latencies. The adapter manager therefore maintains two separate
pools of workers for loading and checkpointing data items respectively. Loading
different data items can be done completely independently, so the adapter man-
ager selecting workers to load a data item in round-robin fashion. However, for
checkpointing updates, the updates of multiple conflicting transactions on the
same data item must be checkpointed in the order of transaction timestamps.
To guarantee sequential order, the adapter manager dispatches all updates of
the same data item to the same worker.

The workers of the adapter manager access the underlying cloud data store
via adapters, which transform the logical data model of CloudTPS into the
physical data model used by the cloud data store. The Web application does
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Figure 6: The internal architecture of CloudTPS

not need any adjustment depending on the type of underlying cloud data store.
The current implementation supports SimpleDB and HBase [12] (an open source
clone of Bigtable). Migrating CloudTPS between these two cloud data stores
requires only to change the adapter configuration. One can also easily implement
new adapters for other cloud data stores as we discuss in the next section.

5.2 Adapters

CloudTPS aims to provide a uniform data access overlay that allows Web ap-
plications to transparently access different cloud data stores. To be compatible
with a broad range of cloud data stores, CloudTPS requires that table names
only include letters and digits. The primary key and all attributes are of type
“String.” All table names and attribute names are case-insensitive. CloudTPS
automatically transforms all input parameters into lower-case.

Different cloud data stores have different rules for the definition of attribute
names. For example, Bigtable requires the column-family name to be a prefix
to the attribute name, while SimpleDB does not. For Bigtable, we store the
application data in the “Data:” column family while the index attributes are in
“Ref:”. For SimpleDB, the application data have the same attribute names as
in queries. The index attributes are prepended with the prefix “Ref:” so as to
differentiate them from the application data.
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Some Cloud data stores, such as SimpleDB, require to horizontally parti-
tion tables into multiple sub-tables for higher throughput. Even for cloud data
stores that partition tables automatically, such manual partitioning is often still
necessary for better load balancing. For example, HBase automatically parti-
tions tables according to the size of the data rather than the load they receive.
CloudTPS transparently splits tables horizontally into a configurable number of
partitions. The physical table name for the cloud data store is then appended
with the partition index.

Supporting a new data store in CloudTPS only requires developing a new
Java class which implements the Adapter interface. The core of an adapter
is two methods: loadItem and checkpointItem. This is simple, straightforward
code. The two adapters currently implemented in CloudTPS are about 400 lines
long each.

6 Evaluation

We now evaluate the performance and scalability of CloudTPS in three sce-
narios: micro- and macro-benchmarks, and a scenario with node failures and
network partitions.

6.1 Experiment Setup

6.1.1 System Configuration

We execute CloudTPS on top of two different families of scalable data layers:
SimpleDB running in the Amazon Cloud, and HBase v0.20.4 running in our local
DAS-3 cluster [12]. In both platforms, we use Tomcat v6.0.26 as application
server. The LTMs and load generators are deployed in separate machines.

DAS-3 is an 85-node Linux-based server cluster. Each machine in the cluster
has a dual-CPU / dual-core 2.4 GHz AMD Opteron DP 280, 4 GB of memory
and a 250 GB IDE hard drive. Nodes are connected to each other with a Gigabit
LAN such that the network latency between the servers is negligible.

Amazon EC2 offers various types of virtual machine instances, which may
share the resources of a same physical machine with other instances. We use
Medium Instances in the High-CPU family, which have 1.7 GB of memory, 2
virtual cores with 2.5 EC2 Compute Units each, and 350 GB of storage. One
EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor.

6.1.2 Throughput Measurement

Given a specific workload and number of LTMs, we measure the maximum sus-
tainable throughput of CloudTPS under a constraint of response time. For the
evaluations in DAS-3, we define a demanding response time constraint which
imposes that 99% of transactions must return within 100 ms. DAS-3 assigns
a physical machine for each LTM, and has low contention on other resources
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such as the network. On the other hand, in the public Amazon cloud, LTMs
have to share a physical machine with other instances, and we have less control
of the resources such as CPU, memory, network, etc. Furthermore, even multi-
ple virtual instances of the exact same type may exhibit different performance
behavior [11]. To prevent these interferences from disturbing our evaluation
results, we relax the response time constraint for the evaluations in the Amazon
cloud: 90% of transactions must return within 100 ms.

