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Abstract

This thesis has been realized in the context of GlobeDB, a system for

hosting Web applications that can automatically replicate application data

and maintain distributed consistency. GlobeDB adopts partial replication

to reduce the network latency and traffic, and adopts data clusters to reduce

the overhead of fine-grained replication. However, GlobeDB only proposed

a naive clustering algorithm, which was a bottleneck to the system’s per-

formance. This thesis discusses the issue of data clustering in GlobeDB.

The main challenges include evaluating the quality of clusters, selecting a

clustering algorithm, and deciding on a suitable number of clusters. We

systematically study various clustering algorithms and proposed some new

algorithms. Experiments prove that the new algorithms can efficiently im-

prove the performance of GlobeDB. We also propose criteria to select the

best clustering algorithm and parameters according to the situation. In

addition, we found that reclustering periodically can improve performance

compared with non-reclustering strategy, and the best reclustering period is

based on the stability of application data’s popularity.
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Chapter 1

Introduction

With the explosive growth of the World Wide Web, popular Web sites receive

enormous Internet traffic. These sites have a competitive motivation to offer

the best possible service to their clients at lower cost. To address the need,

there has been an increasing trend toward outsourcing content delivery to

networks such as Akamai [1], Digital Island [2], etc.

A Content Delivery Network (CDN) consists of a collection of edge

servers that offload work from origin servers by delivering content on their

behalf [7]. The edge servers belonging to a CDN may be located at dif-

ferent locations around the network, with some or all of the origin server’s

content cached or replicated amongst the CDN edge servers. For each re-

quest, the CDN attempts to locate a server close to the client to serve the

request, where the notion of “close” can include geographical, topological,

or latency considerations. With content distribution, the origin servers have

control over the content and can make separate arrangements with servers

that distribute content on their behalf. Figure 1.1 shows an example of a

CDN.

CDNs are mainly used for hosting static contents, such as Web pages,

documents, media files, software, etc. However, in practice, most e-commerce

Web sites run Web applications, such as CGI, PHP and JSP, on top of

databases. The content is generated using Web applications that take indi-

vidual user profiles, request parameters, etc. into account. The response for

each Web request is generated by the application code, which in turn issues

transactions (read or write queries) to the underlying database. Figure 1.2

gives an example of a Web application. The clients send requests to the Web

server which issues queries to the underlying database. After the database
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Figure 1.1: Example of Content Delivery Network.

returns the data according to the queries, the Web server then generates

Web pages including the required data, and responds to the clients.

Caching static content provides little help for an interactive application.

The embedded images and other objects may be delivered from an edge

cache, but if the base HTML pages are generated by the application, user

requests still have to travel a long distance on the Internet to contact the

origin application that generates the content.

To handle Web applications, traditional CDNs use techniques such as

fragment caching whereby the static fragments (and sometimes also certain

dynamic parts) of a page are cached at the edge servers [13, 14, 15]. However,

this strategy cannot handle the cases that database updates are frequent or

have poor locality. Consequently, caching becomes inefficient. Applications

that meet such problem require different solutions.

Another solution that aims at addressing this issue is edge computing,

which shifts the computing of application logic in edge servers and accesses

the underlying data from the original database [16, 17]. Although this so-

lution reduces the computation load of the original server, a query still has

to travel a long way to fetch data from the original server. In addition,

the solution also brings a lot of load at the database. Therefore, if a Web

application needs intensive accesses to its database, the effectiveness from

edge computing is significantly reduced.
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Figure 1.2: Example of Web Application.

Replicating the database is the third solution. Wide-area database repli-

cation technologies and the availability of data centers allow database copies

to be distributed across the network. This requires a complete e-commerce

web site suite (i.e., Web servers, application servers, and databases) to be

distributed along with the database replicas. Each request only accesses the

nearest edge server and therefore achieves low access latency. However, this

solution increases update traffic and server loads to a large extent because

each update must be propagated to all the servers. The problem is especially

severe for update-intensive applications.

