IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 1

CloudTPS: Scalable Transactions
for Web Applications in the Cloud

Zhou Wei, Guillaume Pierre, Chi-Hung Chi

Abstract—NoSQL Cloud data stores provide scalability and high availability properties for web applications, but at the same time
they sacrifice data consistency. However, many applications cannot afford any data inconsistency. CloudTPS is a scalable transaction
manager which guarantees full ACID properties for multi-item transactions issued by Web applications, even in the presence of server
failures and network partitions. We implement this approach on top of the two main families of scalable data layers: Bigtable and
SimpleDB. Performance evaluation on top of HBase (an open-source version of Bigtable) in our local cluster and Amazon SimpleDB in
the Amazon cloud shows that our system scales linearly at least up to 40 nodes in our local cluster and 80 nodes in the Amazon cloud.

Index Terms—Scalability, Web applications, cloud computing, transactions, NoSQL.

1 INTRODUCTION

LOUD computing offers the vision of a virtually infi-
C nite pool of computing, storage and networking re-
sources where applications can be scalably deployed [1].
In particular, NoSQL cloud database services such as
Amazon’s SimpleDB [2] and Google’s Bigtable [3] offer
a scalable data tier for applications in the cloud. These
systems typically partition the application data to pro-
vide incremental scalability, and replicate the partitioned
data to tolerate server failures.

The scalability and high availability properties of
Cloud platforms however come at a cost. First, these
scalable database services allow data query only by
primary key rather than supporting secondary-key or
join queries. Second, these services provide only weak
consistency such as eventual data consistency: any data
update becomes visible after a finite but undeterministic
amount of time. As weak as this consistency property
may seem, it does allow to build a wide range of useful
applications, as demonstrated by the commercial success
of Cloud computing platforms. However, many other
applications such as payment and online auction services
cannot afford any data inconsistency. While primary-
key-only data access is a relatively minor inconvenience
that can often be accommodated by good data structures,
it is essential to provide transactional data consistency to
support the applications that need it.

o Zhou Wei is with VU University Amsterdam, the Netherlands and
Tsinghua University Beijing, China. Email: zhouw@few.vu.nl

o Guillaume Pierre is with VU University Amsterdam, The Netherlands.
Email: gpierre@cs.vu.nl

o Chi-Hung Chi is with Tsinghua University Beijing, China. Email: chichi-
hung@mail.tsinghua.edu.cn

This work is partially supported by the 863 HighTech Program of China under
award #2008AA01212.

Manuscript received Nov. 23, 2010; revised Mar. 2, 2011.

For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org and reference IEEECS Log Number TSCSI-2010-11-0141.
Digital Object Identifier no. 00.0000/TSC.0000.00.

A transaction is a set of queries to be executed atom-
ically on a single consistent view of a database. The
main challenge to support transactional guarantees in
a cloud computing environment is to provide the ACID
properties of Atomicity, Consistency, Isolation and Dura-
bility [4] without compromising the scalability properties
of the cloud. However, the underlying cloud data storage
services provide only eventual consistency. We address
this discrepancy by creating a secondary temporary copy
of the application data in the transaction managers that
handle consistency.

Obviously, any centralized transaction manager would
face two scalability problems: 1) A single transaction
manager must execute all incoming transactions and
would eventually become the performance and avail-
ability bottleneck; 2) A single transaction manager must
maintain a copy of all data accessed by transactions and
would eventually run out of storage space. To support
scalable transactions, we propose to split the transaction
manager into any number of Local Transaction Managers
(LTMs) and to partition the application data and the load
of transaction processing across LTMs.

CloudTPS exploits three properties typical of Web ap-
plications to allow efficient and scalable operations. First,
we observe that in Web applications, all transactions
are short-lived because each transaction is encapsulated
in the processing of a particular request from a user.
This rules out long-lived transactions that make scalable
transactional systems so difficult to design, even in
medium-scale environments [5]. Second, Web applica-
tions tend to issue transactions that span a relatively
small number of well-identified data items. This means
that the commit protocol for any given transaction can
be confined to a relatively small number of servers
holding the accessed data items. It also implies a low
(although not negligible) number of conflicts between
multiple transactions concurrently trying to read/write
the same data items. Third, many read-only queries of

0000-0000/00$00.00 © 2011 IEEE

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 2

Web applications can produce useful results by accessing
an older yet consistent version of data. This allows to
execute complex read queries directly in the cloud data
service, rather than in LTMs.

CloudTPS must maintain the ACID properties even
in the case of server failures. For this, we replicate
data items and transaction states to multiple LTMs, and
periodically checkpoint consistent data snapshots to the
cloud storage service. Consistency correctness relies on
the eventual consistency and high availability properties
of Cloud computing storage services: we need not worry
about data loss or unavailability after a data update has
been issued to the storage service.

It should be noted that the CAP theorem proves
that it is impossible to provide both strong Consistency
and high Availability in the presence of network Parti-
tions [6]. Typical cloud services choose high availability
over strong consistency. In this article, we make the
opposite choice and prefer providing transactional con-
sistency for the applications that require it, possibly at
the cost of unavailability during network failures.

To implement CloudTPS efficiently, we must address
two additional issues:

Firstly, there exists a wide variety of cloud data ser-
vices [2], [3], [7], [8]. CloudTPS should be portable across
them, and the porting should require only minor adapta-
tion. On the one hand, as current cloud data services use
different data models and interfaces, we build CloudTPS
upon their common features: our data model is based
on key-value pairs. The implementation only demands
a simple primary-key-based “GET/PUT” interface from
cloud data services. On the other hand, current cloud
data services provide different consistency levels. For
instance, Bigtable supports transactions on single data
items while SimpleDB provides either eventual consis-
tency or single-item transactions. To ensure the correct-
ness and efficiency of CloudTPS, we implement various
mechanisms for different underlying consistency levels.

Secondly, loading a full copy of application data into
the system may overflow the memory of LTMs, forcing
one to use many LTMs just for their storage capacity.
This is, however, not necessary as only the currently
accessed data items contribute to maintaining ACID
properties. Other unaccessed data items can be evicted
from the LTMs if we can fetch their latest stored versions
from the cloud storage service. Web applications exhibit
temporal locality where only a portion of application
data is accessed at any time [9], [10]. We can therefore
design efficient memory management mechanisms to
restrict the number of in-memory data items in LTMs
while maintaining strong data consistency. Data items
being accessed by uncommitted transactions must stay
in the LTMs to maintain ACID properties; others depend
on a trade-off between memory size and access latency.
We use a cost-aware replacement policy to dictate which
data items should remain in the LTMs.

We demonstrate the scalability of our transactional
database service using a prototype implementation'.
Following the data models of Bigtable and SimpleDB,
transactions are allowed to access any number of data
items by primary key at the granularity of the data row.
The list of primary keys accessed by a transaction must
be given explicitly before executing the transaction. This
means for example that range queries are not supported
within a transaction. CloudTPS supports both read-write
and read-only transactions.

We evaluate our prototype under a workload derived
from the TPC-W e-commerce benchmark [11]. We imple-
mented CloudTPS on top of two different scalable data
layers: HBase, an open-source clone of BigTable [12],
running in our local cluster; and SimpleDB, running in
the Amazon Cloud [13]. We show that CloudTPS scales
linearly to at least 40 LTMs in our local cluster and 80
LTMs in the Amazon Cloud. This means that, according
to the principles of Cloud computing, any increase in
workload can be accommodated by provisioning more
servers. CloudTPS tolerates server failures, which only
cause a few aborted transactions (authorized by the
ACID properties) and a temporary drop of throughput
during transaction recovery and data reorganization. In
case of network partitions, CloudTPS may reject incom-
ing transactions to maintain data consistency. It recovers
and becomes available again as soon as the network is
restored, while still maintaining ACID properties. We
finally evaluate our memory management mechanism
and show that it can effectively control the buffer sizes
of LTMs and only cause minor performance overhead.

This article is an extended version of a previous con-
ference paper [14]. The additional contributions of this
article are as follows: (i) We describe the membership
management and failure recovery protocol in detail.
This protocol maintains ACID properties in the case of
machine failures and network partitions. (ii) We present
the memory management mechanism, which prevents
LTMs from memory overflow and reduces the required
number of LTMs. (iii) We describe our prototype imple-
mentation on top of SimpleDB and discuss the port of
CloudTPS to other cloud data services. (iv) We further
demonstrate the scalability of our transactional system
by evaluating the performance of our prototype imple-
mentation on top of SimpleDB in the Amazon Cloud.

This article is organized as follows. Sections 2 presents
related work. Sections 3 and 4 respectively describe the
system model and the system design. Section 5 discusses
implementation details and two optimizations for mem-
ory management and read-only transactions. Section 6
presents performance evaluations. Section 7 concludes.

2 RELATED WORK

2.1 Data Storage in the Cloud

The simplest way to store structured data in the cloud is
to deploy a relational database such as MySQL or Oracle.

1. Our prototype is available at http://www.globule.org/cloudtps.

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 3

The relational data model, typically implemented via
the SQL language, provides great flexibility in accessing
data. It supports sophisticated data access operations
such as aggregation, range queries, join queries, etc.
RDBMSs support transactions and guarantee strong data
consistency. One can easily deploy a classical RDBMS
in the cloud and thus get support for transactional
consistency. However, the flexible query language and
strong data consistency prevent one from partitioning
data automatically, which is the key for performance
scalability. These systems rely on replication techniques
and therefore do not bring extra scalability improvement
compared to a non-cloud deployment [15], [16].