To determine the maximum sustainable throughput of CloudTPS, we per-
form several rounds of experiments with different request rates. The workload is
generated by a configurable number of Emulated Browsers (EBs), each of which
issues requests from one simulated user. Each EB waits for 1000 milliseconds
on average between receiving a response and issuing the next transaction. Our
evaluations assume that the application load remains roughly constant. In each
round, we configure different numbers of EBs and measure the throughput and
response time of CloudTPS. We start with a small number of EBs, and increase
the number of EBs until the response time of CloudTPS violates the response
time constraint. Each round lasts 30 minutes.

Throughout the evaluation, we provision sufficient resources for clients and
underlying cloud data stores, to ensure that CloudTPS remains the bottleneck
of the system.

6.2 Microbenchmarks

We first study the performance of join queries and read-write transactions in
CloudTPS using microbenchmarks.

6.2.1 Workload

Two criteria influence the performance of join queries in CloudTPS: the number
of data items that they access, and the length of the critical execution path (i.e.,
the height of the query’s tree-based representation). For example, a join query
joining two tables has a critical execution path of one. We first evaluate the
performance of CloudTPS under workloads consisting purely of join queries or
read-write transactions with specific number of accessed records and length of
critical execution path.

The microbenchmark uses only one table, where each record has a FK refer-
ring to another record in this table. We can therefore generate a join query with
arbitrary length of its critical execution path by accessing the referenced record
recursively. Given the length of the critical execution path, we can control the
number of accessed records by defining the number of root records. We generate
10,000 records in this table.

CloudTPS applies a cache replacement strategy to prevent LTMs from mem-
ory overflow when loading application data. In our evaluation with microbench-
marks, we configure the system such that the hit rate is 100%.

In this set of experiments, we deploy CloudTPS with 10 LTMs.
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Figure 7: Throughput of join queries with different number of accessed data
items

6.2.2 Join Queries

Here we study the performance of CloudTPS with join queries only. We first
evaluate CloudTPS with join queries all having the same length of critical ex-
ecution path of one, but access different numbers of data items. As shown in
Figure 7(a), in both DAS-3 and EC2 platforms, when the number of accessed
data items increase, the throughput in terms of Transaction Per Second (TPS)
decreases dramatically. This is to be expected, since the complexity of join
queries largely depends on the number of data items they access. Figure 7(b)
shows the same throughput expressed in numbers of accessed records per sec-
ond. The result remains close to the ideal case, where the lines stay perfectly
horizontal. We can also see that instances in DAS-3 perform approximately
three times faster than medium High-CPU instances in EC2.

We then evaluate the system with join queries that access the same number
of data items (12 items), but with different length of critical execution path.
Figure 8 shows that as the length of the critical execution path increases, the
maximum sustainable throughput decreases slightly. This is expected as longer
execution paths increase the critical path of messages between LTMs, and there-
fore imply higher transaction latencies. To maintain the strict response time
constraint, the system must reduce throughput.

6.2.3 Read-Write Transactions

We now study the performance of CloudTPS with a workload composed of
read-write transactions (including read-write transactions which update index
records). The updated index records are included in the count of accessed
records of a transaction. We perform this evaluation in the DAS-3 platform.

Similar to join queries, as shown in Figure 9(a), the throughput in terms
of TPS decreases dramatically when the number of accessed records increases.
However, Figure 9(b) shows that the throughput in record accesses per second
remains roughly constant. This shows that the performance bottleneck is the
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Figure 8: Throughput of join queries with different length of execution path
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Figure 9: Throughput of join queries with different number of accessed data
items

update operation of individual data items rather than the cost of the transaction
itself.