Instead of replicating none or all of the data to each edge server, a hybrid

solution is to replicate part of the application data to each edge server. In

most cases many parts of the data are not necessary at all the places. For

instance, a worldwide online bookshop, such as Amazon.com, sells books in

many different languages. It is reasonable that Chinese books are required

mostly by customers from China and Singapore. If most requests for those

books come from East Asia, then only the edge servers close to East Asia

need to replicate the data about Chinese books. The above observation

suggests that we can divide the application data into data units and replicate

data units individually to a partial of all servers according to their individual

spatial popularity. Partial replication reduces network latency compared to a

non-replicated system since most queries need not access the original server.

It also reduces update traffic compared to fully replicated system since an
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Figure 1.3: Example of benefits of autonomic replication.

update need not forward to all the edge servers.

The major challenges of partial replication are how to split the applica-

tion data and where to replicate each partition. If we partition and replicate

the data manually, the process requires significant effort and expertise from

application developers. Furthermore, the request popularity patterns may

change over time, thereby making the design of an optimal strategy even

more complex.

GlobeDB is an autonomic data replicating middleware that employs par-

tial replication to provide Web-based applications the advantages of low

network latency and low update traffic at the same time [5]. One distinct

feature of GlobeDB is that it automatically splits the data into individual

“data units,” which usually are records of a database. It distributes each

data unit only to a fraction all of servers based on the number of accesses

that each server issued to the data unit.

Research on replication for static Web pages suggests that the optimal

replication performance of both client-perceived latency and update band-

width can be achieved if each data unit is replicated according to its indi-

vidual access pattern [4]. However, such fine-grained replication can result

in significant overhead because the system has to manage partial replica-

tion information for each record. To solve this problem, GlobeDB groups a
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number of data units which have similar access patterns into a cluster and

subsequently handles replication at the cluster level. Since the number of

clusters is much lower than the number of data units, managing clusters is

more feasible than managing data units. Since all the data units in a cluster

have similar access patterns, they can be distributed to the same servers and

consequently they can be treated like one data unit. However, if the access

patterns change, then the system must perform re-clustering to sustain good

performance.

Determining the right granularity of data clusters is an important design

issue in GlobeDB. If the granularity is too fine, each cluster only contains a

few data units. The system performance is good but the management cost

is high because of the large number of clusters. If the granularity is too

coarse, the management cost is reduced but it is difficult to ensure that all

the access patterns in the cluster are similar. Consequently, the performance

of the system is affected because it becomes hard to find a good placement

strategy for all the data units in the cluster. Therefore, we need to find a

good granularity to balance the two extremes.

GlobeDB proposes a simple clustering algorithm but it has not been sys-

tematically evaluated so far. Reclustering has not been studied either. The

goal of this thesis is to find a good mechanism for clustering and recluster-

ing in the context of GlobeDB. To fulfill this goal, we must overcome the

following questions.

First of all, we need a criterion to guide the clustering algorithm and

evaluate a given clustering method. Many clustering algorithms can be

used in GlobeDB and different algorithms have different outcomes. Only

once we have a good evaluation criterion, we can choose the best one for

GlobeDB.

Second, we need to find a good clustering algorithm. One requirement is

that this algorithm can generate clusters of high quality in terms of the eval-

uation criterion. The other requirement is that this algorithm is scalable,

i.e., it can be applicable for a large database. If the clustering procedure

spends too much time and affects the normal usage of system, it is unac-

ceptable in most cases.

Third, we need to find a suitable granularity of data clusters in the

system. As we discussed before, determining granularity is a major problem

in clustering. The granularity is reflected by the number of clusters. We
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aim to find an appropriate number of clusters which is high enough to allow

good system performance, but also low enough to minimize the management

and placement costs in the system.

