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Abstract

NoSQL Cloud data services provide scalability and high availability
properties for web applications but at the same time they sacrifice data
consistency. However, many applications cannot afford any data incon-
sistency. CloudTPS is a scalable transaction manager to allow cloud
database services to execute the ACID transactions of web applica-
tions, even in the presence of server failures and network partitions.
We implement this approach on top of the two main families of scalable
data layers: Bigtable and SimpleDB. Performance evaluation on top
of HBase (an open-source version of Bigtable) in our local cluster and
Amazon SimpleDB in the Amazon cloud shows that our system scales
linearly at least up to 40 nodes in our local cluster and 80 nodes in the
Amazon cloud.

Keywords: Scalability, web applications, cloud computing, transac-
tions, NoSQL.
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1 Introduction

Cloud computing offers the vision of a virtually infinite pool of comput-
ing, storage and networking resources where applications can be scalably
deployed [22]. In particular, NoSQL cloud database services such as Ama-
zon SimpleDB [2] and Google Bigtable [13] offer a scalable data tier for
applications in the cloud. These systems typically partition the application
data to provide incremental scalability, and replicate the partitioned data
to tolerate server failures.

The scalability and high availability properties of Cloud platforms how-
ever come at a cost. First, these scalable database services allow data query
only by primary key rather than supporting secondary-key or join queries.
Second, these services provide only weak consistency such as eventual data
consistency: any data update becomes visible after a finite but undetermin-
istic amount of time. As weak as this consistency property may seem, it
does allow to build a wide range of useful applications, as demonstrated
by the commercial success of Cloud computing platforms. However, many
other applications such as payment and online auction services cannot afford
any data inconsistency. While primary-key-only data access is a relatively
minor inconvenience that can often be accommodated by good data struc-
tures, it is essential to provide transactional data consistency to support the
applications that need it.

A transaction is a set of queries to be executed atomically on a single
consistent view of a database. The main challenge to support transactional
guarantees in a cloud computing environment is to provide the ACID prop-
erties of Atomicity, Consistency, Isolation and Durability [20] without com-
promising the scalability properties of the cloud. However, the underlying
cloud data storage services provide only eventual consistency. We address
this problem by creating a secondary temporary copy of the application data
in the transaction managers that handle consistency.

Obviously, any centralized transaction manager would face two scalabil-
ity problems: 1) A single transaction manager must execute all incoming
transactions and would eventually become the performance and availabil-
ity bottleneck; 2) A single transaction manager must maintain a copy of
all data accessed by transactions and would eventually run out of storage
space. To support transactions in a scalable fashion, we propose to split
the transaction manager into any number of Local Transaction Managers
(LTMs) and to partition the application data and the load of transaction
processing across LTMs.



CloudTPS exploits three properties typical of Web applications to allow
efficient and scalable operations. First, we observe that in Web applications,
all transactions are short-lived because each transaction is encapsulated in
the processing of a particular request from a user. This rules out long-lived
transactions that make scalable transactional systems so difficult to design,
even in medium-scale environments [49]. Second, Web applications tend to
issue transactions that span a relatively small number of well-identified data
items. This means that the commit protocol for any given transaction can be
confined to a relatively small number of servers holding the accessed data
items. It also implies a low (although not negligible) number of conflicts
between multiple transactions concurrently trying to read/write the same
data items. Third, many read-only queries of Web applications can produce
useful results by accessing an older yet consistent version of data. This
allows to execute complex read queries directly in the cloud data service,
rather than in LTMs.

A transactional system must maintain the ACID properties even in the
case of server failures. For this, we replicate data items and transaction
states to multiple LTMs, and periodically checkpoint consistent data snap-
shots to the cloud storage service. Consistency correctness relies on the
eventual consistency and high availability properties of Cloud computing
storage services: we need not worry about data loss or unavailability after
a data update has been issued to the storage service.

It should be noted that the CAP dilemma proves that it is impossible
to provide both strong Consistency and high Availability in the presence
of network Partitions [19]. Typical cloud services explicitly choose high
availability over strong consistency. In this article, we make the opposite
choice and prefer providing transactional consistency for the applications
that require it, possibly at the cost of unavailability during network failures.

To implement CloudTPS efficiently, we must address two additional is-
sues:

Firstly, there exists a wide variety of cloud data services [2, 13, 14, 37].
CloudTPS should be portable across them, and the porting should require
only minor adaptation. On the one hand, as current cloud data services use
different data models and interfaces, we build CloudTPS upon their common
features: our data model is based on attribute-value pairs. The implementa-
tion only demands a simple primary-key-based “GET/PUT” interface from
cloud data services. On the other hand, current cloud data services provide
different consistency levels. For instance, Bigtable supports transactions on
single data items while SimpleDB only provides eventual consistency. To



ensure the correctness and efficiency of CloudTPS, we implement various
mechanisms for different underlying consistency levels.

Secondly, loading a full copy of application data into the system may
overflow the memory of LTMs, forcing one to use many LTMs just for their
storage capacity. This is, however, not necessary as only the currently ac-
cessed data items contribute to maintaining ACID properties of transactions.
Other unaccessed data items can be evicted from the LTMs if we can fetch
their latest stored versions from the cloud storage service. We observe that
Web applications exhibit temporal locality where only a portion of applica-
tion data is accessed at any time [51, 50]. We can therefore design efficient
memory management mechanisms to restrict the number of in-memory data
items in LTMs while still maintaining strong data consistency. Data items
being accessed by uncommitted transactions must stay in the LTMs to main-
tain ACID properties; others depend on a tradeoff between memory size and
access latency. We use a cost-aware replacement policy to dictate which data
items should remain in the LTMs.

We demonstrate the scalability of our transactional database service us-
ing a prototype implementation. Following the data models of Bigtable
and SimpleDB, transactions are allowed to access any number of data items
by primary key at the granularity of the data row. The list of primary
keys accessed by a transaction must be given explicitly before executing the
transaction. This means for example that range queries are not supported
within a transaction. CloudTPS supports both read-write and read-only
transactions.

We evaluate the performance of our prototype under a workload derived
from the TPC-W e-commerce benchmark [35]. We implemented our ap-
proach on top of the two main families of scalable data layers: HBase, an
open-source clone of BigTable [23], running in our local cluster; and Sim-
pleDB, running in the Amazon Cloud [3]. We show that CloudTPS scales
linearly to at least 40 LTMs in our local cluster and 80 LTMs in the Ama-
zon Cloud. This means that, according to the principles of Cloud comput-
ing, any increase in workload can be accommodated by provisioning more
servers. CloudTPS tolerates server failures, which only cause a few aborted
transactions (authorized by the ACID properties) and a temporary drop of
throughput during transaction recovery and data reorganization. In case of
network partitions, CloudTPS may need to reject incoming transactions to
maintain data consistency. It recovers and becomes available again as soon
as the network is restored, while still maintaining ACID properties. We fi-
nally present the performance of our memory management mechanism and



show that it can effectively control the buffer sizes of LTMs and only cause
minor performance overhead.

This article is an extended version of a previous conference paper [54].
The additional contributions of this article are as follows: (i) We describe
the membership management and failure recovery protocol in detail. This
protocol maintains ACID properties in the case of machine failures and net-
work partitions. (ii) We present the memory management mechanism, which
prevents LTMs from memory overflow and reduces the required number of
LTMs. (iii) We describe our prototype implementation on top of SimpleDB
and discuss the port of CloudTPS to other cloud data services. (iv) We fur-
ther demonstrate the scalability of our transactional system by evaluating
the performance of our prototype implementation on top of SimpleDB in
the Amazon Cloud.

This article is structured as follows. Section 2 presents related works
and Section 3 describes the system model. Section 4 then presents the de-
sign of partitioned transaction manager, and shows how to guarantee ACID
properties even in the case of server failures and network partitions. Sec-
tion 5 discusses the implementation details of CloudTPS and two optional
optimizations for memory management and read-only transactions. Finally,
Section 6 presents performance evaluation and Section 7 concludes.