On the other hand, a new family of cloud database
services such as Google Bigtable [3], Amazon SimpleDB
[2], Yahoo PNUTS [7], and Cassandra [17], uses sim-
plified data models based on attribute-value pairs. Ap-
plication data are organized into tables, of which each
is a collection of data items. Data items are typically
accessed through a “GET/ PUT” interface by primary
key. Additional sophisticated data access operations,
such as range queries in SimpleDB or data item scanning
in Bigtable, are limited within a table. None of them
supports operation across multiple tables, such as join
queries. This data model allows such systems to partition
application data into any number of tables efficiently.
Furthermore, these cloud database services relax data
consistency: they disallow any consistency rules across
multiple data partitions and provide little support for
transactions. For example, SimpleDB and Cassandra
support eventual consistency, which means that data
updates can be visible after an undeterministic amount
of time [18]. Bigtable, SimpleDB and PNUTS support
transactions but only over a single data item, which is
not sufficient to guarantee strong data consistency.

Google Megastore [19], [20] is a transactional indexed
record manager on top of BigTable. Megastore supports
ACID transactions across multiple data items. However,
programmers have to manually link data items into
hierarchical groups, and each transaction can only access
a single group. In CloudTPS, transactions can access any
set of data items together.

Microsoft SQL Azure Database [8] is a scalable cloud
data service which supports the relational data model
and ACID transactions containing any SQL queries.
However, similar to Megastore, it requires manual data
partitioning and does not support distributed transac-
tions or queries across multiple data partitions located
in different servers.

An alternative approach to implement a cloud
database is to run any number of database engines in the
cloud, and use the cloud file system as shared storage
medium [21]. Each engine has access to the full data
set and therefore can support any form of SQL queries.
On the other hand, this approach cannot provide full
ACID properties. In particular, the authors claim that
the Isolation property cannot be provided, and that only
reduced levels of consistency can be offered.

Sudipt [22] proposes a similar approach to ours to
support scalable transactions in the cloud. It also splits
the transaction manager into multiple ones, where each
one loads a specific data partition from the cloud storage
service and owns exclusive access to it. However, the
system does not address the problem of maintaining
ACID properties in the presence of machine failures.
Furthermore it allows only restricted transactional se-
mantic, similar to the one of Sinfonia [23], for distributed
transactions across multiple data partitions.

2.2 Distributed Transactional Systems

There have been decades of research efforts in efficiently
implementing distributed transactions for distributed
database systems [24]. A number of distributed commit
protocols [25], [26], [27] and concurrency control mech-
anisms [28], [29] have been proposed to maintain the
ACID properties of distributed transactions. However, as
distributed databases use the same relational data model
as RDBMS, they also cannot partition the data automati-
cally and thus lack scalability. On the other hand, we can
apply these techniques as building blocks in designing
CloudTPS. We rely on 2-Phase Commit (2PC) [25] as the
distributed commit protocol for ensuring Atomicity, and
on timestamp-ordering [30] for concurrency control.

H-Store [31], [32] is a distributed main memory OLTP
database, which executes on a cluster of shared-nothing
main memory executor nodes. H-Store supports trans-
actions accessing multiple data records with SQL se-
mantics, implemented as predefined stored procedures
written in C++. It also replicates data records to tolerate
machine failures. H-Store focuses on absolute system
performance in terms of transaction throughput, and
achieves very high performance on one executor node.
However, H-Store’s scalability relies on careful data par-
tition across executor nodes, such that most transactions
access only one executor node. On the other hand, we
prefer to focus on achieving linear scalability specifically
for Web applications, such that any increase in workload
can be accommodated by provisioning more servers.
Also note that H-Store does not maintain persistent logs
or keep any data in the non-volatile storage of either
the executor nodes nor any backing store. CloudTPS
checkpoints the updates back to the cloud data service
to guarantee durability for each transaction.

Sinfonia [23] is a distributed message passing frame-
work which supports transactional access to in-memory
data across a distributed system. It addresses fault
tolerance by primary-copy replication and by writing
transactionally consistent backups to disk images. In
contrast with our work, Sinfonia provides a low-level
data access interface based on memory address and only
supports transactions with restricted semantics. Besides,
it requires the applications to manage data placement
and caching themselves across the distributed system.
Sinfonia targets infrastructure applications which require
fine-grained control of data structure and placement to

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 4

optimize performance. On the other hand, Web appli-
cations usually require rapid and flexible development,
so we prefer accessing a logical and location-transparent
data structure with rich-semantic transactions.

Transactional memory (TM) systems relate to our
work as they support transactional access to in-memory
data. They traditionally target single multiprocessor ma-
chines [33], but recent research works extend them to
distributed systems and support distributed transactions
across in-memory data of multiple machines [34], [35],
[36]. Distributed TM systems however provide no dura-
bility for transactions and do not address machine fail-
ures. The reason is that TM systems are mainly designed
for parallel programs that solve large-sized problems.
In this case, only the final results are valuable and
required to be durable. On the other hand, TM systems
usually execute in a managed environment with few
machine failures. They thus provide no durability for
intermediate transactions and do not address machine
failures to maximize the system performance. However
for Web applications which are usually interactive, the
result of each transaction is critical. TM systems are
therefore not suitable for Web applications.

One of the most similar system to ours is the Scalaris
transactional DHT [37]. It splits data across any number
of DHT nodes, and supports transactional access to any
set of data items addressed by primary key. However, it
is purely an in-memory system so it does not supports
durability for the stored data. In contrast, CloudTPS
provides durability for transactions by checkpointing
data updates into the cloud data service. Scalaris relies
on the Paxos transactional algorithm, which can address
Byzantine failures, but introduces high costs for each
transaction. Moreover, each query requires one or more
requests to be routed through the DHT, potentially
adding latency and overhead. Cloud computing envi-
ronments can also be expected to be much more reliable
than typical peer-to-peer systems, which allows us to use
more lightweight mechanisms for fault tolerance.

Similar to our work, Google Percolator provides multi-
row ACID transactions on top of Bigtable [38]. Percolator
employs Bigtable as a shared memory for all instances
of its client-side library to coordinate transaction man-
agement. The data updates and transaction coordination
information, such as locks and primary node of a trans-
action, are directly written into BigTable. Using single-
rows transactions of Bigtable, Percolator can atomically
perform multiple actions on a single row, such as lock a
data item and mark the primary node of the transaction.
In contrast, CloudTPS maintains the data updates, trans-
action states and queue of transactions all in the memory
of LTMs. The underlying cloud data store does not
participate in the transaction coordination. LTMs check-
point data updates back to the cloud data store only
after the transaction has been committed. The design
differences of CloudTPS and Percolator originate from
their distinct focuses. CloudTPS targets response-time
sensitive Web applications, while Percolator is designed

r=-=-- r Local ~ 1 !
- IQO ' Virtual Nodes Transaction! Load Data '8 8 !
r T uep 1 T " Managers ! I@ 8 !
: |quuests|©© ransacf mnsl 1 <j : :
1

S = o0
1 1 Checkpoint | 1
L _@_I : : 4 l@ 8 1
1 1
Q_Q 02 0 | B00;

Clients Web Application Transaction Processing Cloud
System Storage
Service

Fig. 1. CloudTPS system organization.

for incremental processing of massive data processing
tasks which typically have a relaxed latency requirement.

3 SYSTEM MODEL

Figure 1 shows the organization of CloudTPS. Clients
issue HTTP requests to a Web application, which in turn
issues transactions to a Transaction Processing System
(TPS). The TPS is composed of any number of LTMs,
each of which is responsible for a subset of all data
items. The Web application can submit a transaction
to any LTM that is responsible for one of the accessed
data items. This LTM then acts as the coordinator of the
transaction across all LTMs in charge of the data items
accessed by the transaction. The LTMs operate on an in-
memory copy of the data items loaded from the cloud
storage service. Data updates resulting from transactions
are kept in memory of the LTMs. To prevent data loss
due to LTM server failures, the data updates are repli-
cated to multiple LTM servers. LTMs also periodically
checkpoint the updates back to the cloud storage service
which is assumed to be highly-available and persistent.
We implement transactions using the 2-Phase Commit
protocol (2PC). In the first phase, the coordinator re-
quests all involved LTMs and asks them to check that the
operation can indeed been executed correctly. If all LTMs
vote favorably, then the second phase actually commits
the transaction. Otherwise, the transaction is aborted.
CloudTPS transactions are short-lived and access only
well-identified data items. CloudTPS allows only server-
side transactions implemented as predefined procedures
stored at all LTMs. Each transaction contains one or more
sub-transactions, which operate on a single data item
each. The application must provide the primary keys of
all accessed data items when it issues a transaction.
Concretely, a transaction is implemented as a Java
object containing a list of sub-transaction instances. All
sub-transactions are implemented as sub-classes of the
SubTransaction abstract Java class. As shown in Fig-
ure 2, each sub-transaction contains a unique class name
to identify itself, a table name and primary key to
identify the accessed data item, and input parameters
organized as attribute-value pairs. Each sub-transaction
implements its own data operations by overriding the
run() operation. The return value of the run() operation
specifies whether this sub-transaction is able to commit.

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 5

public abstract class SubTransaction {
//Input by Web Application
public String className;
public String tableName;
public String primaryKey;
public Hashtable<String , String> parameters;
//Input by LTMs
public Hashtable<String , String> dataltem;
// Output
public String [][] dataToReturn;
public String[][] dataToPut;
public String[] dataToDelete;
//Data Operations of the SubTransaction
public VoteResult run();

}

\S

Fig. 2. The parent class of all sub-transactions classes.