Finally we need to determine how often the data units should be re-

clustered. It is usually reasonable to predict the future access patterns

according to the recent past, so we can cluster data units based on the

past access patterns [4]. However, as time goes on, the access patterns may

change and the old clusters may not be accurate anymore. Consequently, the

quality of clusters is affected. So we need to recluster the data units. How-

ever, we cannot perform reclustering too often because the cost of clustering

large number of data units is high. But if reclustering is too infrequent,

the change of access patterns may degrade the performance significant. The

goal is to find a balance between them.

In this thesis, I studied these issues and proposed solutions to address

them. First, I adopted squared error as a criterion of data cluster quality

and a cost function as the evaluation method of the system. Experiments

prove that squared error is an accurate way to predict the performance of

whole system. Second, I applied a set of clustering algorithms and compared

their performance. In addition, to improve the existing GlobeDB and K-

Means clustering algorithms I developed a novel clustering algorithm which

is especially well suited for periodic reclustering. All the experiments are

based on simulations with both synthetic traces and real-world traces taken

from two Web sites of different types. Comparisons of different clustering

algorithms and metrics show that the new algorithm can achieve similar

system performance as the others but reduces the computation cost dra-

matically. To determine the granularity of clusters, I examined the variance

of system performance when the number of clusters changes, and proposed

a suggestion of what an appropriated number should be. Finally, I studied

how often reclustering should occur and presented a suitable frequency and

trigger for reclustering.

The remainder of this thesis is structured as follows. Chapter 2 in-

troduces the design and implementation of GlobeDB. Chapter 3 gives an

overview of data clustering techniques. Chapter 4 studies multiple cluster-

ing algorithms used in GlobeDB. Chapter 5 evaluates the performance of

clustering using a simulator. Chapter 6 focuses on reclustering. Finally,

Chapter 7 describes the future work and concludes.
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Chapter 2

Related Work on GlobeDB

Since all the work in this thesis is based on GlobeDB, we first need to intro-

duce it. Generally speaking, GlobeDB is a system for hosting Web applica-

tions, which handles distribution and partial replication of application data

automatically and efficiently [5]. In this chapter, we introduce GlobeDB

from the viewpoint of the system architecture, components and workflow.

Finally, we introduce the cost function used in GlobeDB to evaluate the

performance of system.

2.1 System Architecture

Figure 2.1 shows the system architecture of GlobeDB. A Web application,

including code and data, is hosted by multiple edge servers spread across

the Internet. The code is written using a dynamic Web page technology

such as PHP and is replicated to each of the edge servers. It is executed

each time the Web server receives an HTTP request from its client and

issues read/write accesses to the relevant data in the database to generate a

response. Each request is assumed to be redirected to its closest edge server.

Communication among edge servers is realized through wide-area networks.

As already mentioned, GlobeDB relies on partial replication. This means

that an edge server may only hold part of the clusters and that we need a

special mechanism to read or write the data. Access to the data is realized

by a data driver, which is the central component of the system. The driver

can locate the data units required by the application code and maintain con-

sistency of replicated data. When one of the edge servers receives a request,

it always issues database queries to its local data driver. The data driver

7



Figure 2.1: System Architecture

is responsible for finding the relevant data either from the local database,

or from a remote edge server if the requested data are absent locally. In

additional, when handling write data accesses, the driver is also responsible

for ensuring consistency with other replicas of the updated data unit.

Generally, a traditional CDN contains a number of identical edge servers.

However, from the point of view of GlobeDB, servers may take three different

roles: edge server, master server and origin server, which are introduced

below.

Edge Server

Edge servers are the basic components in the system. Each of them can

(partially) replicate application data and serve Web clients. An edge server

is made of a Web server, a data driver and a database server. Because an

edge server only has a part of the application data, sometimes it has to fetch

data from the origin server to fulfill Web requests from clients.