2 Related Work

2.1 Data Storage in the Cloud

The simplest way to store structured data in the cloud is to deploy a re-
lational database such as MySQL or Oracle. The relational data model,
typically implemented via the SQL language, provides great flexibility in
accessing data. It supports sophisticated data access operations such as ag-
gregation, range queries, join queries, etc. RDBMSs support transactions
and guarantee strong data consistency. One can easily deploy a classical
RDBMS such as MySQL and Oracle in the cloud and thus get support for
transactional consistency. However, the features of flexible data querying
and strong data consistency prevent one from partitioning data automati-
cally, which is the key for performance scalability. These database systems
rely on replication techniques and therefore do not bring extra scalability
improvement compared to a non-cloud deployment [29, 41, 6].

On the other hand, a new family of cloud database services such as
Google Bigtable [13], Amazon SimpleDB [2], Yahoo PNUTS [14], and
Cassandra [31], uses simplified data models based on attribute-value pairs.



Application data are organized into tables, of which each is a collection
of data items. Data items are typically accessed through a “GET/ PUT”
interface by primary key. Additional sophisticated data access operations,
such as range queries in SimpleDB or data item scanning in Bigtable, are
limited within a table. None of them supports operation across multiple
tables, such as join queries. This data model allows such systems to par-
tition application data into any number of tables efficiently. Furthermore,
these cloud database services relax data consistency: they disallow any con-
sistency rules across multiple data partitions and provide little support for
transactions. For example, SimpleDB and Cassandra only support eventual
consistency, which means that data updates can be visible after an unde-
terministic amount of time [52]. Bigtable and PNUTS support transactions
but only over a single data item, which is not sufficient to guarantee strong
data consistency.

Google Megastore [26] is a transactional indexed record manager on top
of BigTable. Megastore supports ACID transactions across multiple data
items. However, programmers have to manually link data items into hier-
archical groups, and each transaction can only access a single group. In
CloudTPS, transactions can access any set of data items together. Mega-
store replicates data items and uses Paxos algorithms to guarantee strong
consistency in case of replica failures. Paxos can address Byzantine failures,
but it also requires 2F+1 servers to support the simultaneous failure of any F
servers, which introduces high costs for a transaction. In contrast, we apply
relatively light-weight master-slave mechanism to push updates to replicas,
thus improving the performance of normally-committed transactions.

Microsoft SQL Azure Database [37] is a scalable cloud data service which
supports the relational data model and ACID transactions containing any
SQL queries. However, similar to Megastore, it requires manual data par-
titioning and does not support distributed transactions or queries across
multiple data partitions located in different servers.

An alternative approach to implement cloud database is to run any num-
ber of database engines in the cloud, and use the cloud file system as shared
storage medium [11]. Each engine has access to the full data set and there-
fore can support any form of SQL queries. On the other hand, this approach
cannot provide full ACID properties. In particular, the authors claim that
the Isolation property cannot be provided, and that only reduced levels of
consistency can be offered.

Sudipt [15] proposes a similar approach to ours to support scalable trans-
actions in the cloud. It also splits the transaction manager into multiple
ones, where each one loads a specific data partition from the cloud stor-



age service and owns exclusive access to it. However, the system does not
address the problem of maintaining ACID properties in the presence of ma-
chine failures. Furthermore it allows only restricted transactional semantic,
similar to the one of Sinfonia [1], for distributed transactions across multiple
data partitions.

2.2 Distributed Transactional Systems

There have been decades of research efforts in efficiently implementing dis-
tributed transactions for distributed database systems [42, 38, 39]. A num-
ber of distributed commit protocols [33, 43, 46, 21] and concurrency control
mechanisms [7, 8, 9] have been proposed to maintain the ACID proper-
ties of distributed transactions. However, as distributed databases use the
same relational data model as RDBMS, they also cannot partition the data
automatically and thus lack scalability. On the other hand, we can ap-
ply these techniques as building blocks in designing CloudTPS. We rely
on 2-Phase Commit (2PC) [33, 43] as the distributed commit protocol for
ensuring Atomicity, and on timestamp-ordering [7] for concurrency control.

H-Store [47, 27] is a distributed main memory OLTP database, which ex-
ecutes on a cluster of shared-nothing main memory executor nodes. H-Store
supports transactions accessing multiple data records with SQL semantics,
implemented as predefined stored procedures written in C++4. H-Store also
replicates data records to tolerate machine failures. H-Store focuses on ab-
solute system performance in terms of transaction throughput, and achieves
very high performance on one executor node. However, the scalability of H-
Store relies on careful data partition across executor nodes, such that most
transactions access only one executor node. On the other hand, we prefer to
focus on achieving linear scalability specifically for Web applications, such
that any increase in workload can be accommodated by provisioning more
servers. Also note that H-Store does not maintain persistent logs or keep
any data in the non-volatile storage of either the executor nodes nor any
backing store. CloudTPS checkpoints the updates back to the cloud data
service to guarantee durability for each transaction.

Sinfonia [1] is a distributed message passing framework which supports
transactional access to in-memory data across the distributed system. It
addresses fault tolerance by primary-copy replication and by writing trans-
actionally consistent backups to disk images. In contrast with our work,
Sinfonia provides a low-level data access interface based on memory address
and only supports transactions with restricted semantics. Besides, it re-
quires the applications to manage data placement and caching themselves



across the distributed system. Sinfonia targets infrastructure applications
which require fine-grained control of data structure and placement to op-
timize performance. On the other hand, Web applications usually require
rapid and flexible development, so we prefer accessing a logical and location-
transparent data structure with rich-semantic transactions.

Transactional memory (TM) systems relate to our work as they support
transactional access to in-memory data. They traditionally target single
multiprocessor machines [24], but recent research works extend them to
distributed systems and support distributed transactions across in-memory
data of multiple machines [34, 30, 10]. Distributed TM systems however pro-
vide no durability for transactions and do not address machine failures. The
reason is that TM systems are mainly designed for parallel programs that
solve large-sized problems. In this case, only the final results are valuable
and required to be durable. On the other hand, TM systems usually execute
in a managed environment with few machine failures. They thus provide no
durability for intermediate transactions and do not address machine failures
to maximize the system performance. However for Web applications which
are usually interactive, the result of each transaction is critical. TM systems
are therefore not suitable for Web applications.

Another similar system to ours is the Scalaris transactional DHT [40].
It splits data across any number of DHT nodes, and supports transactional
access to any set of data items addressed by primary key. However, it sup-
ports no durability for the stored data while our system provides durability
for transactions by checkpointing data updates into the cloud data service.
On the other hand, Scalaris guarantees strong consistency by using Paxos
algorithms, which can address Byzantine failures, but introduces high costs
for a transaction. Moreover, each query requires one or more requests to be
routed through the DHT, potentially adding latency and overhead. Cloud
computing environments can also be expected to be much more reliable
than typical peer-to-peer systems, which allows us to use more lightweight
mechanisms for fault tolerance.

3 System Model

Figure 1 shows the organization of CloudTPS. Clients issue HT'TP requests
to a Web application, which in turn issues transactions to a Transaction
Processing System (TPS). The TPS is composed of any number of LTMs,
each of which is responsible for a subset of all data items. The Web applica-
tion can submit a transaction to any LTM that is responsible for one of the
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Figure 1: CloudTPS system model

accessed data items. This LTM then acts as the coordinator of the transac-
tion across all LTMs in charge of the data items accessed by the transaction.
The LTMs operate on an in-memory copy of the data items loaded from the
cloud storage service. Data updates resulting from transactions are kept in
memory of the LTMs. To prevent data loss due to LTM server failures, the
data updates are replicated to multiple LTM servers. LTMs also periodically
checkpoint the updates back to the cloud storage service which is assumed
to be highly-available and persistent.