We also note that in Figure 9, the line for transactions which only update
data records and the line for transactions which also update indexes are very
close to each other. This means the extra phase of updating index records does
not degrade the system performance significantly. One only needs to pay the
price of updating the extra index records.

6.3 Scalability Evaluation

6.3.1 TPC-W Web Application

We now evaluate the scalability of CloudTPS under a demanding workload
derived from the TPC-W Web application [20]. TPC-W is an industry standard
e-commerce benchmark that models an online bookstore similar to Amazon.com.
It is important to note that TPC-W was originally designed and developed for
relational databases. Therefore, it contains the same mix of join queries and
read-write transactions as cloud-based applications would if their data store
supported join queries. TPC-W contains 10 database tables.
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Figure 10: Scalability of CloudTPS under TPC-W workload

Deploying TPC-W in CloudTPS requires no adaption to the database schema
except converting all data types to “string.” We also kept all simple and com-
plex queries unchanged, and merely translated them to CloudTPS’s tree-based
representation as discussed in Section 3.3.

TPC-W contains a secondary-key query which selects a customer record
by its user name. CloudTPS therefore automatically creates an index table in-
dexOf customerC uname referring to the SK “c uname” of data table “customer.”
This query is then rewritten into a join query across the two tables. The index
table is the root table and the input user name is the primary key of the root
record.

We derive a workload from TPC-W containing only join queries and read-
write transactions. This workload excludes all simple primary-key read queries,
which are the most common query type for Web applications. This creates a
worst-case scenario for CloudTPS’s performance and scalability.

We populate the TPC-W database with 144,000 customer records in table
“Order” and 10,000 item records in table “Item.” We then populate the other
tables according to the TPC-W benchmark requirements.

TPC-W continuously creates new shopping carts and orders. Each insert
triggers one cache miss. On the other hand, as the size of affected data tables
keeps increasing, this eventually results in more record evictions from the LTMs,
which in turn potentially triggers more cache misses. During our scalability
evaluation, we observe a hit rate around 80%.

6.3.2 Scalability Results

Figure 10 depicts the results of the scalability experiments in DAS-3 and the
Amazon cloud. We can see that the overall system throughput grows linearly
with the number of LTMs. This means that CloudTPS can accommodate any
increase of workload with a proportional number of compute resources.

In DAS-3, with 40 LTMs, CloudTPS achieves a maximum sustainable through-
put of 15,340 TPS. For this experiment, we also use 30 machines to host HBase,
1 machine as timestamp manager and 8 clients. This configuration uses the
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Figure 11: Number of data items accessed by transactions.

complete DAS-3 Cluster, so we cannot push the experiment further. Figure 11
shows the distribution of the number of data items accessed per transactions
under this configuration of 40 LTMs (note that the y axis is in log scale). On
average, a read-only transaction accesses 4.92 data items and a read-write trans-
action accesses 2.96 data items. Within all input transactions, 82% transactions
are join queries, and 18% are read-write transactions. As for the length of crit-
ical execution path, 33.3% of the read-only transactions have a length of one,
while the other 66.7% have two. For read-write transactions, 84.2% of them
need to update indexes, while the other 15.8% do not.

In EC2, with 40 LTMs, CloudTPS achieves a maximum sustainable through-
put of 5,960 TPS. CloudTPS achieves three times better throughput in DAS-3
than in EC2 with High-CPU medium instances.

This evaluation shows that CloudTPS scales linearly under a demanding
workload typical of a Web application designed with no restriction regarding
join queries. We expect CloudTPS to continue scaling linearly with even larger
numbers of LTMs.

6.3.3 Scalability comparison with relational databases

We now compare the scalability of CloudTPS with that of PostgreSQL, a high-
performance open-source relational database. Once again we measure the max-
imum throughput that the system can sustain while respecting the constraint
that 99% of transactions must return under 100 ms. We run these experiments
on the DAS-3 cluster. When running CloudTPS, we count both CloudTPS and
HBase nodes as “database nodes.” Running the same experiment in EC2 is not
possible as we cannot measure the number of machines used by SimpleDB.