Master Server

To keep the system consistent, GlobeDB serializes concurrent updates of

a replicated data unit by means of a master server. Each data cluster is

assigned a master server which is in charge of updating the cluster. For

8



Figure 2.2: System Workflow

example, the server which has the least write-latency of a cluster can be

selected as the master of this cluster. All updates to a cluster are forwarded

to its master. The master consequently processes the update requests and

then propagates the results to the replicas of this cluster. This provides

sequential consistency, which means that developers can write applications

as if the data resided in a centralized location, and ignore the distribution

issues.

Origin server

Each application must also have an origin server, which has a full replica

of the application data. It is in charge of making application-wide decisions

such as clustering data units, selecting master servers and placing data clus-

ters. In addition, if an edge server needs any data or wants to check the

cluster ID of a data unit, the origin server is responsible to provide them.

The origin server can be the master server of some clusters as well.

2.2 System Workflow

As we have seen, the primary good of the origin server is to determine the

system configuration.

A number of operations need to be realized before the system reaches

its optimal configuration. This includes collecting the data units’ access

patterns, clustering the data units, placing the clusters and reclustering the

data units. Before a client fetches a data unit from the system, the data

unit is already clustered, placed and may be reclustered. Finally the driver

locates and transfers the data unit to the client. Therefore the workflow of

the system is logically composed of the following modules, as illustrated in

Figure 2.2.
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2.2.1 Collecting Access Patterns

Since the system clusters data units based on their access patterns, the

initial task is to collect the access patterns. The access pattern of a given

data unit i is a vector Ai =< ri1, ri2, . . . , rim, wi1, wi2, . . . , wim >, where rij

and wij are the number of read and write queries respectively that server j

has issued to the data unit. In a specified period, the system records the

number of accesses to each data units from each server and forms the access

pattern for the next procedure.

2.2.2 Data Clustering

As mentioned before, data units with similar access patterns are clustered

together to reduce the overheads of data management and placement. The

origin server is responsible for clustering the data units during the initial

stages of system. Clustering takes n data units and their access patterns as

input, where n is usually a large number. Clustering outputs the member-

ship of k clusters, that is the definition of which data units belongs to which

cluster. The number of clusters k is usually much smaller than n. Data

clustering algorithms are detailed in Chapter 3 and 4.

2.2.3 Data Placement

To reduce network latency and update traffic, GlobeDB supports partial

replication on the granularity of data cluster. So each data cluster is repli-

cated to a subset of all servers. Proper replication of data cluster is impor-

tant for obtaining good performance of the system. This module receives

the access patterns and clusters’ membership as input, and then places the

clusters according to the placement algorithm. GlobeDB defines a family

of placement heuristics Px where an edge server hosts a replica of a data

cluster if this server generates at least x% of requests to this cluster. Obvi-

ously, the value of x affects the placement of clusters and thereby impacts

the performance of the system. A high value of x may lead to few replicas,

so many requests will be forwarded to the origin server. On the other side,

a low value of x will lead to many replicas, so the update traffic may also

be high. GlobeDB evaluates the cost value for placement configurations for

different values of x, and selects the one that yields the least cost as the best

placement configuration. The output of this module is the configuration of

10



placement, as well as the membership of data clusters and access patterns

of data units.

2.2.4 Performance Evaluation

In face of ever-changing access patterns and network condition, the system

must adapt its configuration. This evaluation module receives the output

from the placement module and then measures the performance of the cur-

rent configuration. The system can adjust the configuration according to

the feedback from the evaluation module. The most important metrics are

latency, bandwidth and server load. The evaluation aggregates these three

metrics using a cost function, which is introduced in Chapter 2.4.

2.2.5 Data Reclustering

Data clustering only works if data units once clustered do not change their

access pattern too much. However, if they do, then the clusters must be

re-evaluated and re-placed. The reclustering module receives the already

existing clusters, the access patterns and the evaluation results as its input

and decides when to start up reclustering according to the system load and

access variance. We discuss the issue of reclustering in Chapter 6.