We implement transactions using the 2-Phase Commit protocol (2PC).
In the first phase, the coordinator requests all involved LTMs and asks them
to check that the operation can indeed been executed correctly. If all LTMs
vote favorably, then the second phase actually commits the transaction.
Otherwise, the transaction is aborted.

Transactions in CloudTPS are short-lived and access only well-identified
data items. CloudTPS allows only server-side transactions, which consist of
predefined procedures stored at all LTMs. Each transaction consists of one
or more sub-transactions, which operate on a single data item each. The
Web application must provide the primary keys of all accessed data items
when it issues a transaction.

Concretely, a transaction is implemented as a Java object containing a
list of sub-transaction instances. All sub-transactions are implemented as
sub-classes of the “SubTransaction” abstract Java class. As shown in Fig-
ure 2, each sub-transaction contains a unique “className” to identify itself,
a table name and primary key to identify the accessed data item, and input
parameters organized as attribute-value pairs. Each sub-transaction imple-
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public abstract class SubTransaction {
//Input by Web Application
public String className;
public String tableName;
public String primaryKey;
public Hashtable<String ,String> parameters;

//Input by LTMs
public Hashtable<String ,String> dataltem;

// Output

public String [][] dataToReturn;
public String [][] dataToPut;
public String [] dataToDelete;

//Data Operations of the SubTransaction
public VoteResult run();

Figure 2: The parent class of all sub-transactions classes

ments its own data operations by overriding the “run()” operation. The
return value of the “run()” operation specifies whether this sub-transaction
is able to commit. The execution of “run()” also generates the data updates
and the results for read data operations, which are stored in the “Output”
attributes.

The bytecode of all sub-transactions is deployed at all LTMs before-
hand. A Web application issues a transaction by submitting the names of
included sub-transactions and their parameters. LTMs then construct the
corresponding sub-transaction instances to execute the transaction. In the
first phase of 2PC, LTMs load the data items of each sub-transaction and
execute the “run()” operation to decide on their votes and generate proposed
data updates. If an agreement to “COMMIT” is reached, LTMs apply the
updates to the data items.

We assign data items to LTMs using consistent hashing [28]. To achieve
a balanced assignment, we first cluster data items into virtual nodes, and
then assign virtual nodes to LTMs. As shown in Figure 1, multiple virtual
nodes can be assigned to the same LTM. To tolerate LTM failures, virtual
nodes and transaction states are replicated to one or more LTMs. After an
LTM server failure, the latest updates can then be recovered and affected
transactions can continue execution while satisfying ACID properties.

11




4 System Design

We now detail the design of the TPS to guarantee the Atomicity, Con-
sistency, Isolation and Durability properties of transactions. Each of the
properties is discussed individually. We then discuss the membership mech-
anisms to guarantee the ACID properties even in case of LTM failures and
network partitions.

4.1 Atomicity

The Atomicity property requires that either all operations of a transaction
complete successfully, or none of them do. To ensure Atomicity, for each
transaction issued, CloudTPS performs two-phase commit (2PC) across all
the LTMs responsible for the data items accessed. As soon as an agreement
of “COMMIT” is reached, the transaction coordinator can simultaneously
return the result to the web application and complete the second phase [25].

To ensure Atomicity in the presence of server failures, all transaction
states and data items should be replicated to one or more LTMs. LTMs
replicate the data items to the backup LTMs during the second phase of
transaction. Thus when the second phase completes successfully, all replicas
of the accessed data items are consistent. The transaction state includes the
transaction timestamp (discussed in Section 4.3), the agreement to either
“COMMIT” or “ABORT?”, and the list of data updates to be committed.

When an LTM fails, the transactions it was coordinating can be in two
states. If a transaction has reached an agreement to “COMMIT,” then
it must eventually be committed; otherwise, the transaction can still be
aborted. Therefore, we replicate transaction states in two occasions: 1)
When an LTM receives a new transaction, it must replicate the transaction
state to other LTMs before confirming to the application that the transaction
has been successfully submitted; 2) After all participant LTMs reach an
agreement to “COMMIT” at the coordinator, the coordinator updates the
transaction state at its backups with the agreement of “COMMIT” and all
the data updates. The participant LTMs piggyback their data updates with
their vote messages. This creates in essence in-memory “redo logs” at the
backup LTMs. The coordinator must finish this step before carrying out
the second phase of the commit protocol. If the coordinator fails after this
step, the backup LTM can then complete the second phase of the commit
protocol. Otherwise, it can simply abort the transaction without violating
the ACID properties.
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An LTM server failure also results in the inaccessibility of the data items
it was responsible for. It is necessary to re-replicate these data items to
maintain N backups. If a second LTM server failure happens during the
recovery process of a previous LTM server failure, the system initiates the
recovery of the second failure after the first recovery process has completed.
The transactions that cannot recover from the first failure because they also
accessed the second failed LTM are left untouched until the second recovery
process.

As each transaction and data item has IV + 1 replicas in total, the TPS
can thus guarantee the Atomicity property under the simultaneous failure
of N LTM servers.

4.2 Consistency

The Consistency property requires that a transaction, which executes on a
database that is internally consistent, will leave the database in an internally
consistent state. Consistency is typically expressed as a set of declarative
integrity constraints. We assume that the consistency rule is applied within
the logic of transactions. Therefore, the Consistency property is satisfied as
long as all transactions are executed correctly.

4.3 Isolation

The Isolation property requires that the behavior of a transaction is not dis-
turbed by the presence of other transactions that may be accessing the same
data items concurrently. The TPS decomposes a transaction into a number
of sub-transactions, each accessing a single data item. Thus the Isolation
property requires that if two transactions conflict on any number of data
items, all their conflicting sub-transactions must be executed sequentially,
even though the sub-transactions are executed in multiple LTMs.

We apply timestamp ordering for globally ordering conflicting transac-
tions across all LTMs. Each transaction has a globally unique timestamp,
which is monotonically increasing with the time the transaction was sub-
mitted. All LTMs then order transactions as follows: a sub-transaction
can execute only after all conflicting sub-transactions with a lower times-
tamp have committed. It may happen that a transaction is delayed (e.g.,
because of network delays) and that a conflicting sub-transaction with a
younger timestamp has already committed. In this case, the older transac-
tion should abort, obtain a new timestamp and restart the execution of all
of its sub-transactions.
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As each sub-transaction accesses only one data item by primary key,
the implementation is straightforward. Each LTM maintains a list of sub-
transactions for each data item it handles. The list is ordered by timestamp
so LTMs can execute the sub-transactions sequentially in the timestamp
order. The exception discussed before happens when an LTM inserts a
sub-transaction into the list but finds its timestamp smaller than the one
currently being executed. It then reports the exception to the coordinator
LTM of this transaction so that the whole transaction can be restarted. We
extended the 2PC with an optional “RESTART” phase, which is triggered
if any of the sub-transactions reports an ordering exception. After a trans-
action reaches an agreement and enters the second phase of 2PC, it cannot
be restarted any more.

We are well aware that assigning timestamps to transactions using a sin-
gle global timestamp manager can create a potential bottleneck and a single
point of failure in the system. We used this implementation for simplicity,
although distributed timestamp managers exist [32].

4.4 Durability

The Durability property requires that the effects of committed transactions
would not be undone and would survive server failures. In our case, it means
that all the data updates of committed transactions must be successfully
written back to the backend cloud storage service.

The main issue here is to support LTM failures without losing data. For
performance reasons, the commit of a transaction does not directly update
data in the cloud storage service but only updates the in-memory copy of
data items in the LTMs. Instead, each LTM issues periodic updates to the
cloud storage service. During the time between a transaction commit and the
next checkpoint, durability is ensured by the replication of data items across
several LTMs. After checkpoint, we can rely on the high availability and
eventual consistency properties of the cloud storage service for durability.

