
ConPaaS: a Platform for Hosting Elastic Cloud Applications

Guillaume Pierre Corina Stratan

Vrije Universiteit Amsterdam

Cloud computing opens new perspectives for host-
ing applications. From an application devel-

oper’s point of view, migrating an application to the
cloud may be as simple as replacing one physical ma-
chine from a traditional IT system with an equivalent
virtual machine in the cloud. However, the cloud
provides many more opportunities for building so-
phisticated applications. For example, executing an
embarrassingly parallel application incurs the same
costs whether one uses one virtual machine for N
hours or N virtual machines for one hour. The avail-
ability of “spot instances” with variable prices allows
one to further reduce the execution cost of non-urgent
tasks. For online applications, the almost-unlimited
number of available resources allows one to continu-
ously adjust the quantity of provisioned computing
resources to the current workload of the application.

Making full use of the cloud for hosting complex
applications is however not an easy task. Most clouds
today offer “Infrastructure-as-a-Service” (IaaS) func-
tionality, which means they rent out basic resources
such as virtual machines, disks and networks. Ap-
plication developers must therefore handle the com-
plexity of deploying applications composed of many
inter-related components, implementing automatic
resource provisioning, orchestrating application re-
configurations such that users do not notice any
downtime, developing fault-tolerance mechanisms,
etc. Tailoring such mechanisms for each application
is tedious and error-prone, as subtle implementation
bugs may appear only in production.

To address these concerns, the Contrail European
project is designing and developing ConPaaS, an
open-source runtime environment for hosting applica-
tions in the cloud. ConPaaS belongs to the Platform-

as-a-Service (PaaS) family, which refers to a variety
of systems aiming at offering the full power of the
cloud to application developers while shielding them
from the associated complexity of the cloud. Con-
PaaS is designed to host both high-performance sci-
entific applications and online Web applications. It
automates the entire life-cycle of an application, in-
cluding collaborative development, deployment, per-
formance monitoring, and automatic scaling. Finally,
it runs on a variety of public and private clouds, and
is easily extensible. This allows developers to focus
their attention on application-specific concerns rather
than on cloud-specific details.

Application model

ConPaaS aims at supporting familiar programming
models so that existing applications can easily be
ported to the cloud. It provides a collection of ser-
vices, where each service acts as a replacement for a
commonly used runtime environment. For example,
to replace a MySQL database, ConPaaS provides a
cloud-based MySQL service which acts as a high-level
database abstraction. The service uses real MySQL
databases internally, and therefore makes it easy to
port a cloud application to ConPaaS. Unlike a regu-
lar centralized database, however, it is self-managed
and fully elastic: one can dynamically increase or de-
crease its processing capacity by requesting the ser-
vice to reconfigure itself with a different number of
virtual machines.

ConPaaS currently contains six services: two
web application hosting services respectively spe-
cialized for hosting PHP and JSP applications; a
MySQL database service; a NoSQL database service

1



Load 
Balancer

PHP servers
(dynamic 
pages)

Web servers
(static pages)

PHP service
Manager

Load 
Balancer

MySQL
slaves

MySQL
master

MySQL service
Manager

Front-
end

Logic

Front-
end
GUI

End users

Service
admin

PHP 
service

MySQL 
service

Control plane Data plane

Virtual machine

Management traffic

Application trafic

Legend

Figure 1: ConPaaS system architecture

built around the Scalarix key-value store; a MapRe-
duce service; and a TaskFarming service for high-
performance batch processing. In addition, it con-
tains XtreemFS, a shared file system for the cloud.

ConPaaS applications can be composed of any
number of services. For example, a bio-informatics
application may store genomic data in XtreemFS,
make use of a PHP and a MySQL service to host
a Web-based frontend, and link this frontend to
a MapReduce backend service for conducting high-
performance genomic computations on demand.

System organization

Figure 1 shows ConPaaS hosting an application com-
posed of two services (PHP and MySQL). This ap-
plication does not need to be designed specifically for
the cloud. It could be a pre-existing one, such as for
example WordPress.

ConPaaS distinguishes the application traffic from
the management traffic. The application traffic is
generated by end users accessing the application.

End user requests are handled by load balancers,
web servers and database servers following a classi-
cal multi-tiered hosting architecture. The servers in
charge of processing HTTP traffic belong to the PHP
service, while those in charge of database queries be-
long to the MySQL service.

Each service is under the control of one “manager”
virtual machine. This virtual machine does not run
any application code but has the responsibility of car-
rying all administrative tasks within the service. It is
in charge of starting or stopping “agent” VMs to vary
the processing capacity of the service, uploading new
versions of the application code to them, coordinat-
ing reconfigurations, centralizing performance moni-
toring information, etc. Application administrators
can control their services using a graphical front-end
or a command-line tool.