2.3 Replicated Data Management

Once data units have been clustered and placed, the data drivers are in

charge of finding the data units required by clients. Since GlobeDB provides

partial replication, it can happen that some data required to answer a query

are absent from the edge server where they are requested. In this case, the

data driver forwards read queries to the origin server and gets the result.

To answer a write query, the data driver first gets the ID of the data

cluster containing the required data unit. Then the driver finds the location

of the cluster and its master. If the edge has not the necessary information,

it can ask for the origin server. Consequently, the driver requests the master

server to execute the write query. Finally, the master server will return the

result to the edge server and propagate the update to all the replicas of this

cluster. The pseudocode for executing queries by the data driver is shown

in figure 2.3.
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if (read) { /* read query */

Execute query locally;

if (execution returns result)

return result; /* Data unit present locally */

else /* Query returned empty result as data not present locally */

execute on origin server and return result;

} else { /* write query */

Get cluster id of data unit from local or origin server.

Find the master of the cluster from cluster-membership table.

Execute query on master server and return result;

The master server updates all replicas of the cluster;

}

Figure 2.3: Pseudocode used by a data driver for executing queries

2.4 Cost Function

When the system clusters and places data units, the origin server must se-

lect the best replication strategy to provide the system with optimal perfor-

mance. First of all, the system administrator must specify what “optimal”

actually means. In GlobeDB, we represent the overall system performance

by a cost function. A cost function aggregates several evaluation metrics

into a single figure. By definition, the best configuration is the one with the

least cost. In GlobeDB, we use the following cost function to measure the

overall performance of a replication strategy s during a time period t:

cost(s, t) = α ∗ lat(s, t) + β ∗ bw(s, t) + γ ∗ load(s, t)

where lat is the average read and write latency, bw is the average bandwidth

used by each request, and load is the average load in all servers for handling

a request. The value α, β and γ are weights associated to metrics lat, bw

and load respectively.

To provide the system with enough flexibility, these weights can be set

by the system administrator based on the system constraints and applica-

tion requirement. A large weight implies that its associated metric has more

influence in selecting the “best” strategy. For instance, if the administra-

tor primarily wants to reduce the bandwidth consumption, then β can be
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increased.

Based on the assumption that the past access patterns are a good indica-

tor for the near future, the configuration with the least cost can be selected

as the best strategy for the near future. This assumption has been shown to

be true for static Web pages, and we expect the dynamic Web pages to have

similar behavior [4]. Therefore, finding the “best” system configuration now

equals to evaluating the value of the cost function for each configuration and

selecting the one which has the least cost.

2.5 Summary

This chapter introduced the GlobeDB application replication system. Dif-

ferent from traditional CDNs and Web applications, GlobeDB inserts a data

driver in each edge server, and adopts some techniques such as data cluster-

ing and partial replication to improve the performance of system. Not all

servers are the same in the system. According to their duties, they can be

defined as edge server, master server or origin server. The cost function is an

important tool in GlobeDB to evaluate the performance and thereby the ap-

plication administrator can adjust the system flexibly. In the next chapter,

we focus on the clustering techniques that may be used for GlobeDB.
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Chapter 3

Overview of Data Clustering

Cluster analysis has a long history and wide application fields, such as social

science, biology, chemistry, statistics, pattern recognition, machine learning,

and so on. It is an important research issue in multivariate analysis. In this

thesis, we only study the effect of clustering which are relevant to GlobeDB.

Data clustering is defined as the unsupervised classification of patterns

into groups (clusters) [3]. A pattern is usually presented by a vector of

numbers, which represent different features of an object. The features are

extracted and measured by some metrics. For example, an object in a 3-

dimension space has 3 features: the values in dimension of X, Y and Z. In

GlobeDB, such features are the number of read and write queries that each

CDN server has issued to a given data unit. The goal of clustering is to

gather similar patterns together and separate dissimilar patterns from each

other. Generally speaking, a cluster contains a number of similar patterns.