When an LTM server fails, all the data items stored in its memory that
were not checkpointed yet are lost. However, as discussed in Section 4.1, all
data items of the failed LTM can be recovered from the backup LTMs. The
difficulty here is that the backups do not know which data items have already
been checkpointed. One solution would be to checkpoint all recovered data
items. However, this can cause a lot of unnecessary writes. One optimization
is to record the latest checkpointed transaction timestamp of each data item
and replicate these timestamps to the backup LTMs. We further cluster
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transactions into groups, then replicate timestamps only after a whole group
of transactions has completed.

Another issue related to checkpointing is to avoid degrading the system
performance at the time of a checkpoint. The checkpoint process must
iterate through the latest updates of committed transactions and select the
data items to be checkpointed. A naive implementation that would lock the
whole buffer during checkpointing would also block the concurrent execution
of transactions. We address this problem by maintaining an extra buffer in
memory with the list of data items to be checkpointed. Transactions write
to this buffer by sending updates to an unbounded non-blocking concurrent
queue [36]. This data structure has the property of allowing multiple threads
to write concurrently to the queue without blocking each other. Moreover,
it orders elements in FIFO order, so old updates will not override younger
ones.

4.5 Membership

To correctly execute transactions, all LTMs must share the same view of
system membership to determine the assignment of data items consistently.
The system membership changes when LTMs join, depart, fail or recover
from failures. These events may happen at any time, including during the
execution of transactions. To ensure the ACID properties, changes in system
membership must not take place during the 2PC execution of any transac-
tion. When an LTM fails, other LTMs must therefore first complete the
recovery of all ongoing transactions before updating the system member-
ship.

In addition to LTM failures, the system may also encounter network
failures, which can temporarily split the LTMs into multiple disconnected
partitions. In such a case, according to the CAP dilemma, we decide to
guarantee consistency at the possible cost of a loss of availability. In the
case of system partitioning, transactions may still proceed provided that:
(i) one of the partitions is able to elect itself as the “majority” partition;
and (ii) its available LTMs can recover the consistent states of all data items.
In all other cases the system will reject incoming connections until it fulfills
the condition again.

This section presents our mechanism to recover the system consistently
from network partitions.
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4.5.1 Membership Updates

To ensure a consistent membership, all membership changes are realized
through a 2PC across all available LTMs. All LTMs block incoming trans-
actions until the new system membership has been committed consistently.
In the first phase of a membership change, each LTM waits for all of its co-
ordinated ongoing transactions to terminate, and then votes “COMMIT.”
After reaching an agreement to “COMMIT,” the second phase updates the
system membership and applies the new data assignment through data repli-
cation/movement.

Each membership change creates a new membership version attached to
a monotonically increasing timestamp. Each LTM attaches the timestamp
of its current membership to all of its messages. If an LTM receives a
message with a higher timestamp than its own, this means that the other
LTMs consider it as having failed. The concerned LTM discards its entire
state and rejoins.

After each membership change, the new timestamp is stored in a special
“Membership” table in the cloud data service. By scanning through this
“Membership” table, any new LTM or any Web application instance can
locate the currently available LTMs. One issue is that the cloud data services
may return a stale membership. However, one can contact the TPS and
obtain the latest membership as long as the stale membership contains at
least one LTM currently in the TPS.

Any LTM may initiate a membership update if it wants to join the sys-
tem or it detects the unavailability of other LTMs. This means that multiple
updates may be issued simultaneously. To guarantee the isolation of such
updates, we use a simple optimistic concurrency control mechanism that
only one membership update can take place at a time [44]. If an LTM re-
ceives a request for membership update before a previous one has finished,
then this LTM will vote “ABORT” to the latter. To avoid continuous con-
flicts and aborts, LTMs may insert a random time delay before initiating
the previously aborted membership update again.

4.5.2 Dealing with Network Partitions

In case of a network partition, multiple system subsets may consider that
the other unreachable LTMs have failed, recover from their “failures” and
carry on with processing the application workload independently from each
other. However, this would violate the ACID properties and must therefore
be avoided.
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Figure 3: An example of unclean network partitions

For simplicity, we assume that no network partition occurs during the
recovery of another partition. Supporting this latter case requires additional
algorithms that we consider out of the scope of this article.

We use the Accessible Copies algorithm [18] to recover the system con-
sistently during network partitions. This algorithm ensures that only one
partition may access a given data item by allowing access to a given data
item only within a partition that contains a majority of replicas. Instead of
using a majority partition for each data item, we adapt the “majority” rule
such that only the partition that contains more than half of the previous
membership can access all data items. Minority partitions are forbidden
access to any data item. It may happen that the majority partition lacks
more then N LTM servers from the previous membership!, and thus cannot
recover all data items; in this case it rejects all incoming transactions until
it can recover all data items.

Once a majority partition is established, it can recover all the ongo-
ing transactions and accept new incoming transactions. After recovery, all
LTMs in the majority partition have the new system membership with an
increased timestamp. The other ones, which still have the previous mem-
bership timestamp, can detect after network partition recovery that they
have been excluded from the membership, and rejoin as new members.

When an LTM discovers that other LTMs are unreachable because of
LTM crashes and/or network partitions, it identifies its new partition mem-
bership through a 2PC across all LTMs. In the first phase, it sends an “invi-
tation” to all LTMs; any responding LTM which vote “COMMIT” belongs
to its partition membership. After all LTMs either respond or time-out, the
second phase updates the partition membership of all LTMs in the partition
of the coordinator. One optimization is to exclude the discovered unreach-
able LTMs from the first 2PC of building partition membership. This op-

! Assuming that each transaction and data item has N + 1 replicas in total.
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timization is effective for the scenario of LTM failures, avoiding a possible
delay of time-out in waiting for responses from these failed LTMs. In case of
network partitions, the first 2PC may fail to establish a majority partition
to recover the system. LTMs should then include these excluded LTMs back
into the following periodical 2PCs of building partition membership.

The above mechanism can organize the TPS into a number of disjointed
partitions, provided that the network is “cleanly” partitioned: any two
LTMs in the same partition can communicate, and any two LTMs in different
partitions cannot. However, a network may also be “uncleanly” partitioned
due to the lag of reconstructing routing tables. Figure 3 shows an exam-
ple of unclean partition where each LTM has a different view of reachable
LTMs: view(A) = {A,C}, view(B) = {B,C} and view(C) = {A,B,C}. In
this case, LTM C may join two different partitions: either {A,C} or {B,C},
which both turn out to be majority partitions. To ensure that an LTM can
only belong to one partition at a time, we define that if an LTM has already
joined a partition, it will vote “ABORT” to any “invitation” of joining a
different partition.

Minority partitions periodically try to rejoin the system by checking if
previously unavailable nodes become reachable again. Receiving an “ABORT”
vote for an “invitation” indicates that partitions are reconnected. In this
case, the two partitions can be merged through a 2PC across all LTMs in
the two partitions. The first phase is to push the memberships of two par-
titions to all the participant LTMs. A participant LTM votes “COMMIT”
if the received membership matches its current latest partition membership.
Otherwise, it votes “ABORT”. If an agreement to “COMMIT” is reached,
the second phase updates the partition membership of all participant LTMs
into the combined membership of two partitions. If any participant LTM
votes “ABORT” or fails to respond, the 2PC is aborted.

5 System Implementation

This section discusses implementation details of CloudTPS, in particular
how to support various cloud data storage services. We also present two
optional optimizations: memory management to prevent memory overflow
in the LTMs, and handling of read-only transactions containing complex
read queries.
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SimpleDB Bigtable PNUTS

Data Item Multi-value Multi-version Multi-version

attribute with timestamp with timestamp
Schema No schema Column-families Explicitly claimed

attributes

Operation Range queries Single-table Single-table
on arbitrary scan with various scan with
attributes of a table | filtering conditions predicates
Consistency Eventual Single-row Single-row
consistency transaction transaction

Table 1: Key differences between cloud data services

5.1 Portability

CloudTPS relies on a cloud data storage service to ensure transaction dura-
bility. However, current cloud data storage services support different data
models, consistency guarantees, operation semantics and interfaces. Adapt-
ing CloudTPS to all of them is a challenge. We compare three prominent and
typical cloud data services: Amazon SimpleDB, Google Bigtable and Yahoo
PNUTS. Our implementation is compatible with SimpleDB and Bigtable.
Porting CloudTPS to other data services requires only minor adaptations.