The execution of run() also generates the data updates
and the results for read data operations, which are stored
in the Output attributes.

The bytecode of all sub-transactions is deployed at all
LTMs beforehand. A Web application issues a transaction
by submitting the names of included sub-transactions
and their parameters. LTMs then construct the corre-
sponding sub-transaction instances to execute the trans-
action. In the first phase of 2PC, LTMs load the data
items of each sub-transaction and execute the run() op-
eration to decide on their votes and generate proposed
data updates. If an agreement to “COMMIT” is reached,
LTMs apply the updates.

We assign data items to LTMs using consistent hash-
ing [39]. To achieve a balanced assignment, we first
cluster data items into virtual nodes, and then assign
virtual nodes to LTMs. As shown in Figure 1, multi-
ple virtual nodes can be assigned to the same LTM.
To tolerate LTM failures, virtual nodes and transaction
states are replicated to one or more LTMs. After an LTM
server failure, the latest updates can then be recovered
and affected transactions can continue execution while
satisfying ACID properties.

4 SYSTEM DESIGN

We now detail the design of the TPS to guarantee the
Atomicity, Consistency, Isolation and Durability proper-
ties. Each of the properties is discussed individually. We
then discuss the membership mechanisms to guarantee
the ACID properties even in case of LTM failures and
network partitions.

4.1 Atomicity

The Atomicity property requires that either all opera-
tions of a transaction complete successfully, or none of
them does. To ensure Atomicity, for each transaction
issued, CloudTPS performs two-phase commit (2PC)
across all the LTMs responsible for the data items
accessed. As soon as an agreement to “COMMIT” is
reached, the transaction coordinator can simultaneously

return the result to the web application and complete
the second phase [40].

To ensure Atomicity in the presence of server failures,
all transaction states and data items should be replicated
to one or more LTMs. LTMs replicate the data items to
the backup LTMs during the second phase of transaction.
Thus when the second phase completes successfully,
all replicas of the accessed data items are consistent.
The transaction state includes the transaction timestamp
(discussed in Section 4.3), the agreement to “COMMIT,”
and the list of data updates to be committed.

When an LTM fails, the transactions it was coordinat-
ing can be in two states. If a transaction has reached
an agreement to “COMMIT,” then it must eventually
be committed; otherwise, the transaction can still be
aborted. Therefore, we replicate transaction states in two
occasions: 1) When an LTM receives a new transaction,
it must replicate the transaction state to other LIMs
before confirming to the application that the transaction
has been successfully submitted; 2) After all participant
LTMs reach an agreement to “COMMIT” at the coordi-
nator, the coordinator updates the transaction state at
its backups with the agreement to “COMMIT” and all
the data updates. The participant LTMs piggyback their
data updates with their vote messages. This creates in
essence in-memory “redo logs” at the backup LTMs. The
coordinator must finish this step before carrying out the
second phase of the commit protocol. If the coordinator
fails after this step, the backup LTMs can then commit
the transaction. Otherwise, it can simply abort the trans-
action without violating the ACID properties.

An LTM server failure also results in the inaccessibility
of the data items it was responsible for. It is necessary to
re-replicate these data items to maintain IV backups. If a
second LTM server failure happens during the recovery
process of a previous LTM server failure, the system
initiates the recovery of the second failure after the first
recovery process has completed. The transactions that
cannot recover from the first failure because they also
accessed the second failed LTM are left untouched until
the second recovery process.

As each transaction and data item has IV +1 replicas in
total, the TPS can thus guarantee the Atomicity property
under the simultaneous failure of N LTM servers.

4.2 Consistency

The Consistency property requires that a transaction,
which executes on a database that is internally consis-
tent, will leave the database in an internally consistent
state. Consistency is typically expressed as a set of
declarative integrity constraints. We assume that the con-
sistency rule is applied within the logic of transactions.
Therefore, the Consistency property is satisfied as long
as all transactions are executed correctly.

4.3

The Isolation property requires that the behavior of a
transaction is not disturbed by the presence of other

Isolation

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 6

transactions that may be accessing the same data items
concurrently. The TPS decomposes a transaction into
a number of sub-transactions, each accessing a single
data item. Thus the Isolation property requires that if
two transactions conflict on any number of data items,
all their conflicting sub-transactions must be executed
sequentially, even though the sub-transactions are exe-
cuted in multiple LTMs.

We apply timestamp ordering for globally ordering
conflicting transactions across all LTMs. Each transaction
has an globally unique timestamp among all of its con-
flicting transactions. All LTMs then order transactions as
follows: a sub-transaction can execute only after all con-
flicting sub-transactions with a lower timestamp have
committed. It may happen that a transaction is delayed
(e.g., because of network delays) and that a conflicting
sub-transaction with a younger timestamp has already
committed. In this case, the older transaction will abort,
obtain a new timestamp and restart the execution of all
of its sub-transactions.

As each sub-transaction accesses only one data item
by primary key, the implementation is straightforward.
Each LTM maintains a list of sub-transactions for each
data item it handles. The list is ordered by timestamp
so LTMs can execute the sub-transactions sequentially
in the timestamp order. The exception discussed before
happens when an LTM inserts a sub-transaction into
the list but finds its timestamp smaller than the one
currently being executed. It then reports the exception to
the coordinator LTM of this transaction so that the whole
transaction can be restarted. We extended the 2PC with
an optional “RESTART” phase, which is triggered if any
of the sub-transactions reports an ordering exception.
After a transaction reaches an agreement and enters the
second phase of 2PC, it cannot be restarted any more.

We are well aware that assigning timestamps to trans-
actions using a single global timestamp manager can
create a potential bottleneck and a single point of failure
in the system. A simpler, fully decentralized solution
consists of letting each LTM generate timestamps using
its own local clock, coupled with the LTM’s ID to enforce
a total order between timestamps. Note that this solution
does not require perfectly synchronized clocks for ensur-
ing correctness. Transactions do not necessarily need to
be timestamped according to their real-time submission
order, but there must simply be a total order between
any pair of transactions. However, if one LTM clock
significantly lags behind the others, then the transactions
submitted at this LTM will have a higher chance of being
restarted than others. The DAS-3 cluster does not use
NTP synchronization between its nodes, which is the
reason why we used a centralized timestamp manager
in our experiments.

4.4 Durability

The Durability property requires that the effects of com-
mitted transactions cannot be undone and would survive

server failures. In our case, it means that all the data
updates of committed transactions must be successfully
written back to the backend cloud storage service.

The main issue here is to support LTM failures without
losing data. For performance reasons, the commit of a
transaction does not directly update data in the cloud
storage service but only updates the in-memory copy
of data items in the LTMs. Instead, each LTM issues
periodic updates to the cloud storage service. During
the time between a transaction commit and the next
checkpoint, durability is ensured by the replication of
data items across several LTMs. After checkpoint, we can
rely on the high availability and eventual consistency
properties of the cloud storage service for durability.

When an LTM server fails, all the data items stored
in its memory that were not checkpointed yet are lost.
However, as discussed in Section 4.1, all data items of
the failed LTM can be recovered from the backup LTMs.
The difficulty here is that the backups do not know
which data items have already been checkpointed. One
solution would be to checkpoint all recovered data items.
However, this can cause a lot of unnecessary writes.
One optimization is to record the latest checkpointed
transaction timestamp of each data item and replicate
these timestamps to the backup LTMs. We further cluster
transactions into groups, then replicate timestamps only
after a whole group of transactions has completed.

Another issue related to checkpointing is to avoid
degrading the system performance at the time of a
checkpoint. The checkpoint process must iterate through
the latest updates of committed transactions and select
the data items to be checkpointed. A naive implemen-
tation that would lock the whole buffer during check-
pointing would also block the concurrent execution of
transactions. We address this problem by maintaining
an extra buffer in memory with the list of data items
to be checkpointed. Transactions write to this buffer by
sending updates to an unbounded non-blocking concur-
rent queue [41]. This data structure has the property of
allowing multiple threads to write concurrently to the
queue without blocking each other. Moreover, it orders
elements in FIFO order, so old updates will not override
younger ones.

4.5 Membership

To correctly execute transactions, all LTMs must share
the same view of system membership to determine
the assignment of data items consistently. The system
membership changes when LTMs join, leave, fail or
recover from failures. These events may happen at any
time, including during the execution of transactions. To
ensure the ACID properties, changes in system mem-
bership must not take place during the 2PC execution
of any transaction. When an LTM fails, other LTMs
must therefore first complete the recovery of all ongoing
transactions before updating the system membership.
In addition to LTM failures, the system may also
encounter network failures, which can temporarily split

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 7

the LTMs into multiple disconnected partitions. In such
a case, according to the CAP dilemma, we decide to
guarantee consistency at the possible cost of a loss of
availability. In the case of system partitioning, trans-
actions may still proceed provided that: (i) one of the
partitions is able to elect itself as the “majority” partition;
and (ii) its LTMs can recover the consistent states of
all data items. In all other cases the system will reject
incoming transactions until it fulfills the condition again.

This section presents our mechanism to recover the
system consistently from network partitions.

4.5.1 Membership Updates

To ensure a consistent membership, all membership
changes are realized through a 2PC across all available
LTMs. All LTMs block incoming transactions until the
new system membership has been committed consis-
tently. In the first phase of a membership change, each
LTM waits for all of its coordinated ongoing transactions
to terminate, and then votes “COMMIT.” After reaching
an agreement to “COMMIT,” the second phase updates
the system membership and applies the new data as-
signment through data item replication/relocation.