ConPaaS aims at being able to run over a wide
variety of public and private IaaS clouds. We cur-
rently support OpenNebula and Amazon EC2, and
are planning for more cloud backends in the near fu-
ture. We hope that this will allow us to smoothly
migrate applications from one cloud to another (for

2



example because of variations in the pricing of cloud
resources), without the need to stop the application
at any time. The fact that ConPaaS is open-source
will greatly help such migrations: one can expect the
exact same system to be running in the source and
the destination cloud, and coordinate their actions to
organize the migration such that end users notice no
service interruption. Similarly, one may imagine run-
ning an application across several cloud systems on
a permanent basis. This may help an application to
place its points of presence close to its users, and to
remain available even in the case of an entire cloud
outage.

Performance control

An important goal of ConPaaS is to automate per-
formance control. The workload processed by an on-
line application can vary according to predictable and
unpredictable patterns. Predictable patterns include
workload fluctuations between day and night. On
the other hand, unpredictable patterns may be cre-
ated by flash crowds, for example. In such cases it
is important that the system reacts quickly by dy-
namically adjusting capacity to address the overload
situation. Conversely, the system should also depro-
vision resources when the load decreases in order to
reduce the hosting costs.

Dynamically provisioning an application such as
the one from Figure 1 is not an easy task.

For example, the application from Figure 1 is com-
posed of virtual machines with different roles such
as load balancers, static web servers, PHP servers,
and database servers. Whenever load increases and
it necessary to add capacity to the system, one needs
to find the performance bottleneck of the application
to decide which role the newly created VMs should
take.

Most existing PaaS environment address this issue
using rules based on real-time monitoring data – for
example, adding a new VM instance to the appli-
cation if the load on the current machine exceeds a
certain threshold. However, such simple rules do not
allow one to accurately identify the optimal reconfig-
uration. For instance, such a rule may reprovision the

application server tier while the actual performance
bottleneck was in the database layer.

Our approach consists of modeling the performance
of the entire application. This is realized by letting
each service of the the application monitor its own
performance and model the impact that adding or
removing resources would have on its own perfor-
mance. These performance predictions are in turn
used to compute the effect that provisioning changes
would have on the entire application.

A second challenge originates in the fact that per-
formance in the cloud often varies from one VM to
the next. We plan to address these issues using tech-
niques previously developed in our group [1]. Each
time a new VM is created, it will first be bench-
marked using small synthetic applications to identify
its individual performance profile. This profile al-
lows one to derive the net effect that this particular
instance would have if it was used in the service. This
allows us to build instance-specific performance mod-
els which indicate which role this VM should take to
maximize the overall application performance. The
same algorithms can also decide which VM should be
released when the load decreases.

Application deployment

We want ConPaaS to be as developer-friendly as pos-
sible, and therefore try to anticipate their needs. For
example, deploying a complex application composed
of several services may be cumbersome, as the user
would need to create and configure each required ser-
vice one by one. To automate the deployment process
of an entire multi-service application we are designing
a “manifest” language to specify the entire structure
of a ConPaaS application.

A manifest specifies the list of services which
should be created, the location of code and data that
need to be uploaded to each service, and all other nec-
essary configuration informations necessary for the
good execution of the application. This will allow for
example to package entire multi-service applications
in a single bundle that end users can easily instantiate
without needing to configure anything.

3



The landscape of Platform-as-a-Service environments
The cloud computing market is very dynamic,
and several commercial and academic Platform-as-
a-Service environments are readily available. These
systems all aim at simplifying application hosting in
the cloud, but they have different functionalities and
limitations.
Google AppEnginea offers support for Web applica-
tions written in Python, Java and Go. It also pro-
vides several data storage services (MySQL, NoSQL
and object/file storage). The main drawback of
AppEngine is its lack of flexibility: for example,
AppEngine applications run exclusively in Google’s
cloud. Besides, developers must use AppEngine’s
proprietary APIs, which restricts application porta-
bility to other clouds.
Another well-known Platform-as-a-Service system
is Elastic Beanstalk from Amazon Web Servicesb.
Beanstalk also supports several types of applications
and data storage services. It can scale the deploy-
ments automatically based on monitoring data. Like
Google’s AppEngine, Beanstalk is available only in
the Amazon cloud.