SimpleDB, Bigtable and PNUTS have a number of similarities in their
data models. They all organize application data into tables. A table is
structured as a collection of data items with unique primary keys. The data
items are described by attribute-value pairs. All attribute values are typed
as strings. Data items in the same table can have different attributes. Data
items are accessed with “GET/PUT” by primary key. Operations across
tables, such as join queries, are not supported.

On the other hand, as shown in Table 1, the three cloud data services
also have some key differences:

1. SimpleDB supports multiple values per attribute of a data item, while
Bigtable and PNUTS only allow one. To be compatible with all of
them, our data model allows only one value per attribute.

2. SimpleDB does not impose a predefined schema for its tables. PNUTS
requires explicit claims of all attributes in a table, but it is still com-
patible with SimpleDB, as it does not require all records to have values
for all claimed attributes and new attributes can be added any time
without halting query or update activity. On the other hand, Bigtable
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groups attributes into predefined column-families. To access an at-
tribute, one should include its column-family name as its prefix. We
address this difference by always prepending attribute names with the
column-family name for Bigtable.

3. All three cloud data services support sophisticated data access opera-
tions within a table, but via different APIs. SimpleDB supports range
queries inside a table with its specific language; Bigtable and PNUTS
provide similar functionality with table scanning using various filter-
ing conditions or predicates. This difference is irrelevant to the system
design described before, as it accesses data items only by primary key.
However, the optimization of read-only transactions, as described in
Section 5.3, allows Web applications to access consistent data snap-
shots in cloud data services directly via their APIs. Therefore, the
implementation of this optimization depends on the interface of the
underlying cloud data service.

4. SimpleDB provides eventual consistency so that applications may read
stale data. In contrast, Bigtable and PNUTS support single-row trans-
actions, so they can guarantee returning the latest updates. We as-
sume that when CloudTPS starts and loads a data item from the
cloud data service for the first time, all the replicas of this data item
are consistent. So CloudTPS can obtain the latest updates in this
case, regardless of the consistency level of underlying cloud data ser-
vice. However, this is not true for reloading a data item that has been
recently updated. Different data consistency models of cloud data
services require additional adaptations to implement our performance
optimizations, as discussed in the following sections.

5.2 Memory Management

For efficiency reasons we keep all data in the main memory of the LTMs.
However, maintaining a full copy of all application data may overflow the
memory space, if the size of the data is large. One would thus have to
allocate unnecessary LTM servers just for their memory space, rather than
for their contributions to performance improvement. On the other hand, we
notice that Web applications exhibit temporal data locality so that only a
small portion of application data is accessed at any time [51, 50]. Keeping
unused data in the LTMs is not necessary for maintaining ACID properties,
so LTMs can evict these data items in case of memory shortage, and reload
them from the cloud data service when necessary.
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The key issue is that the eviction of any data items from LTMs must not
violate the ACID properties of transactions. Obviously, the data items that
are currently accessed by ongoing transactions must not be evicted until the
transaction completes and the data updates have been checkpointed. Af-
ter evicting a data item from the LTMs, future transactions may require it
again. To guarantee strong consistency for these transactions, LTMs have to
guarantee that the latest version of the evicted data items can be obtained
from the cloud data service in the next read. The solution to this issue, how-
ever, depends on the consistency level guaranteed by the underlying cloud
data service. To ensure that the latest version of a data item is visible,
CloudTPS requires that the underlying cloud data service supports at least
“Monotonic-reads” consistency [48]. If the data service provides the “Read-
your-writes” consistency, checkpointing back the latest updates successfully
is sufficient to evict a data item. For instance, Google Bigtable and Ya-
hoo PNUTS support single-row transactions and thus provide “Read-your-
writes” consistency. If the data service provides only eventual consistency,
such as in SimpleDB, then LTMs may still obtain stale data even after a
“GET” returned the latest version. To address this problem, we store the
timestamps of the latest versions of all data items in LTMs, which can then
determine if the newly loaded version of data item is up-to-date. If it is not,
LTMs will abort the transactions and maintain ACID properties at the cost
of rejecting these transactions.

Storing the latest timestamps of all data items in memory may also
overflow the memory if the number of data items is extremely large. Storing
them in the cloud data service is not an option, since they must maintain
strong consistency. A simple solution could be to store them in the local
hard drive of the LTM.

Another difficulty is that SimpleDB does not support multi-versions with
timestamp, but multi-values for an attribute. We address this by attaching
a timestamp at the end of the value of each attribute and so transform
“multi-values” into “multi-versions”.

Another issue is to minimize the performance overhead of memory man-
agement, and carefully select which data items should be evicted. To main-
tain reasonable performance, we should maximize the hit rate of transactions
in LTMs. Standard cache replacement algorithms, such as LRU, assume that
data items have identical sizes. However, in CloudTPS, the data items have
very different sizes, leading to a poor performance. So we adopt the cost-
aware GreedyDual-Size (GDS) algorithm [12] which leverages knowledge of
data item sizes to select data items to evict. The GDS algorithm associates
a value H to each data item p: H(p) = L + cost/size, where L is the H
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value of the latest evicted data item. We set the cost parameter to 1 for
all data items as this optimizes hit rate. The parameter size refers to the
size of data item p. Each time that an LTM needs to replace a data item,
it selects the data item with the lowest H value and updates its L value to
the H value of this evicted data item. When a data item is accessed, the
H value of this data item is recaculated with the updated parameters: the
latest L value and its possibly changed size.

5.3 ReadOnly Transactions

CloudTPS supports read-write and read-only transactions indifferently. The
only difference is that in read-only transactions no data item is updated dur-
ing the second phase of 2PC. Read-only transactions have the same strong
data consistency property as read-write transactions, but also the same con-
straint: accessing well identified data items by primary key only. However,
CloudTPS provides an additional feature for read-only transactions to sup-
port complex read queries such as range queries.

We exploit the fact that many read queries can produce useful results
by accessing a possibly stale but consistent data snapshot. For example,
in e-commerce Web applications, a promotion service may identify the best
seller items by aggregating recent orders information. However, it may not
be necessary to compute the result based on the absolute most recent orders.
We therefore introduce the concept of Weakly-Consistent Read-only Trans-
action (WCRT): A WCRT contains any number of read operations offered
by the cloud data service, e.g., table scan for Bigtable. Web applications
issue WCRTSs directly to the cloud data service, bypassing the LTMs. All
read operations of a WCRT executes on the same internally consistent but
possibly slightly outdated snapshot of the database.

To implement WCRT's, we introduce a snapshot mechanism in the check-
point process of LTMs, which marks each data update with a specific snap-
shot ID that is monotonically increasing. This ID is used as the version
number of the newly created version when it is written to the cloud storage
service. A WCRT can thus access a specific snapshot by only reading the
latest version of any data item of which the timestamp is not larger than
the snapshot ID.

We group transactions in sets of M transactions with subsequent times-
tamps, of which each group constitutes a new snapshot. Assuming that the
transaction timestamp is implemented as a simple counter, the first snapshot
reflects all the updates of committed transactions [0, M). The next snapshot
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reflects updates from transactions [0,2M), and so on. At the finest granu-
larity, with M = 1, each read-write transaction creates a new snapshot.