Each membership change creates a new membership
version attached to a monotonically increasing times-
tamp. Each LTM attaches the timestamp of its current
membership to all of its messages. If an LTM receives
a message with a higher timestamp than its own, this
means that the other LTMs consider it as having failed.
The concerned LTM discards its entire state and rejoins.

After each membership change, the new timestamp
is stored in a special “Membership” table in the cloud
data service. By scanning through this “Membership”
table, any new LTM or any Web application instance can
locate the currently available LTMs. One issue is that
the cloud data services may return a stale membership.
However, one can contact the TPS and obtain the latest
membership as long as the stale membership contains at
least one LTM currently in the TPS.

Any LTM may initiate a membership update if it
wants to join the system or it detects the unavailability
of other LTMs. This means that multiple membership
updates may be issued simultaneously. To guarantee
the isolation of such updates, we use a simple opti-
mistic concurrency control mechanism so that only one
membership update can take place at a time [42]. If an
LTM receives a request for a membership update before
a previous one has finished, then this LTM will vote
“ABORT” to the latter. To avoid continuous conflicts and
aborts, LTMs may insert a random time delay before re-
initiating the aborted membership update.

4.5.2 Dealing with Network Partitions

In case of a network partition, multiple system subsets
may consider that the other unreachable LTMs have
failed, recover from their “failures” and carry on with
processing the application workload independently from

Fig. 3. An example of unclean network partition.

each other. However, this would violate the ACID prop-
erties and must therefore be avoided.

For simplicity, we assume that no network partition
occurs during the recovery of another partition. Support-
ing this latter case requires additional algorithms that we
consider out of the scope of this article.

We use the Accessible Copies algorithm [43] to recover
the system consistently during network partitions. This
algorithm ensures that only one partition may access
a given data item by allowing access to a given data
item only within a partition that contains a majority
of replicas. Instead of using a majority partition for
each data item, we adapt the “majority” rule such that
only the partition that contains more than half of the
previous membership can access all data items. Minority
partitions are forbidden access to any data item. It may
happen that the majority partition lacks more than N
LTM servers from the previous membershipz, and thus
cannot recover all data items; in this case it rejects all
incoming transactions until it can recover all data items.

Once a majority partition is established, it can recover
all the ongoing transactions and accept new incoming
transactions. After recovery, all LTMs in the majority
partition have the new system membership with an
increased timestamp. The other ones, which still have
the previous membership timestamp, can detect after
network partition recovery that they have been excluded
from the membership, and rejoin as new members.

When an LTM discovers that other LTMs are unreach-
able because of LTM crashes and/or network partitions,
it identifies its new partition membership through a
2PC across all LTMs. In the first phase, it sends an
“invitation” to all LTMs; any responding LTM which
votes “COMMIT” belongs to its partition membership.
After all LTMs either respond or time-out, the second
phase updates the partition membership of all LTMs in
the partition of the coordinator. One optimization is to
exclude the discovered unreachable LTMs from the first
2PC of building partition membership. This optimization
is effective for the scenario of LTM failures, avoiding a
possible delay of time-out in waiting for responses from
these failed LTMs. In case of network partitions, the first
2PC may fail to establish a majority partition to recover
the system. LTMs should then include these excluded
LTMs back into the following periodic 2PCs building
partition membership.

The above mechanism can organize the TPS into a
number of disjoint partitions, provided that the net-

2. Assuming that each transaction and data item has N + 1 replicas.

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 8

work is “cleanly” partitioned: any two LTMs in the
same partition can communicate, and any two LITMs
in different partitions cannot. However, a network may
also be “uncleanly” partitioned due to the lag of recon-
structing routing tables. Figure 3 shows an example of
unclean partition where each LTM has a different view
of reachable LTMs: view(A) = {A,C}, view(B) = {B,C}
and view(C) = {A,B,C}. In this case, LTM C may join
two different partitions: either {A,C} or {B,C}, which
both turn out to be majority partitions. To ensure that
an LTM can only belong to one partition at a time, we
define that if an LTM has already joined a partition,
it will vote “ABORT” to any “invitation” of joining a
different partition.

Minority partitions periodically try to rejoin the sys-
tem by checking if previously unavailable nodes become
reachable again. Receiving an “ABORT” vote for an
“invitation” indicates that partitions are reconnected. In
this case, the two partitions can be merged through a
2PC across all LTMs in the two partitions. The first
phase is to push the memberships of two partitions
to all the participant LTMs. A participant LTM votes
“COMMIT” if the received membership matches its
current latest partition membership. Otherwise, it votes
“ABORT.” If an agreement to “COMMIT” is reached, the
second phase updates the partition membership of all
participant LTMs into the combined membership of two
partitions. If any participant LTM votes “ABORT” or fails
to respond, the 2PC is aborted.

5 SYSTEM IMPLEMENTATION

This section discusses implementation details of
CloudTPS, in particular how to support various
backend cloud data storage services. We also present
two optional optimizations: memory management to
prevent memory overflow in the LTMs, and handling of
read-only transactions containing complex read queries.

5.1 Portability

CloudTPS relies on a cloud data storage service to ensure
transaction durability. However, current cloud data stor-
age services support different data models, consistency
guarantees, operation semantics and interfaces. Adapt-
ing CloudTPS to all of them is a challenge. We compare
three prominent and typical cloud data services: Amazon
SimpleDB, Google Bigtable and Yahoo PNUTS. Our im-
plementation is compatible with SimpleDB and Bigtable.
Porting CloudTPS to other data services requires only
minor adaptations.

SimpleDB, Bigtable and PNUTS have a number of
similarities in their data models. They all organize ap-
plication data into tables. A table is structured as a
collection of data items with unique primary keys. The
data items are described by attribute-value pairs. All
attribute values are typed as strings. Data items in the
same table can have different attributes. Data items are

TABLE 1
Key differences between cloud data services
SimpleDB Bigtable PNUTS
Data Item Multi-value Multi-version Multi-version
attribute with timestamp | with timestamp
Explicitly
Schema No schema Column-families claimed
attributes
Range queries Single-table Single-table
Operation on arbitrary scan with scan with
attributes various filtering predicates
of a table conditions
Consistency Eventual Single-row Single-row
consistency transaction transaction

accessed with “GET/PUT” by primary key. Operations
across tables, such as join queries, are not supported.

On the other hand, as shown in Table 1, the three cloud
data services also have some key differences:

First, SimpleDB supports multiple values per attribute
of a data item, while Bigtable and PNUTS only allow
one. To be compatible with all of them, our data model
allows only one value per attribute.

Second, SimpleDB does not impose a predefined
schema for its tables. PNUTS requires explicit claims of
all attributes in a table, but it is still compatible with
SimpleDB, as it does not require all records to have
values for all claimed attributes and new attributes can
be added at any time without halting query or update ac-
tivity. On the other hand, Bigtable groups attributes into
predefined column-families. To access an attribute, one
must include its column-family name as its prefix. We
address this difference by always prepending attribute
names with the column-family name for Bigtable.

Third, all three cloud data services support sophis-
ticated data access operations within a table, but via
different APIs. SimpleDB supports range queries inside
a table with its specific language; Bigtable and PNUTS
provide similar functionality with table scanning using
various filtering conditions or predicates. This difference
is irrelevant to the system design described before, as
it accesses data items only by primary key. However,
the optimization of read-only transactions, described in
Section 5.3, allows Web applications to access consistent
data snapshots in cloud data services directly via their
APIs. Therefore, the implementation of this optimization
depends on the interface of the underlying cloud data
service.

Finally, SimpleDB provides eventual consistency by
default so that applications may read stale data. In
contrast, Bigtable and PNUTS support single-row trans-
actions, so they can guarantee returning the latest up-
dates. We assume that when CloudTPS starts and loads
a data item from the cloud data service for the first
time, all the replicas of this data item are consistent.
So CloudTPS can obtain the latest updates in this case,
regardless of the consistency level of underlying cloud
data service. However, this is not true for reloading
a data item that has been recently updated. Different

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 9

data consistency models of cloud data services require
additional adaptations to implement our performance
optimizations, as discussed in the following sections.

5.2 Memory Management

For efficiency reasons we keep all data in the main
memory of the LTMs. However, maintaining a full copy
of all application data may overflow the memory space,
if the size of the data is large. One would thus have to
allocate unnecessary LTM servers just for their memory
space, rather than for their contributions to performance
improvement. On the other hand, we notice that Web
applications exhibit temporal data locality so that only
a small portion of application data is accessed at any
time [9], [10]. Keeping unused data in the LTMs is not
necessary for maintaining ACID properties, so LTMs can
evict these data items in case of memory shortage, and
reload them from the cloud data service when necessary.

The key issue is that the eviction of any data items
from LTMs must not violate the ACID properties of
transactions. Obviously, the data items that are currently
accessed by ongoing transactions must not be evicted
until the transaction completes and the data updates
have been checkpointed. After evicting a data item
from the LTMs, future transactions may require it again.
To guarantee strong consistency for these transactions,
LTMs have to guarantee that the latest version of the
evicted data items can be obtained from the cloud data
service in the next read. The solution to this issue,
however, depends on the consistency level guaranteed
by the underlying cloud data service. To ensure that
the latest version of a data item is visible, CloudTPS re-
quires that the underlying cloud data service supports at
least “Monotonic-reads” consistency [44]. If the data ser-
vice provides the “Read-your-writes” consistency, check-
pointing back the latest updates successfully is sufficient
to be able to evict a data item. For instance, Bigtable and
PNUTS support single-row transactions and thus pro-
vide “Read-your-writes” consistency. If the data service
provides only eventual consistency, such as in SimpleDB,
then LTMs may still obtain stale data even after a “GET”
returned the latest version. To address this problem, we
store the timestamps of the latest versions of all data
items in LTMs, which can then determine if the newly
loaded version of data item is up-to-date. If it is not,
LTMs will abort the transactions and maintain ACID
properties at the cost of rejecting these transactions.