Figure 3.1 illustrates an example of data clusters in a 2-dimension space

which contains lots of objects. After data clustering, all the objects are

grouped into 4 clusters.

The first step of clustering is to extract the patterns of objects which

need to be clustered. In GlobeDB we obtain the access patterns by observ-

ing the number of requests issued by each server. Then we must define a

similarity metric so that we can judge which patterns are similar. Section 3.1

introduces some popular similarity measurements. Finally we classify the

patterns into clusters based on their similarities. A number of clustering

algorithms have been proposed in literature [9, 8, 3]. In section 3.2, we in-

troduce several important clustering methods. Since an object, or a data

unit can be represented by its pattern, we treat them as equal when dis-
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Figure 3.1: Example of data clusters in a 2-dimension space

cussing clustering.

3.1 Similarity Measurement

As mentioned before, a measure of the similarity between two patterns is es-

sential to all clustering procedures. Different similarity metrics can produce

different results, so the similarity measure must be chosen carefully. Some

classical measurements are introduced in the following.

It is common to calculate the similarity between two patterns using a

distance measure defined on the feature space. We only focus on the well-

known distance measures used for patterns whose features are all continuous.

Perhaps the most common metric for measuring the similarity of two

patterns is a distance metric ∆ that maps R
m × R

m onto R
1. Here R

m is a

m-dimension space. The vector of m elements Xi =< xi,1, xi,2,. . .,xi,m >. In

GlobeDB, we define Xi as the access pattern of a data unit di in database,

and xi,k as the number of read or write queries that the server Sk has

issued to the data unit di. The bigger the distance, the less similar the

points. Therefore distance represents dissimilarity between two objects. The

following lists some common metrics of distance (as dissimilarity).

15



Euclidean Distance The most popular metric for continuous features is

the Euclidean distance defined as:

D(Xi,Xj) =

√

√

√

√

m
∑

k=1

(xi,k − xj,k)2 = ||Xi − Xj ||

City Block Distance A similar metric like Euclidean distance is the City

Block Distance, defined as:

D(Xi,Xj) =

m
∑

k=1

||xi,k − xj,k|| = ||Xi − Xj ||

Minkowski Distance This metric is a generalization of the previous two.

It takes a parameter p. When p = 1 we obtain the City Block Distance;

when p = 2 we obtain the Euclidean Distance. The Minkowski Distance is

defined as:

Dp(Xi,Xj) = [
m

∑

k=1

(xi,k − xj,k)
p]1/p = ||Xi − Xj ||p

Chebyshev Distance The Chebyshev Distance is similar to the City

Block distance, but it only take one feature of the two patterns to com-

pute. It is defined as:

D(Xi,Xj) = max||xi,k − xj,k||, here 1 ≤ k ≤ m

Correlation Coefficient Another classical metric is the Correlation Co-

efficient, which denotes the quality of a least squares fitting to the original

data. The coefficient has the range of [−1, 1]. It is close to 0 if two patterns

are similar and is close to 1 or −1 if they are dissimilar. The Correlation

Coefficient is defined as:

D(i, j) =

∑m
k=1[(xi,k − x̄i)(xj,k − x̄j)]

√
∑m

k=1(xi,k − x̄i)2 ×
∑m

k=1(xj,k − x̄j)2

where x̄i is the mean of data unit i’s access pattern, xi,k, (k = 1, 2, . . . ,m).

Although this metric is not a distance metric, its absolute value can be

used to measure the similarity of patterns.
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Figure 3.2: Example of similar and dissimilar shapes.

Other Distance Metrics There exists many other metrics, such as Co-

sine distance, Canberra Distance, Hamming distance, Jaccard distance, Ma-

halanobis Distance and so on. Since they have different applicable fields and

are similar to the above metrics in some extent, we do not study them all.