The key issue in this snapshot mechanism is to determine whether a
consistent snapshot is fully available in the cloud data service such that
WCRT's can execute on it. A consistent snapshot contains all the updates of
the transactions which it reflects. It is fully available only after all these up-
dates have been checkpointed back. The main difficulty is that a transaction
may update data items across multiple LTMs, where each LTM performs
checkpoints for its own data items independently from the others. There-
fore, CloudTPS must collect checkpoint progress information from multiple
LTMs. To address this issue, we use the cloud data service as a shared
medium for collecting checkpoint progress information. The system creates
an extra table named “Checkpoint”, where each LTM writes its latest com-
pleted snapshot ID into a separate data item using its membership ID as
the primary key value. So the minimal snapshot ID stored in the “Check-
point” table represents the latest snapshot of which the updates are all
checkpointed.

Even though all the updates of a snapshot have been checkpointed suc-
cessfully, the availability of this snapshot still depends on the consistency
level provided by the cloud data service. The data services must provide
at least “Monotonic-reads” consistency, so that LTMs can verify the vis-
ibility of the updates before claiming the snapshot is available. Bigtable
and PNUTSs support single-row transactions and thus provide the “Read-
Your-Writes” consistency. Therefore, the snapshot is immediately available
after writing all checkpoints back. Lastly, Amazon SimpleDB only supports
eventual consistency, so it is impossible to guarantee the visibility of certain
writes in the next read. Therefore, this feature cannot be applicable for
cloud data services with eventual consistency only.

6 FEvaluation

We demonstrate the scalability of CloudTPS by presenting the performance
evaluation of a prototype implementation on top of two different families
of scalable data layers: HBase running in our local DAS-3 cluster [23] and
SimpleDB running in the Amazon Cloud. We then show that CloudTPS can
recover from LTM failures and network partitions efficiently by presenting
the throughput of CloudTPS under these failures. Lastly, we demonstrate
the effectiveness of the memory management mechanism and discuss the
tradeoff between system performance and buffer sizes.
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Figure 4: Workflow of transactions issued by each Emulated Browser (EB)
of TPC-W

We evaluate our prototype under a workload derived from TPC-W [35].
TPC-W is an industry standard e-commerce benchmark that models an
online bookstore similar to Amazon.com.

6.1 Migration of TPC-W to the Cloud

TPC-W is originally designed as a Web application using a SQL-based re-
lational database as backend. However, CloudTPS is based on HBase and
SimpleDB. Both of them use a different data model other than the rela-
tional data model, and do not support the SQL language. We therefore
need to adapt the original relational data model of TPC-W into the data
models of BigTable and SimpleDB. As described in Section 5.1, we can eas-
ily adapt the Bigtable data model into SimpleDB data model by using the
exact same attribute names, which are prepended with the column family
names. Therefore, we first adapt the relational data model of TPC-W into
the Bigtable data model.

Using similar data denormalization techniques as in [53], we design a
Bigtable data model for TPC-W that contains the data accessed by the
transactions in Figure 4. The relational data model of TPC-W comprises
six tables that are accessed by these transactions. To adapt this data
model to Bigtable, we first combine five tables (“Orders, Order_Line, Shop-
ping_Cart, Shopping_Cart_Entry, CC_XACTS”) into one “bigtable” named
“Shopping.” Each of the original tables is stored as a column family. The
new bigtable “Shopping” has the same primary key as table “Shopping_Cart.”
For table “Order_Line,” multiple rows are related to one row in table “Or-
der,” they are combined into one row and stored in the new bigtable by
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defining different column names for the values of same data column but
different rows. Second, for the remaining table “Item,” only the column
“i_stock” is accessed. We can thus have a bigtable named “Item_Stock”
which only contains this column and has the same primary key. Finally, for
the last transaction in Figure 4 which retrieves the latest order information
for a specific customer, we create an extra index bigtable “Latest_Order”
which uses customer IDs as its primary key and contains one column stor-
ing the latest order ID of the customer.

For both HBase and SimpleDB, we populate 144,000 customer records
in the “Latest_Order” bigtable and 10,000 item records in the “Item_Stock”
bigtable. We then populate the “Shopping” bigtable according to the bench-
mark requirements. As shown in Figure 4, the workload continuously creates
new shopping carts. Thus, the size of the “Shopping” bigtable increases
continuously during the evaluation, while the other two bigtables remain
constant in size. In the evaluation of the memory management mechanism,
we also evaluate the system performance with 1,000,000 item records in the
“Item_Stock” bigtable.

In the performance evaluation based on HBase, we observed a load bal-
ancing problem. TPC-W assigns new shopping cart IDs sequentially. How-
ever, each HBase node is responsible for a set of contiguous ranges of 1D
values, so at any moment of time, most newly created shopping carts would
be handled by the same HBase node. To address this problem, we hori-
zontally partitioned the bigtables into 50 sub-bigtables and allocated data
items to subtables in round-robin fashion.

As for Amazon SimpleDB, we organize application data into a number of
domains (i.e., tables), while each domain can only sustain a limited amount
of update workload. So we also have to horizontally partition a table in
round-robin fashion and place each partition into a domain. However, differ-
ent from HBase, we can use at most 100 domains for the whole application.
We therefore partition the three tables into different number of sub-tables
according to our estimated data access loads. We horizontally partition the
“Shopping” bigtable into 80 domains and the other two bigtables into 5
domains each. This way SimpleDB can provide sufficient capacity for both
writes and reads, while CloudTPS remains the performance bottleneck for
performance evaluation.

6.2 Experiment Setup

We perform the scalability evaluation on top of two different scalable data
layers: 1) HBase v0.2.1 [23] running in the DAS-3 cluster [16] in our uni-
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versity; 2) SimpleDB in the Amazon Cloud [3]. In both platforms, we use
Tomcat v5.5.20 as application server. The LTMs and load generators are
deployed in separate application servers.

DAS-3 is an 85-node Linux-based server cluster. Each machine in the
cluster has a dual-CPU / dual-core 2.4 GHz AMD Opteron DP 280, 4 GB of
memory and a 250 GB IDE hard drive. Nodes are connected to each other
with a Gigabit LAN such that the network latency between the servers is
negligible.

Amazon EC2 offers various types of virtual machine instances, which
may share the resources of a same physical machine with other instances.
As of September 2009, there are two families of instance types: Standard and
High-CPU. We perform scalability evaluation with both families. We choose
the Small Instance in the Standard family, which has 1.7 GB memory, 1
virtual core with 1 EC2 Compute Unit, and 160 GB instance storage. At the
time of our experiment, Standard Small instances cost $0.10 per instance-
hour. Besides, we also select Medium Instance in the High-CPU family,
which has 1.7 GB of memory, 2 virtual cores with 2.5 EC2 Compute Units
each, and 350 GB of instance storage. High-CPU Medium instances cost
$0.20 per instance-hour. One EC2 Compute Unit provides the equivalent
CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

TPC-W workload is generated by a configurable number of Emulated
Browsers (EBs) which issue requests from one simulated user. Our evalua-
tions assume that the application load remains roughly constant. The work-
load that an Emulated Browser issues to the TPS mainly consists of read-
write transactions that require strong data consistency. Figure 4 shows the
workflow of transactions issued by an Emulated Browser, which simulates a
typical customer shopping process. Each EB waits for 500 milliseconds on
average between receiving a response and issuing the next transaction.

6.3 Scalability Evaluation

We study the scalability of CloudTPS in terms of maximum sustainable
throughput under a response time constraint. We perform the scalability
evaluation in both DAS-3 and the Amazon cloud. In DAS-3, we assign a
physical machine for each LTM, and have low contention on other resources
such as network. Therefore, for the evaluations in DAS-3, we define a de-
manding response time constraint that imposes that the 99% of transactions
must return within 100 ms. On the other hand, in the public Amazon cloud,
our LTMs have to share a physical machine with other instances, and we
have less control of the resources such as CPU, memory, network, etc. Fur-
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Figure 5: Maximum system throughput under a response time constraint

thermore, even multiple instances of the exact same type may exhibit dif-
ferent performance behavior [17]. Therefore, to prevent these interferences
from disturbing our evaluation results, we relax the response time constraint
for the evaluations in the Amazon cloud: 90% of transactions must return
within 100 ms.