Storing the latest timestamps of all data items in
memory may also overflow the memory if the number of
data items is extremely large. Storing them in the cloud
data service is not an option, since they must maintain
strong consistency. A simple solution could be to store
them in the local hard drive of the LTM.

Another difficulty is that SimpleDB does not support
multi-versions with timestamp, but multi-values for an
attribute. We address this by attaching a timestamp at
the end of the value of each attribute and so transform
“multi-values” into “multi-versions.”

To minimize the performance overhead of memory
management, we must maximize the hit rate of trans-
actions in LTMs and thus carefully select which data
items should be evicted. Standard cache replacement
algorithms, such as LRU, assume that all data items
have identical sizes. However, in CloudTPS, data items
can have very different sizes, leading to poor perfor-
mance. Instead we adopt the cost-aware GreedyDual-
Size (GDS) algorithm [45], which leverages knowledge
of data item sizes to select data items to evict. The GDS
algorithm associates a value H to each data item p:
H(p) = L+cost/size, where L is the H value of the latest
evicted data item. We set the cost parameter to 1 for all
data items as this optimizes hit rate. The parameter size
refers to the size of data item p. Each time an LTM needs
to replace a data item, it selects the data item with the
lowest H value and updates its L value to the H value
of this evicted data item. When a data item is accessed,
the H value of this data item is recalculated with the
updated parameters: the latest L value and its possibly
changed size.

5.3 ReadOnly Transactions

CloudTPS supports read-write and read-only transac-
tions indifferently. The only difference is that in read-
only transactions no data item is updated during the
second phase of 2PC. Read-only transactions have the
same strong data consistency property as read-write
transactions, but also the same constraint: accessing well
identified data items by primary key only. However,
CloudTPS provides an additional feature to support
complex read-only transactions containing for example
range queries.

We exploit the fact that many read queries can produce
useful results by accessing a consistent but possibly
stale data snapshot. For example, in e-commerce Web
applications, a promotion service may identify the best
seller items by aggregating recent orders information.
However, it may not be necessary to compute the result
based on the absolute most recent orders. We therefore
introduce the concept of Weakly-Consistent Read-only
Transaction (WCRT): A WCRT contains any number
of read operations offered by the cloud data service,
such as table scans for Bigtable. Web applications issue
WCRTs directly to the cloud data service, bypassing the
LTMs. All read operations of a WCRT executes on the
same internally consistent but possibly slightly outdated
snapshot of the database.

To implement WCRTs, we introduce a snapshot mech-
anism in the checkpoint process of LTMs, which marks
each data update with a specific snapshot ID that is
monotonically increasing. This ID is used as the version
number of the newly created version when it is written
to the cloud storage service. A WCRT can thus access
a specific snapshot by only reading the latest version of
any data item of which the timestamp is not larger than
the snapshot ID.

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 10

We group transactions in sets of M conscutive trans-
actions. Each set constitutes a new snapshot. Assuming
that the transaction timestamp is implemented as a
simple counter, the first snapshot reflects all the updates
of committed transactions [0,M). The next snapshot
reflects updates from transactions [0,2M/), and so on.
At the finest granularity, with M = 1, each read-write
transaction creates a new snapshot.

The key issue in this snapshot mechanism is to de-
termine whether a consistent snapshot is fully available
in the cloud data service such that WCRTs can execute
on it. A consistent snapshot contains all the updates of
the transactions which it reflects. It is fully available only
after all these updates have been checkpointed back. The
main difficulty is that a transaction may update data
items across multiple LTMs, where each LTM performs
checkpoints for its own data items independently from
the others. Therefore, CloudTPS must collect checkpoint
progress information from multiple LTMs. To address
this issue, we use the cloud data service as a shared
medium for collecting checkpoint progress information.
The system creates an extra table named “Checkpoint,”
where each LTM writes its latest completed snapshot ID
into a separate data item using its membership ID as the
primary key value. So the minimal snapshot ID stored
in the “Checkpoint” table represents the latest snapshot
of which the updates are all checkpointed.

Even though all the updates of a snapshot have been
checkpointed successfully, the availability of this snap-
shot still depends on the consistency level provided by
the cloud data service. The data services must provide
at least “Monotonic-reads” consistency, so that LTMs
can verify the visibility of the updates before claiming
the snapshot is available. Bigtable and PNUTs support
single-row transactions and thus provide the “Read-
Your-Writes” consistency. Therefore, the snapshot is im-
mediately available after writing all checkpoints back.
Lastly, if the cloud data store supports only eventual
consistency, it is impossible to guarantee the visibility
of certain writes in the next read so this feature is not
supported.

6 EVALUATION

We demonstrate the scalability of CloudTPS by present-
ing the performance evaluation of a prototype imple-
mentation on top of two different families of scalable
data layers: HBase running in our local DAS-3 clus-
ter [12] and SimpleDB running in the Amazon Cloud.
We also show that CloudTPS can recover from LTM
failures and network partitions efficiently by presenting
the throughput of CloudTPS under these failures. Lastly,
we demonstrate the effectiveness of the memory man-
agement mechanism and discuss the trade-off between
system performance and buffer sizes.

We evaluate CloudTPS under a workload derived
from TPC-W [11], an industry standard e-commerce
benchmark that models an online bookstore similar to
Amazon.com.

Insert Randomly 1-10 items

Refresh the
number of
inserted items

l

Reset the
|«——| Shopping Cart
timestamp

Add a Item
to the
Shopping Cart

Add a Iltem
to the []
Shopping Cart

Create a new
Shopping Cart

Obtain the
content of
Shopping Cart

Purchase the
items in P
Shopping Cart

I:l Transaction

Fig. 4. Transactions of TPC-W.

Obtain latest
order for
the customer

6.1 Migration of TPC-W to the Cloud

TPC-W was originally designed as a Web application
using a SQL-based relational database as backend. We
therefore need to adapt the original relational data
model of TPC-W into the data models of BigTable and
SimpleDB. As described in Section 5.1, we can easily
adapt the Bigtable data model into SimpleDB data model
by using the exact same attribute names, which are
prepended with the column family names. Therefore, we
first adapt the relational data model of TPC-W into the
Bigtable data model.

Using similar data denormalization techniques as
in [46], we designed a Bigtable data model for TPC-
W that contains the data accessed by the transactions
in Figure 4. The relational data model of TPC-W com-
prises six tables that are accessed by these transactions.
To adapt this data model to Bigtable, we first com-
bine five tables (“Orders, Order_Line, Shopping_Cart,
Shopping_Cart_Entry, CC_XACTS”) into one “bigtable”
named “Shopping.” Each of the original tables is stored
as a column family. The new bigtable “Shopping” has the
same primary key as table “Shopping_Cart.” For table
“Order_Line,” multiple rows are related to one row in ta-
ble “Order,” they are combined into one row and stored
in the new bigtable by defining different column names
for the values of same data column but different rows.
Second, for the remaining table “Item,” only the column
“i_stock” is accessed. We can thus have a bigtable named
“Item_Stock” which only contains this column and has
the same primary key. Finally, for the last transaction
in Figure 4 which retrieves the latest order information
for a specific customer, we create an extra index bigtable
“Latest_Order” which uses customer IDs as its primary
key and contains one column storing the latest order ID
of the customer.

For both HBase and SimpleDB, we populate 144,000
customer records in the “Latest_Order” bigtable and
10,000 item records in the “Item_Stock” bigtable. We
then populate the “Shopping” bigtable according to
the benchmark requirements. As shown in Figure 4,
the workload continuously creates new shopping carts.
Thus, the size of the “Shopping” bigtable increases con-
tinuously during the evaluation, while the other two
bigtables remain constant in size. In the memory man-

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 11

agement evaluation, we also measure the performance
of 1 million records in the “Item_Stock” bigtable.

In the performance evaluation based on HBase, we
observed a load balancing problem. TPC-W assigns new
shopping cart IDs sequentially. However, each HBase
node is responsible for a set of contiguous ranges of 1D
values, so at any moment of time, most newly created
shopping carts would be handled by the same HBase
node. To address this problem, we horizontally parti-
tioned the bigtables into 50 sub-bigtables and allocated
data items to subtables in round-robin fashion.

To port TPC-W to SimpleDB, we organize application
data into a number of domains (i.e., tables), but each
domain can only sustain a limited amount of update
workload. So we also have to horizontally partition a
table in round-robin fashion and place each partition into
a domain. Different from HBase, we can use at most
100 domains for the whole application. We therefore
partition the three tables into different number of sub-
tables according to our estimated data access loads. We
horizontally partition the “Shopping” bigtable into 80
domains and the other two bigtables into 5 domains
each. This way SimpleDB can provide sufficient capacity
for both writes and reads, while CloudTPS remains the
performance bottleneck for performance evaluation.