We compare CloudTPS with a PostgreSQL v9.0 setup. The database is
configured to use one master database and N slaves. Synchronization between
master and slave databases is enforced by the “Binary Replication” mecha-
nism [23]. We issue all read-write transactions on the master, and balance join
queries across the slaves.
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Figure 12: Scalability of CloudTPS vs. PostgreSQL

Figure 12 illustrates the fundamental differences between CloudTPS and
a replicated relational database. In small systems, PostgreSQL performs much
better than CloudTPS. This is due to the fact that each database server can run
read-only join queries locally, without needing any communication with other
servers. PostgreSQL reaches a maximum throughput of 5493 transactions per
second using one master and six slaves. However, at this point the master server
becomes the bottleneck as it needs to process all update operations and send the
binary operations to its slaves. The master’s throughput eventually decreases
because of the growing number of slaves to which it must send updates. On the
other hand, CloudTPS starts with a modest throughput of 1770 transactions per
second in its smallest configuration of 4 machines (two machines for CloudTPS
and two machines for HBase). However, its throughput grows linearly with the
number of database nodes, reaching a throughput of 15,340 transactions per
second using 57 nodes (40 machines for CloudTPS and 17 machines for HBase).
This clearly shows the scalability benefits of CloudTPS compared to a replicated
relational database.

6.4 Tolerating Network Partitions and Machine Failures

Finally, we illustrate CloudTPS’s behavior in the presence of machine failures
and network partitions. We configure CloudTPS with 10 LTMs and then al-
ternately create 3 network partitions and 2 machine failures. Each network
partition lasts 1 minute. We run this experiment in DAS-3.

As shown in Figure 13, in case of single-machine failures, CloudTPS re-
covers within about 14 seconds before failed transactions are recovered and the
responsible data items of the failed LTM are re-replicated to new backup LTMs.
On the other hand, for network partitions, no data re-replication is necessary.
CloudTPS recovers almost instantly after the network partition is restored. In
all cases the transactional ACID properties are respected despite the failures.

We note that during the recovery from an LTM failure, the system through-
put drops to zero. This is due to a naive implementation of our fault tolerance
mechanism which simply aborts all incoming transactions during recovery. A
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Figure 13: CloudTPS tolerates 3 network partitions and 2 machine failures

smarter implementation could avoid such degration by only aborting the trans-
actions accessing the failed LTMs. We consider this as future work.

7 Conclusion

Cloud data stores are often praised for their good scalability and fault-tolerance
properties. However, they are also strongly criticized for the very restrictive
set of query types they support. As a result, Web application programmers are
obliged to design their applications according to the technical limitation of their
data store, rather than according to good software engineering practice. This
creates complex and error-prone code, especially when it comes to subtle issues
such as data consistency under concurrent read/write queries.

This paper proves that scalability, strong consistency and relatively complex
join queries do not necessarily contradict each other. CloudTPS exploits the
fact that most join queries access only a small fraction of the total available
data set. By carefully designing algorithms such that only a small subset of
the LTMs is involved in the processing of any particular transactions, we can
implement strongly consistent join queries without compromising the original
scalability properties of the cloud data store. We designed specific transactional
protocols to catter for the special needs of read-only join queries as well as read-
write transactions which transparently update indexe values at runtime. The
system scales linearly in our local cluster as well as in the Amazon Cloud.

Providing support for strongly consistent join queries essentially brings cloud
data stores much closer in functionality to classical full-featured relational databases.
We hope that CloudTPS can help in making cloud data stores safer and easier
to use for regular application developers, and thereby contribute to the suc-
cess of these extraordinary technologies. At the same time, there remains a
large feature gap between CloudTPS and any mature SQL database: outer-
joins, semi-joins, aggregation queries, data management tools, etc. It remains
an open research topic to identify which of these missing features could be
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added to cloud data stores without compromising their initial good properties
of scalability and high availability.
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