The Minkowski distance (and its specialization, the Euclidean and City

Block distance) has an intuitive appeal as it is commonly used to evaluate

the proximity of objects in two or three-dimensional space. It works well

when a data set has “compact” or “isolated” clusters. The drawback of

Minkowski metrics is that the largest-scaled features tend to dominate the

others. So they are not very reliable for features of different scale. Potential

solutions to this problem include normalization of the continuous features

(to a common range or variance) and other weighting schemes.

Correlation-based metrics, such as correlation coefficient and cosine de-

gree, are suitable for applications more concerned with the “shape” than

with the “scale” of patterns. Similar shape means that the distributions of

major features and minor features in two patterns are roughly the same,

while their scales (values) may be variant. In figure 3.2, line 1 and line 2 are

similar in that both of them have major values in feature 2, 4, 6 and minor

values in feature 1, 3, 5. But line 3 is dissimilar to the others since it has

different major and minor values compared to the others.
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Figure 3.3: A taxonomy of clustering approaches

Different distance measures incur different cluster outputs. It is an im-

portant factor in the process of clustering, and we should choose it carefully

based on the characteristics of application. The selection of distance mea-

sures for GlobeDB is discussed in Chapter 5.

3.2 Clustering Techniques

Once a similarity metric is selected, one needs to choose an algorithm to

actually cluster the objects. We present a selection of clustering algorithms

below. Figure 3.3 shows a taxonomy of these algorithms.

3.2.1 Hierarchical Clustering

Hierarchical clustering is the most traditional family of clustering algo-

rithms. It includes agglomerative approach and divisive approach. In the

following, we refer to the problem of clustering n objects into k clusters.

Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering (HAC) requires a similarity metric

between two clusters, where each cluster contains one or more objects. If

each of the clusters only contains one object, the cluster-to-cluster similarity

metric equals to the object-to-object similarity metric defined in Section 3.1.

The algorithm starts by creating n clusters, each one containing a single

object. It then identifies the closest pair of clusters and merges them into a
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single cluster. This operation is repeated until the desired number of clusters

is achieved.

HAC can use different clusters similarity metrics, which are presented

below.

Single Linkage (nearest neighbor) Method If C1 and C2 are two

clusters, then the distance between them is defined as the smallest distance

between a member of C1 and a member of C2. Namely,

d(C1)(C2) = min{drs : r ∈ C1, s ∈ C2}

where r, s denotes “object r and s”.

Complete Linkage (farthest neighbor) Method This method is the

opposite of the single linkage method in that the distance between two clus-

ters is defined as the largest distance between a member of C1 and a member

of C2. Namely,

d(C1)(C2) = max{drs : r ∈ C1, s ∈ C2}

Centroid Method The distance between two clusters is defined as the

“distance” between the cluster centroids. If

x̄i =
∑

j∈Ci

xj

|Ci|

is the centroid of the n1 members of C1 and x̄2 is similarly defined for C2,

then

d(C1)(C2) = P (x̄1, x̄2)

where P is a proximity measure such as Euclidean distance or correlation

coefficient.

Other Methods In the literature there are some other methods to de-

cide which two clusters should be merged, such as Ward’s Method, Median

method, Group Average Method (average linking), Lance and Williams Flexi-

ble Method, Information Measures Method, etc. All those methods have only

very specific application domains, so we do not study them in this thesis.

19



Figure 3.4: HDC and HAC

Hierarchical Divisive Clustering

The Hierarchical Divisive Clustering (HDC) clustering is the opposite of

HAC. It starts with a single cluster containing all the objects and repeatedly

splits clusters, until the desired number of clusters is achieved. Figure 3.4

illustrates the difference between HDC and HAC. HDC is a top-down ap-

proach while HAC is a bottom-up approach. If we stop at the level 1, we

can obtain 2 clusters as {x1, x2, x3} and {x4, x5}. If we stop at the level 2,

we can obtain 3 clusters as {x1}, {x2, x3} and {x4, x5}.