We perform the scalability evaluation by measuring the maximum sus-
tainable throughput of the system consisting of a given number of LTMs
before the constraint gets violated. In DAS-3, we start with one LTM and
5 HBase servers, then add more LTM and HBase servers. We carry out
each round of the experiment for 30 minutes to measure the performance of
system under a certain number of EBs. In all cases, we deliberately over-
allocated the number of HBase servers and client machines to make sure
that CloudTPS remains the performance bottleneck. We perform similar
steps in the Amazon cloud by starting with one LTM. CloudTPS remains
the performance bottleneck, as SimpleDB can provide sufficient capacity for
both writes and reads. We configure the system so that each transaction
and data item has one backup in total, and set the checkpoint interval to 1
second.

Figure 5(a) shows that CloudTPS scales nearly linearly in DAS-3. When
using 40 LTM servers it reaches a maximum throughput of 7286 transactions
per second generated by 3825 emulated browsers. In this last configuration,
we use 40 LTM servers, 36 HBase servers, 3 clients to generate load, and
1 server as global timestamp manager. This configuration uses the entire
DAS-3 cluster so we could not extend the experiment further. The maximum
throughput of the system at that point is approximately 10 times that of a
single LTM server.
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Figure 5(b) shows the scalability evaluation in the Amazon cloud. Here
as well, CloudTPS scales nearly linearly with both types of EC2 virtual
instances. When using 80 “Standard Small” instances, CloudTPS reaches
a maximum throughput of 2844 transactions per second generated by 1600
emulated browsers. The maximum throughput of the system at that point
is approximately 40 times that of a single LTM server. When using 20
“High-CPU” Medium instances, CloudTPS reaches a maximum throughput
of 3251 transactions per second generated by 1800 emulated browsers. This
is a 10-fold improvement compared to one LTM.

Furthermore, we explore the cost-effectiveness of the two EC2 instance
types for CloudTPS. The “High-CPU medium” instances cost 2 times more
than “Standard Small” instances. As show in Figure 5(b), 20 “High-CPU
medium” instances, which together cost $4 per hour, can sustain a higher
maximum throughput than 80 “Standard Small” instances, which together
cost $8 per hour. Therefore, for this application, using “High-CPU medium”
instances is more cost-effective than “Standard Small” instances.

The linear scalability of CloudTPS relies on the property that transac-
tions issued by Web applications only access a small number of data items,
and thus span only a small number of LTMs. We illustrate this property by
measuring the number of LTMs that participate in the transactions with the
configuration of 40 LTMs servers. As shown in Figure 6, the vast majority
of transactions access only one LTMZ2. In other words, most of the transac-
tions of TPC-W execute within one LTM and its backups only. We expect
this behavior to be typical of Web applications. The purchase transaction
in Figure 4 is the only transaction that accesses more then 1 data item.

2The LTMs that act only as backup of transactions or data items are not counted in.
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DAS-3

It first creates an order and clears the shopping cart inside the data item
of the “Shopping” bigtable, then updates the stocks of all purchased items
in the “Item_Stock” bigtable, and lastly updates the latest order ID of the
customer in the “Latest_Order” bigtable. As the number of items contained
in a shopping cart is uniformly distributed between 1 and 10, the number
of data items accessed by a purchase transactions also has an uniform dis-
tribution between 3 and 12. Figure 6 shows that fewer transactions access
11 or 12 LTMs compared to the ones accessing 3 to 10 LTMs, and some
transactions even access 2 LTMs. This is because the accessed data items
may be located within the same LTM, so the number of accessed LTMs may
be smaller than the number of accessed data items.

29



1
Throughput (TPS)

(a) Committed transactions

200

400

600 800

Time (Seconds)

1000

1200

n
o
=
5
o
=
(=]
>
o
2
=
0
0
120
100 |
P sl
=
5
2 6ol
[=2]
3
g w0}
£
20 |

13.0 Secondg

1
Throughput (TPS)

Time (Seconds)

0
470 475 480 485 490 495 500 505

(¢) Committed transactions during

LTM failure

Figure 8: Throughput of system
the Amazon Cloud

120 :

100

60 -

20 -

0 200

400 600 800
Time (Seconds)

1000

(b) Aborted transactions

120 T

1200

100

80 -

60 -

40

20 -

0 1

300.207 Seconds

800

900 1000
Time (Seconds)

1100

1200

1300

the (d) Committed transactions during the net-
work partition

in the presence of LTM server failures in

30



6.4 Tolerance of LTM Failures and Network Partitions

We now study the system performance in the presence of LTM server fail-
ures and network partitions. We perform the evaluation in both DAS-3
and the Amazon Cloud. We configure CloudTPS with 5 LTM servers, and
each transaction and data item has one backup. We generate a workload
using 500 EBs in DAS-3 and 50 EBs in the Amazon cloud, such that the
system would not overload even after an LTM server failure. After the sys-
tem throughput is stabilized, we first kill one LTM server. Several minutes
later, we simulate a 5-minutes-long network partition where each partition
contains one LTM server.

After detecting the failures, all alive LT Ms continuously attempt to con-
tact with other LTMs. The time delay between two attempts of contact
follows a uniform distribution between 200 and 1200 milli-seconds.

Figure 7 illustrates the evaluation in DAS-3. We first warm up the
system by adding 25 EBs every 10 seconds. The full load is reached after
200 seconds. After running the system normally for a while, one LTM server
is shutdown to simulate a failure at time 504 seconds. Figure 7(a) shows that
the system recovers from the failure and the transaction throughput returns
to the previous level. At the same time, as shown in Figure 7(b), a few
transactions are aborted because the incoming transactions that accessed
the failed LTM must be rejected during the recovery process. Afterwards,
at time 846 seconds, we simulate a network partition lasting for 5 minutes.
When we restore the network partition, the system recovers and returns to
the previous level of transaction throughput.

Figure 7(c) shows the performance details of the recovery processes of
the LTM failure. After the LTM failure it takes 18.6 seconds for the system
to return to the previous level of transaction throughput. This duration is
composed of:

e (.5 second to rebuild a new membership: including a delay of 382
milli-seconds before the 2PC to avoid conflicts and then build the new
membership in 113 milli-seconds;

e 12.2 seconds to recover the blocked transactions which were accessing
the failed LTM;

e 5.9 seconds to reorganize the data placement of LTMs to match the
new system membership.

At times 511 and 513 seconds, LTMs recover respectively 55 and 50 blocked
transactions. However there is still one last blocked transaction left, which
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is recovered only at time 517 seconds. The most time of recovering blocked
transactions is spent in waiting for a time-out exception which detects that
an LTM has failed. In our implementation each transaction detects such
failures independently, which explains why transactions recover at different
times.

Figure 7(d) shows the system throughput during the network partition
which occurs from time 846 to 1146 seconds, lasting for 300 seconds. As
shown in Figure 7(d), after the end of network partition, the system re-
covers in 135 milliseconds and returns to the previous level of transaction
throughput. The reason why the system recovers so fast is because there
is no LTM failure along with the network partition, so all blocked transac-
tions can resume execution without recovery, and no data redistribution is
necessary.

Figure 8 depicts the same evaluation in the Amazon cloud. Similar to the
evaluation result in DAS-3, Figure 8(a) shows that the system recovers from
the LTM server failures and the network partition, and Figure 8(b) shows
that transactions are aborted during system recovery. Figure 8(c) shows
the performance detail of recovering the LTM failure: the LTM server fails
at time 486 seconds, after detecting the LTM failure, the system spends 13
seconds to recover and the transaction throughput returns to the previous
level at time 499 seconds. During the failure recovery, the remaining 4 LTMs
firstly merge into one partition in about 1 second. Then the system recovers
transactions in 4 seconds and reorganizes data placement in 8 seconds. Af-
ter the LTM failure, the system encounters a network partition lasting for 5
minutes. Figure 8(d) shows the detail of recovering from the network parti-
tion, which starts from time 851 seconds to 1151 seconds. No LTM failure
happens along with the network partition. After the network partition is
restored, the system recovers in 207 milliseconds and returns to the previous
level of transaction throughput at time 1152 seconds. Note that the system
throughput in the Amazon cloud fluctuates more than in DAS-3 because we
have less control of virtualized resources in the Amazon cloud.