6.2 Experiment Setup

We perform evaluations on top of two scalable data
layers: 1) HBase v0.2.1 [12] running in the DAS-3 clus-
ter [47]; 2) SimpleDB in the Amazon Cloud [13]. We use
Tomcat v5.5.20 as application server. The LTMs and load
generators are deployed in separate application servers.

DAS-3 is an 85-node Linux-based server cluster. Each
node has a dual-CPU / dual-core 2.4 GHz AMD Opteron
DP 280, 4 GB of memory and a 250 GB IDE hard drive.
Nodes are interconnected with a Gigabit LAN.

Amazon EC2 offers various types of virtual machine
instances. We perform our evaluations with Small In-
stances in the Standard family (with 1.7 GB memory,
1 virtual core with 1 EC2 Compute Unit, and 160 GB
storage) as well as Medium Instances in the High-CPU
family (with 1.7 GB of memory, 2 virtual cores with 2.5
EC2 Compute Units each, and 350GB of storage). At
the time of our experiment, Standard Small instances
cost $0.10 per instance-hour while High-CPU Medium
instances cost $0.20 per instance-hour. One EC2 Com-
pute Unit provides the CPU capacity of a 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor.

TPC-W workload is generated by a configurable num-
ber of Emulated Browsers (EBs) which issue requests
from one simulated user. Our evaluations assume that
the application load remains roughly constant. The
workload that an Emulated Browser issues to the TPS
mainly consists of read-write transactions that require
strong data consistency. Figure 4 shows the workflow
of transactions issued by an Emulated Browser, which
simulates a typical customer shopping process. Each EB

waits for 500 milliseconds on average between receiving
a response and issuing the next transaction.

6.3 Scalability Evaluation

We study the scalability of CloudTPS in terms of max-
imum sustainable throughput under a response time
constraint. In DAS-3, we assign one physical machine for
each LTM, and have low contention on other resources
such as network. Therefore, for the evaluations in DAS-
3, we define a demanding response time constraint that
imposes that the 99% of transactions must return within
100 ms. On the other hand, in the public Amazon cloud,
our LTMs have to share a physical machine with other
instances, and we have less control of the resources such
as CPU, memory, network, etc. Furthermore, even multi-
ple instances of the exact same type may exhibit different
performance behavior [48]. Therefore, to prevent these
interferences from disturbing our evaluation results, we
relax the response time constraint for the evaluations
in the Amazon cloud: 90% of transactions must return
within 100 ms.

We perform the scalability evaluation by measuring
the maximum sustainable throughput of the system
consisting of a given number of LTMs before the con-
straint gets violated. In DAS-3, we start with one LTM
and 5 HBase servers, then add more LTM and HBase
servers. We carry out each round of the experiment
for 30 minutes to measure the performance of system
under a certain number of EBs. In all cases, we delib-
erately over-allocate the number of HBase servers and
client machines to make sure that CloudTPS remains
the performance bottleneck. We perform similar steps in
the Amazon cloud. CloudTPS remains the performance
bottleneck, as SimpleDB can provide sufficient capacity
for both writes and reads. We configure the system so
that each transaction and data item has one backup in
total, and set the checkpoint interval to 1 second.

Figure 5(a) shows that CloudTPS scales nearly linearly
in DAS-3. When using 40 LTM servers it reaches a
maximum throughput of 7286 transactions per second
generated by 3825 emulated browsers. In this last con-
figuration, we use 40 LTM servers, 36 HBase servers, 3
clients to generate load, and 1 global timestamp server.
This configuration uses the entire DAS-3 cluster so we
could not extend the experiment further. The maximum
throughput of the system at that point is approximately
10 times that of a single LTM server.

Figure 5(b) shows the scalability evaluation in the
Amazon cloud. Here as well, CloudTPS scales nearly
linearly with both types of EC2 virtual instances. When
using 80 “Standard Small” instances, CloudTPS reaches
a maximum throughput of 2844 transactions per second
generated by 1600 emulated browsers. The maximum
throughput of the system at that point is approximately
40 times that of a single LTM server. When using 20
“High-CPU” Medium instances, CloudTPS reaches a
maximum throughput of 3251 transactions per second

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 12

Maximum Throughput (TPS)

0 I I I I I I I
0 5 10 15 20 25 30 35 40

Number of LTMs

(a) HBase + DAS-3.

3500 T T T T T T
X Standard Small —+—
HighCPU Medium ---- _|

3000 -

2500

2000

1500

1000

Maximum Throughput (TPS)

0 10 20 30 40 50 60 70 80
Number of LTMs

(b) SimpleDB + Amazon EC2.

Fig. 5. Throughput under a response time constraint.

1e+07
1e+06 |
100000

10000 F E
1000 f E
100 F 4
10 F I I E

; 1

0 5 10 15 20 25
Number Of Accessed LTMs

Number of Transactions

Fig. 6. Number of LTMs accessed by the transactions of
TPC-W with a total system system size of 40 LTMs.

generated by 1800 emulated browsers. This is a 10-fold
improvement compared to one LTM.

Furthermore, we explore the cost-effectiveness of the
two EC2 instance types for CloudTPS. The “High-CPU
medium” instances cost 2 times more than “Standard
Small” instances. As show in Figure 5(b), 20 “High-
CPU medium” instances, which together cost $4 per
hour, can sustain a higher throughput than 80 “Standard
Small” instances, which together cost $8 per hour. For
this application, using “High-CPU medium” instances
are more cost-effective than “Standard Small” ones.

The linear scalability of CloudTPS relies on the prop-
erty that transactions issued by Web applications only
access a small number of data items, and thus span only
a small number of LTMs. We illustrate this property by
measuring the number of LTMs that participate in the
transactions with the configuration of 40 LTMs servers.
As shown in Figure 6, 91% of transactions access only
two LTMs, ie., one LTM and its backup. We expect
this behavior to be typical of Web applications. The
purchase transaction in Figure 4 is the only transaction
that accesses more than one data item. It first creates an
order and clears the shopping cart inside the data item

of the “Shopping” bigtable, then updates the stocks of
all purchased items in the “Item_Stock” bigtable, and
lastly updates the latest order ID of the customer in
the “Latest_Order” bigtable. As the number of items
contained in a shopping cart is uniformly distributed
between 1 and 10, the number of data items accessed by
a purchase transactions also has an uniform distribution
between 3 and 12. Counting in the backup LTMs, the
maximum number of accessed LTMs is 24. Figure 6
shows that larger number of purchase transactions access
5 to 19 LTMs. It is because the accessed data items
may be located within the same LTM, so the number
of accessed LTMs may be smaller than the number of
accessed data items.

In our evaluations, we observe that CloudTPS is
mostly latency-bound. For example, LTMs that are
stressed to the point of almost violating the response
time constraint never exhibit a CPU load above 50%,
and their network bandwidth usage consistently remains
very low. The main factors influencing performance are
the network round-trip times and the queueing de-
lays inside LTMs. CloudTPS is therefore best suited for
deployments within a single data center. Some Cloud
data stores, such as PNUTS, replicate data across data
centers to ensure low latency for geographically dis-
tributed user-base and tolerate failures of a complete
data center. Using CloudTPS in such scenarios would
increase network latencies between LTMs, thereby in-
creasing response time of transactions and decreasing the
throughput. Exploiting a multi-data center environment
efficiently would require to revisit the policy which
assigns data items to LTMs so that data items are placed
close to the users which access them most. We however
consider such extension as out of the scope of this article.

6.4 Tolerance to Failures and Partitions

We now study the system performance in the presence of
LTM server failures and network partitions. We perform
the evaluation in both DAS-3 and the Amazon Cloud.
We configure CloudTPS with 5 LTM servers, and each
transaction and data item has one backup. We generate
a workload using 500 EBs in DAS-3 and 50 EBs in
the Amazon cloud, such that the system would not
overload even after an LTM server failure. After the
system throughput is stabilized, we first kill one LTM
server. Afterwards, we simulate a 5-minutes network
partition where each partition contains one LTM server.

After detecting the failures, all alive LTMs continu-
ously attempt to contact with other LTMs. The time
delay between two attempts of contact follows a uniform
distribution between 200 and 1200 milli-seconds.

Figure 7(a) illustrates the evaluation in DAS-3. We first
warm up the system by adding 25 EBs every 10 seconds.
The full load is reached after 200 seconds. After running
the system normally for a while, one LTM server is
shutdown to simulate a failure at time 504 seconds. After
the LTM failure it takes 18.6 seconds for the system to

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 13

1200

1000

800

600

Throughput (TPS)

]

0 200 400 600 800 1000 1200
Time (Seconds)

(a) DAS3+HBase.

)

0
0 200 400 600 800 1000 1200
Time (Seconds)

(b) EC2+SimpleDB.

Throughput (TPS)

Fig. 7. Effect of LTM failures and network partitions.

return to the previous level of transaction throughput.
This duration is composed of:

e 0.5 second to rebuild a new membership, including
a delay of 382 ms before the 2PC to avoid conflicts
and 113 ms to build the new membership;

e 12.2 seconds to recover the blocked transactions
which were accessing the failed LTM;

e 59 seconds to reorganize the data placement of
LTMs to match the new system membership.

Afterward, at time 846 seconds, we simulate a net-
work partition lasting for 5 minutes. When we restore
the network partition, the system recovers and returns
to the previous level of transaction throughput in 135
milliseconds. The reason why the system recovers so
fast is because there is no LTM failure along with the
network partition, so all blocked transactions can resume
execution without recovery, and no data redistribution is
necessary.