Windows Azurec is Microsoft’s Platform-as-a-Service
environment. As one would expect, it mostly focuses
on hosting Windows applications in Microsoft’s data
centers.
OpenShift Flexd and Cloud Foundrye are recent
projects which aim at developing open-source PaaS
systems with support for multiple cloud vendors. At
this moment, however, they each can run only on a
limited number of clouds, and do not provide support
for automatic scaling.
The main features that distinguish ConPaaS from
other PaaS systems are its approach to automatic
application scaling and its interoperability with
multiple clouds. Instead of implementing simple
performance-based triggers which provision each tier
individually based on its own performance, we model
the performance of the entire application, taking into
account the fact that virtual instances may have dif-
ferent roles in the application. This allows us to iden-
tify the performance bottlenecks in complex appli-
cations, and thus to minimize the number of cloud
resources necessary to host the applications.

ahttp://appengine.google.com
bhttp://aws.amazon.com/elasticbeanstalk/
chttp://www.windowsazure.com/
dhttps://openshift.redhat.com/app/flex
ehttp://www.cloudfoundry.com

One interesting functionality of application man-
ifests is that certain services may require to be at-
tached with a specific IP address. In such a case,
ConPaaS will automatically create a virtual private
network between machines belonging to the applica-
tion, and attach specific nodes to specific IP addresses
within the VPN. This is very useful to allow different
services of the application to communicate with each
other. For example, a database service may request
to be reachable at IP address 10.0.0.99 so that other
services which need access to the database know they
can always access their database at this address.

Application development

Although it is easy to port pre-existing applications
to ConPaaS, we also think that ConPaaS should ac-
tively support the process of developing and testing
applications for the cloud. This includes for exam-
ple the ability to run two different versions of the
same application simultaneously (one for production
traffic, the other one for testing). We also plan to
natively support non-regression testing by building
a new service around the Selenium system1. Sele-
nium allows one to record and playback entire Web
browsing scenarios, which allows developers to fully
automate the testing of Web applications.

1http://seleniumhq.org/

4



Extending the ConPaaS plat-
form

ConPaaS is also designed to facilitate the develop-
ment of new services. All services derive from a single
“generic service” which provides the basic functional-
ities for starting and stopping VMs, configuring and
initializing the right services in them, etc. All the
virtual machines in ConPaaS also rely on the same
generic VM image. A service implementation there-
fore consists of a few hundred lines of Python (imple-
menting the service-specific parts of the service man-
ager) and Javascript (extending the front-end GUI
with service-specific information and control). This
simple structure allows us to plan developing extra
services in the future, and also enables third-party
developers to design their own custom services.

Use cases

The Contrail European project is composed of 11 uni-
versities, research centers and companies. The design
and implementation of ConPaaS is mostly realized
at Vrije Universiteit in Amsterdam, Zuse Institute in
Berlin and XLAB in Ljubljana. Among the other
partners, four are actively building real applications
making use of ConPaaS, and thereby giving us im-
mediate feedback from demanding users.

Two use cases are scientific applications, respec-
tively dedicated to the analysis of results from Small
Angle Neutron Scattering experiments (a technique
to investigate the structure of various substances at a
mesoscopic scale of about 1–1000 nm) and to ChIP-
sequencing (a technique to analyze protein interac-
tions with DNA). These two services make intensive
use of the MapReduce and TaskFarming services from
ConPaaS as their main runtime for high-performance
big-data computations. Both applications also plan
to offer Web-based frontends to their users.

The other two applications are complex web-based
interactive applications. One is a multimedia pro-
cessing marketplace which allows users to access
multimedia content and process them on the fly
(for example by automatically translating speech to
different languages). The other one is a virtual

tourist guide which gives users a 3D representation
of the earth, augmented with several layers of geo-
referenced data.

These users report that using ConPaaS signifi-
cantly reduces the time-to-market of cloud appli-
cations: developers can focus their attention on
application-specific concerns rather than on making
their applications suitable for the cloud. They be-
come more productive because they no longer need to
build their own VM images any more, implement ap-
plication deployment mechanisms, performance mon-
itoring, resource provisioning etc.

Conversely, the variety of requirements from these
four use cases help us to better understand the needs
of actual users, and also to demonstrate the ability of
ConPaaS to host nontrivial applications. The devel-
opment of these use cases has started recently, giving
us invaluable feedback about ConPaaS.

By the time this article gets published, a stable
public release of ConPaaS should be available at

www.conpaas.eu. We also operate a public testbed
so that anyone can try the system for free, without
having to install anything. We particularly welcome
any kind of feedback, be it positive or negative. Posi-
tive feedback is always encouraging for us; while (con-
structive) negative feedback may help us building a
better system.

Acknowledgments

This work is partially funded by the FP7 Programme
of the European Commission in the context of the
Contrail project under Grant Agreement FP7-ICT-
257438.

References

[1] Jiang Dejun, Guillaume Pierre, and Chi-Hung
Chi. Resource provisioning of Web applications
in heterogeneous clouds. In Proceedings of the 2nd
USENIX Conference on Web Application Devel-
opment, June 2011.

5