6.5 Memory Management

Lastly, we demonstrate that our memory management mechanism can ef-
fectively prevent LTMs from memory overflow. Furthermore, we study the
performance of CloudTPS with different buffer sizes and data sizes. We
carry out the evaluation in DAS-3 on top of HBase, which provides “Read-
your-writes” consistency just like Bigtable. We configure the system such
that before evicting a data item, LTMs obtain the data item from HBase
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Figure 9: Buffer size vs. total accessed data items of LTM #1

and verify that the obtained value reflects the latest in-memory updates.
Therefore, this performance evaluation represents the system implementa-
tion for the cloud data services supporting “Monotonic-reads” consistency
level.

We first deploy a system with 3 LTMs and impose a constant workload
for one hour. We configure the system so that each LTM can maintain at
most 8000 data items in its buffer. We then evaluate the system under two
different scales of data set sizes: either 10,000 or 1,000,000 records in the
“Item_Stock” table. For the data size of 10,000 items, we impose a workload
of 500 EBs. For the data size of 1,000,000 items, we impose a workload of
250 EBs.

Figure 9(a) and Figure 9(b) show that under both data set sizes, our
mechanism effectively maintains the buffer size of LTM #1 within the limit
of 8000 data items. As shown in the Figure 9(a), using 10,000 items, without
memory management, after an hour, this LTM would have to maintain
almost 140,000 data items in memory. As for the data size of 1,000,000
items, Figure 9(b) shows that, after an hour, the size of total data set
increases to an even larger number of more than 200,000 data items. In
both cases, without memory management, the size of the total accessed
data set increases almost linearly, which would eventually cause a memory
overflow.

We then compare the performance of the system under different data set
sizes. Figure 10 shows that the hit rate of LTM #1 stabilizes around 90%
for 10,000 items, and about 60% for 1 million items. The other LTMs in
the system behave similarly. Figure 11(a) and Figure 11(b) show the total
transaction throughput of the system during the 1 hour evaluation. The
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drops of throughput at some points are due to the JVM garbage collection,
which temporarily block the LTMs. With 10,000 items, the system sustains
a transaction throughput of about 1000 TPS and 99.44% of transactions
complete within 100 ms. For 1 million items, the system sustains about 500
TPS, but only 97.02% of transactions satisfy the performance constraint.

The efficiency of our memory management mechanism depends on the
data locality of the Web application. Figures 11(c) and 11(d) show that
only very few data items are being accessed at a time in the two different
scenarios. Note that Figures 11(c) and 11(d) are in log scale. Figure 11(c)
shows that less than 2000 distinct data items are accessed in each 5 seconds
interval. Comparing to the total accessed data items shown in Figure 9(a),
this application shows strong data locality which implies that our mechanism
can only introduce minor performance overhead?.

Finally, we study the system performance with different buffer sizes of
LTMs in terms of 99th percentile of response times of the system. We con-
figure the system with 20 LTMs and impose a workload of 2400 EBs, which
issues about 4800 transactions per second. We start with the minimum
buffer size required by LTMs to maintain the ACID properties, where only
the absolutely necessary data items remain in the buffer. To achieve this, we

3Note that TPC-W randomly selects books to add into a shopping cart with uniform
distribution. Several works consider that this behavior is not representative of real applica-
tions and create extra locality artificially [45, 5, 4]. We can therefore consider unmodified
TPC-W as a somewhat worst-case scenario.
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implement an “Evict-Now” algorithm that evicts any evictable data items
as soon as possible. r We then increase the buffer size until no data item
is evicted during the evaluation. Similar to the previous evaluation, we
evaluate the system performance with 10,000 and 1 million records in the
“Item_Stock” table.

Figure 12(a) shows the combined buffer size of all LTMs when applying
the “Evict-Now” algorithm. For the data size of 10,000 items, the average
buffer size is 7957 data items, which means 397 data items per LTM. For the
data size of 1 million items, the average buffer size is 14837, so 741 data items
per LTM. Figure 13 shows performance of our system under different buffer
sizes. The initial value of each line in Figure 13 indicates the 99th percentile
of response times of the system using “Evict-Now” algorithm. Therefore,
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We adopt 397 and 741 as the initial values for the X-axis in Figure 13. Note
that we plot Figure 13 in log scale.

We first study the 99th percentile of response times with 10,000 items.
As shown in Figure 13, when we increase the buffer size from the minimum
size of 397 to 1000 data items per LTM, the 99th percentile response time
decreases dramatically from 799 ms to 62 ms. When we continue increasing
the buffer size to 100,000 data items where no data items have to be evicted,
the 99th percentile response time only improves to 46 ms. In other words, in-
creasing the buffer size from 397 to 1000 data items, the response time of the
system decreases by an order of magnitude. Increasing the buffer size even
further by two orders of magnitude to 100,000 data items can only achieve
25% reduction of response time. It is because that at the point of 1000 data
items, the overall buffer size of the system reaches 20,000 data items, which
is already large enough to contain almost all 10,000 “item_stock” data items
and other currently accessed data items from other two tables. Increasing
the buffer size even further can only allow to store more seldomly accessed
data items, and thus cannot effectively improve the hit rate of the system.

We then study the performance result with 1 million items. As shown
in Figure 13, in the beginning, similar to the result with 10,000 items, the
99th percentile of response times decreases dramatically from 54 seconds to
10 seconds, when we increase the buffer size from the minimum size of 741
to 1000 data items for each LTM. However, increasing the buffer space from
1000 to 15,000 does not bring much performance improvement, because the
total data size is so large that the hit rate remains roughly the same. If we
continue increasing the available storage from 15,000 to 100,000, the 99th
percentile of response times decreases dramatically from 7486 ms to 90 ms.
After the point of 100,000 data items, continue increasing the buffer size
further does not bring significant performance improvement.

Comparing the two lines in Figure 13, we notice that a good buffer size
for 10,000 items could be 1000 data items. For the line of “1M items”, we
can find a similar point of 100,000 data items. In both cases, this represents
about 10% of the total data set size.

7 Conclusion

Many Web applications need strong data consistency for their correct ex-
ecution. However, although the high scalability and availability properties
of the cloud make it a good platform to host Web content, scalable cloud
database services only provide relatively weak consistency properties. This
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article shows how one can support ACID transactions without compromis-
ing the scalability property of the cloud for Web applications, even in the
presence of server failures and network partitions.

This work relies on few simple ideas. First, we load data from the cloud
storage system into the transactional layer. Second, we split the data across
any number of LTMs, and replicate them only for fault tolerance. Web ap-
plications typically access only a few partitions in any of their transactions,
which gives CloudTPS linear scalability. CloudTPS supports full ACID
properties even in the presence of server failures and network partitions.
Recovering from a failure only causes a temporary drop in throughput and
a few aborted transactions. Recovering from a network partition, however,
may possibly cause temporary unavailability of CloudTPS, as we explicitly
choose to maintain strong consistency over availability. Our memory man-
agement mechanism can prevent LTM memory overflow. We expect typical
Web applications exhibit strong data locality and our mechanism will only
introduce minor performance overhead. Data partitioning also implies that
transactions can only access data by primary key. Read-only transactions
that require more complex data access can still be executed, but on a pos-
sibly outdated snapshot of the database.

CloudTPS allows Web applications with strong data consistency de-
mands to be scalably deployed in the cloud. This means that Web ap-
plications in the cloud do not need any more to compromise consistency for
scalability.
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