Figure 7(b) depicts the same evaluation in Amazon
EC2. The LTM server fails at time 486 seconds. After
detecting the LTM failure, the system spends 13 seconds
to recover and the transaction throughput returns to the
previous level at time 499 seconds. During the failure
recovery, the remaining 4 LTMs first merge into one
partition in about 1 second. Then the system recovers
transactions in 4 seconds and reorganizes data place-
ment in 8 seconds. Later, the system encounters a 5-
minutes network partition. After the network partition
is restored, the system recovers in 207 milliseconds and
returns to the previous level of transaction throughput
at time 1152 seconds. The system throughput in the
Amazon cloud fluctuates more than in DAS-3 because
we have less control of virtualized resources in the
Amazon cloud.

N
o

10K items —
1M items ---=--

o
o
T
I

Hit Rate (Percentage %)

20 - B

0 ! ! ! ! !
0 500 1000 1500 2000 2500 3000

Time (Seconds)

Fig. 8. Hit rate of LTM #1.

6.5 Memory Management

Lastly, we demonstrate that our memory management
mechanism can effectively prevent LTMs from memory
overflow, and study the performance of CloudTPS with
different buffer sizes and data sizes. We carry out the
evaluation in DAS-3 on top of HBase, which provides
“Read-your-writes” consistency. We configure the system
such that, before evicting a data item, LTMs fetch the
data item from HBase and verify that the obtained value
reflects the latest in-memory updates. Therefore, this per-
formance evaluation represents the system implementa-
tion for the cloud data services supporting “Monotonic-
reads” consistency level.

We first deploy a system with 3 LTMs and impose a
constant workload for one hour. We configure the system
so that each LTM can maintain at most 8000 data items
in its buffer. We then evaluate the system under two
different scales of data set sizes: either 10,000 or 1,000,000
records in the “Item_Stock” table. For the data size of
10,000 items, we impose a workload of 500 EBs. For the
data size of 1 million items, we impose 250 EBs.

Figure 9(a) shows that under both data set sizes, our
mechanism effectively maintains the buffer size of LTM
#1 within the limit of 8000 data items. Using 10,000
“Item_Stock” items, without memory management, af-
ter an hour, this LTM would have to maintain almost
140,000 data items in memory. As for the data size of
1,000,000 “Item_Stock” items, Figure 10(a) shows that,
after an hour, the total data set increases to an even
larger number of more than 200,000 data items. In both
cases, without memory management, the size of the total
accessed data set increases almost linearly, which would
eventually cause a memory overflow.

We then compare the performance of the system under
different data set sizes. Figure 8 shows that the hit
rate of LTM #1 stabilizes around 90% for 10,000 items,
and about 60% for 1 million items. The other LTMs
in the system behave similarly. Figures 9(b) and 10(b)
show the total transaction throughput during the 1-hour
evaluation. The drops of throughput at some points are
due to the JVM garbage collection, which temporarily
block the LTMs. With 10,000 items, the system sustains
a transaction throughput of about 1000 TPS and 99.4%
of transactions complete within 100 ms. For 1 million

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011

250000

14

: : : 1200 100000 T T T
. e Total in Buffer
. Items in Buffer . Accessed In 5 Sec ——-o-——
£ 200000 Toutpaet 7 R 1000 3 Being Accessed ---% -~
£ E 10000 | -
2 & 8
© & 800 E]
& 150000 | e = 8 1000
° - 2 600 °
@ - 5 o)
€ 100000 | - E g < 100
£ T <] £
5 £ 400 E]
z = =3
S 50000 E S 10
o 200 8
0 Il - I I I I I 0 Il Il Il Il Il 1 bl
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Time (Seconds) Time (Seconds) Time (Seconds)
(a) Buffer size of LTM #1. (b) Total system throughput. (c) Data locality of LTM #1
Fig. 9. Memory management evaluation with 10,000 items.
250000 T : 100000 T T \
Ttems in Buffer Total in Buffer
— - . — Accessed In 5 Sec ——-o—~
2 | Total Dataset] 2 B Being Accessed -~ % -~]
£ 200000 P E 10000
2 - 2 2
P i o -
& 150000 | o E = S 1000
5 e 2 N
£ 100000 | i = 5 o0
g g g
z o S 2
& 50000 [B 2
[i 7}
I - I I I I I 0 I I I I I 1 LB
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Time (Seconds)

(a) Buffer size of LTM #1.

Time (Seconds)

(b) Total system throughput.

Time (Seconds)

(c) Data locality of LTM #1.

Fig. 10. Memory management evaluation with 1,000,000 items.

items, the system sustains about 500 TPS, but only 97%
of transactions satisfy the performance constraint.

The efficiency of our memory management mecha-
nism depends on the data locality of the Web application.
Figures 9(c) and 10(c) show that only very few data
items are being accessed at a time in the two different
scenarios. Note that Figures 9(c) and 10(c) are in log
scale. Comparing to the total accessed data items shown
in Figure 9(a), this application shows strong data locality
which implies that our mechanism can only introduce
minor performance overhead®.

Finally, we study performance with different buffer
sizes of LTMs in terms of 99th percentile of response
times of the system. We configure the system with 20
LTMs and impose a workload of 2400 EBs, which issues
about 4800 transactions per second. We start with the
minimum buffer size required by LTMs to maintain the
ACID properties, where only the absolutely necessary
data items remain in the buffer. To achieve this, we evict
any evictable data items as soon as possible. We then
increase the buffer size until no data item is evicted at
all. Similar to the previous evaluation, we evaluate the
system performance with 10,000 and 1 million records
in the “Item_Stock” table.

Figure 11 shows the combined buffer size of all LTMs
when applying the “Evict-Now” algorithm. For the data
size of 10,000 items, the average buffer size is 7957 data

3. Note that TPC-W randomly selects books to add into a shopping
cart with uniform distribution. Several works consider that this behav-
ior is not representative of real applications and create extra locality
artificially [49], [50], [51]. We can thus consider unmodified TPC-W as
a somewhat worst-case scenario.

items, which means 397 data items per LTM. For the
data size of 1 million items, the average buffer size is
14,837, so 741 data items per LTM. Figure 12 shows the
performance of our system under different buffer sizes.
The initial value of each line in Figure 12 indicates the
99th percentile of response times of the system using
“Evict-Now” algorithm. Therefore, we adopt 397 and 741
as the initial values for the X-axis in Figure 12. Note that
we plot this figure in log scale.

We first study the 99th percentile of response times
with 10,000 items. When we increase the buffer size from
the minimum size of 397 to 1000 data items per LTM,
the 99th percentile response time decreases dramatically
from 799 ms to 62 ms. When we continue increasing
the buffer size to 100,000 data items where no data
item is evicted at all, the 99th percentile response time
only improves to 46 ms. In other words, increasing the
buffer size from 397 to 1000 data items, the response
time of the system decreases by an order of magnitude.
Increasing the buffer size even further by two orders
of magnitude to 100,000 data items can only achieve
25% further reduction of response time. At the point
of 1000 data items per LTM, the overall buffer size of
the system reaches 20,000 data items, which is large
enough to contain almost all 10,000 “item_stock” data
items and other currently accessed data items from other
two tables. Increasing the buffer size even further can
only allow to store seldomly accessed data items, and
thus cannot effectively improve the hit rate of the system.

With 1 million items, the 99th percentile of response
times decreases dramatically from 54 seconds to 10

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 15

12000

10000

8000

6000

4000

2000

Combined Buffer Size (No. of Data Items)

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

Combined Buffer Size (No. of Data Items)

0
0

200

400

600

800

Time (Seconds)

(a) With 10,000 items.

1000 1200

200

400

600

800

1000 1200

Time (Seconds)

(b) With 1,000,000 items.

Fig. 11. Minimum total buffer size for 20 LTMs under a
load of 2400 EBs.

100000 ;
IM Items —&—

10k Items —=-@-~

10000

1000 ¢

99th Percentile Response Time
(Milli-Second)

100

1000 10000 100000 1e+06
Max Buffer Size of Each LTM (No. of Data Items)

Fig. 12. Response time with different buffer sizes.

seconds, when the buffer size increases from the min-
imum size of 741 to 1000 data items per LTM. However,
increasing the buffer space from 1000 to 15,000 does
not bring much performance improvement, because the
total data size is so large that the hit rate remains
roughly the same. If we continue increasing the available
storage from 15,000 to 100,000, the 99th percentile of
response times decreases dramatically again from 7486
ms to 90 ms. After the point of 100,000 data items,
continue increasing the buffer size further does not bring
significant performance improvement.

Comparing the two lines in Figure 12, we notice that
a good buffer size for 10,000 items could be 1000 data
items. For the line of “1M items”, we can find a similar
point of 100,000 data items. In both cases, this represents
about 10% of the total data set size.

7 CONCLUSION

Many Web applications need strong data consistency
for their correct execution. However, although the high
scalability and availability properties of the cloud make

it a good platform to host Web content, scalable cloud
database services only provide relatively weak consis-
tency properties. This article shows how one can sup-
port strict ACID transactions without compromising the
scalability property of the cloud for Web applications.
This work relies on few simple ideas. First, we load
data from the cloud storage system into the transactional
layer. Second, we split the data across any number of
LTMs, and replicate them only for fault tolerance. Web
applications typically access only a few partitions in
any of their transactions, which gives CloudTPS linear
scalability. CloudTPS supports full ACID properties even
in the presence of server failures and network partitions.
Recovering from a failure only causes a temporary drop
in throughput and a few aborted transactions. Recov-
ering from a network partition, however, may possibly
cause temporary unavailability of CloudTPS, as we ex-
plicitly choose to maintain strong consistency over high
availability. Our memory management mechanism can
prevent LTM memory overflow. We expect typical Web
applications to exhibit strong data locality so this mech-
anism will only introduce minor performance overhead.
Data partitioning also implies that transactions can only
access data by primary key. Read-only transactions that
require more complex data access can still be executed,
but on a possibly outdated snapshot of the database.
CloudTPS allows Web applications with strong data
consistency demands to be scalably deployed in the
cloud. This means Web applications in the cloud do not
need to compromise consistency for scalability any more.

REFERENCES

[1] B.Hayes, “Cloud computing,” Communications of the ACM, vol. 51,
no. 7, pp. 9-11, Jul. 2008.

[2] Amazon.com, “Amazon SimpleDB.” 2010, http://aws.amazon.
com/simpledb.

[3] F Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable :
a distributed storage system for structured data,” in Proc. OSDI,
2006.

[4]]. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

[5] Transaction Processing Performance Council, “TPC bench-
mark C standard specification, revision 5,” December 2006,
http:/ /www.tpc.org/tpec/.

[6] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services,” SIGACT
News, vol. 33, no. 2, pp. 51-59, 2002.

[71 B. E Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
“PNUTS: Yahoo!’s hosted data serving platform,” in Proc. VLDB,
2008.

[8] Microsoft.com, “Microsoft SQL Azure Database.” 2010, http://
www.microsoft.com/azure/data.mspx.

[91 W. Vogels, “Data access patterns in the Amazon.com technology
platform,” in Proc. VLDB, Keynote Speech, 2007.

[10] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload
analysis for decentralized hosting,” Elsevier Computer Networks,
vol. 53, no. 11, pp. 1830-1845, July 2009.

[11] D. A. Menascé, “TPC-W: A benchmark for e-commerce,” IEEE
Internet Computing, vol. 6, no. 3, 2002.

[12] HBase, “An open-source, distributed, column-oriented store mod-
eled after the Google Bigtable paper,” 2006, http://hadoop.
apache.org/hbase/.

[13] Amazon.com, “EC2 elastic compute cloud,” 2010, http://aws.
amazon.com/ec2.

IEEE TRANSACTIONS ON SERVICES COMPUTING, SPECIAL ISSUE ON CLOUD COMPUTING, 2011 16

[14]

[15]

[16]

[17]

(18]
(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]
[38]

[39]

[40]

Z. Wei, G. Pierre, and C.-H. Chi, “Scalable transactions for web
applications in the cloud,” in Proc. Euro-Par, 2009.

B. Kemme and G. Alonso, “Don’t be lazy, be consistent: Postgres-
R, a new way to implement database replication,” in Proc. VLDB,
2000.

M. Atwood, “A MySQL storage engine for AWS S3,” in
MySQL Conference and Expo, 2007, http://fallenpegasus.com/
code/mysql-awss3/.

A. Lakshman, P. Malik, and K. Ranganathan, “Cassandra: A
structured storage system on a P2P network,” in Keynote talk at
SIGMOD, 2008.

W. Vogels, “Eventually consistent,” CACM, vol. 52, no. 1, 2009.
JJ Furman, J. S. Karlsson, J. M. Leon, S. Newman, A. Lloyd, and
P. Zeyliger, “Megastore: A scalable data system for user facing
applications,” Proc. SIGMOD, 2008.

J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Pro-
viding scalable, highly available storage for interactive services,”
in Proc. CIDR, 2011.

M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska,
“Building a database on S3,” in Proc. SIGMOD, 2008, pp. 251-264.
S. Das, D. Agrawal, and A. E. Abbadi, “Elastras: An elastic
transactional data store in the cloud,” in Proc. HotCloud, 2009.
M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Kara-
manolis, “Sinfonia: a new paradigm for building scalable dis-
tributed systems,” in Proc. SOSP, 2007.

M. T. Ozsu and P. Valduriez, Principles of distributed database
systems, 2nd ed. Prentice-Hall, Inc., Feb. 1999.

M. L. Liu, D. Agrawal, and A. El Abbadi, “The performance
of two phase commit protocols in the presence of site failures,”
Distributed Parallel Databases, vol. 6, no. 2, pp. 157-182, 1998.

M. Stonebraker, “Concurrency control and consistency of multiple
copies of data in distributed ingres,” IEEE Transactions on Software
Engineering, vol. 5, no. 3, pp. 188-194, 1979.

R. Gupta, J. Haritsa, and K. Ramamritham, “Revisiting commit
processing in distributed database systems,” in Proc. SIGMOD,
1997.

P. A. Bernstein and N. Goodman, “Concurrency control in dis-
tributed database systems,” ACM Comput. Surv., vol. 13, no. 2,
pp- 185-221, 1981.

P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
control and recovery in database systems. Addison-Wesley Longman
Publishing Co., Inc., 1987.

P. A. Bernstein and N. Goodman, “Timestamp-based algorithms
for concurrency control in distributed database systems,” in Proc.
VLDB, 1980.

M. Stonebraker, S. Madden, D.]. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland, “The end of an architectural era:
(it’s time for a complete rewrite),” in Proc. VLDB, 2007.

R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg,
and D. J. Abadi, “H-store: a high-performance, distributed main
memory transaction processing system,” in Proc. VLDB, 2008.
M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III, “Soft-
ware transactional memory for dynamic-sized data structures,”
in Proc. PODC, 2003.

K. Manassiev, M. Mihailescu, and C. Amza, “Exploiting dis-
tributed version concurrency in a transactional memory cluster,”
in Proc. PPoPP, 2006.

C. Kotselidis, M. Ansari, K. Jarvis, M. Lujan, C. Kirkham, and
I. Watson, “DiSTM: A Software Transactional Memory Framework
for Clusters,” in Proc. ICPP, 2008.

R. L. Bocchino, V. S. Adve, and B. L. Chamberlain, “Software
transactional memory for large scale clusters,” in Proc. PPoPP,
2008.

S. Plantikow, A. Reinefeld, and E. Schintke, “Transactions for
distributed wikis on structured overlays,” in Proc. DSOM, 2007.
E. D. Daniel Peng, “Large-scale incremental processing using
distributed transactions and notifications,” in Proc. OSDI, 2010.
D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the world wide web,”
in Proc. STOC, 1997.

S.-O. Hvasshovd, @. Torbjernsen, S. E. Bratsberg, and P. Holager,
“The clustra telecom database: High availability, high throughput,
and real-time response,” in Proc. VLDB, 1995, pp. 469-477.

[41] M. Michael and M. Scott, “Simple, fast, and practical non-blocking

and blocking concurrent queue algorithms,” in Proc. PODC, 1996.

[42] G. Schlageter, “Optimistic methods for concurrency control in

distributed database systems,” in Proc. VLDB, 1981.

[43] A. El Abbadi, D. Skeen, and E. Cristian, “An efficient, fault-

tolerant protocol for replicated data management,” in Proc. PODS,
1985.

[44] D. B. Terry, A.]J. Demers, K. Petersen, M.]. Spreitzer, M. M.

Theimer, and B. B. Welch, “Session guarantees for weakly con-
sistent replicated data,” in Proc. PDCS, 1994.

[45] P. Cao and S. Irani, “Cost-aware WWW proxy caching algo-

rithms,” in Proc. USITS, 1997.

[46] Z. Wei,]. Dejun, G. Pierre, C.-H. Chi, and M. van Steen, “Service-

oriented data denormalization for scalable Web applications,” in
Proc. WWW, 2008.

[47] DAS3, “The Distributed ASCI Supercomputer 3,” 2007, http://

www.cs.vu.nl/das3/.

[48] J. Dejun, G. Pierre, and C.-H. Chi, “EC2 performance analysis for

”

resource provisioning of service-oriented applications,” in Proc.

NFPSLAM-SOC, 2009.

[49] S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso,

“Analysis of caching and replication strategies for web applica-
tions,” IEEE Internet Computing, vol. 11, no. 1, 2007.

[50] C. Olston, A. Manjhi, C. Garrod, A. Ailamaki, B. M. Maggs, and

T. C. Mowry, “A scalability service for dynamic Web applica-
tions,” in Proc. CIDR, 2005.

[51] K. Amiri, S. Park, and R. Tewari, “DBProxy: a dynamic data cache

for web applications,” in Proc. ICDE, 2003.

Zhou Wei is a PhD candidate in the Computer
Systems group at VU University Amsterdam. His
current research interests are in the areas of dis-
tributed systems, focusing on data management
for Cloud Computing platforms. He holds an MS
degree in software engineering from Tsinghua
University, China.

Guillaume Pierre is an associate professor in
the Computer Systems group at VU Univer-
sity Amsterdam. His research interests focus on
large-scale distributed systems, scalable Web
hosting and Cloud computing. Pierre has a PhD
in Computer Science from the University of Evry-
val d’Essonne, France. He is the treasurer of
EuroSys, the European Professional Society on
Computer Systems.

Chi-Hung Chi is a professor in the School of
Software, Tsinghua University. He obtained his
Ph.D. from Purdue University. Before that, he
worked for Philips Laboratories, IBM Pough-
keepsie, Chinese University of Hong Kong and
National University of Singapore. He has been
actively contributing to both academic research
and technology transfer to industry. He is the
organizer and committee member of many inter-
national conferences, has published about 200
papers, holds 6 US patents and gives invited talk

in many industrial forums. His main research areas are content network-
ing, systems and network security, and software service engineering.