The decisions about which cluster to split and how to split it can be

based either on one feature considered at a time, or on all features con-

sidered simultaneously. The former are called monothetic and the latter

polythetic techniques. When n is very big, the polythetic technique has

high computation cost computation. On the other hand, the Monothetic

approach is simple and fast but sensitive to errors of the deciding variable.

HDC includes two main procedures. First we need to find which cluster

should be divided. Then we need to specify how to split the cluster and

assign the membership of objects afterwards.

In the first step, we can choose the cluster which is either the biggest

or the largest. Biggest means that it has the maximum number of objects.

Largest means that it has the maximum diameter, which is defined as the

longest distance between two objects in the cluster.

The second step depends on the technique of split decision. First we find

an object which is most dissimilar from all the other objects in the same

cluster. Then we split it out from this cluster and form a new cluster. The
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next step is to test all objects in the original cluster. If an object is more

similar with the new cluster than the original one, it is assigned to the new

cluster.

This technique requires a distance metric between an object and a clus-

ter. One solution is to define it as the distance between the object to the

cluster’s centroid.

D(x,C) = d(x, x̄c) x̄c is the centroid of cluster C

where x is an object, C is the cluster and d is a distance measurement.

Another solution is to define it as the average distance between the object

to all the (other) objects in the cluster.

D(x,C) =



























1

n

∑

y∈C

d(x, y) if x /∈ C

1

n − 1

∑

y∈C,x 6=y

d(x, y) if x ∈ C

3.2.2 Partitioning Clustering

Traditional hierarchical clusterings are often slow and suitable only for small

values of n. Partitioning Clustering, on the other hand, is an efficient algo-

rithm and applicable for large values of n. The most famous partitioning

method is K-Means. It works as follows.

First we specify in advance how many clusters are required: this is the

parameter k. The algorithm starts by selecting k random points and con-

sidering them as k cluster centers. Objects are then assigned to their closest

cluster according to the distance measure, such as Euclidean or correlation.

Then the centroid of each cluster is calculated. These centroids are taken

to be the new centers for their respective clusters. Next, since the centers

have changed, all objects have to be reassigned to their closest cluster.

The whole process is repeated until some stop condition is reached.

When the stop condition is reached, we consider that the system is almost

stable and will not change too much anymore. The stop condition can be

that, for example, the number of data units which changed their member-

ship is lower than a threshold, or the algorithm has already iterated enough

times, or the average distance between each object and its centroid has not

changed too much in recent iterations.
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One potential issue of K-Means is that it may create empty clusters. If

this is problematic for the application, we can split a “big” cluster into two

small clusters. Similarly to techniques used in HDC, the “big” cluster can

be defined as the one which contains most data units, or the one which has

the biggest diameter.

Another issue is that it is difficult to obtain global optimization in K-

Means because the randomly selected centers in the first step are important

factors to affect the output of clusters. One solution is to repeat the K-Means

algorithms several times with different initial centers, and then output the

one which leads to the minimum average squared error. Another solution

is to use a different clustering algorithm to generate initial centers for K-

Means. In this case, K-Means can rather be looked as an optimal method for

the previous clustering. If we simply need to update existing cluster rather

than start from nothing we can use the previous clusters as the starting point

for the re-clustering operation. We return to this topic when discussing re-

clustering within GlobeDB in Chapter 6.

3.2.3 GlobeDB Clustering

The original clustering algorithm proposed in GlobeDB adopts Correlation

Coefficient introduced in section 3.2 as its similarity metric between data

units. Assume Sim(i, j) is the similarity between two data units di and dj.

The two data units can be clustered together if Sim(i, j) ≥ Cx, for some

threshold value Cx, where 0 ≤ Cx ≤ 1. Figure 3.5 shows the increment

of clusters when the Cx increases. Obviously, the higher the Cx, the more

clusters will be generated, and vice versa. It is because if Cx is high, only

very similar data units can be put together, otherwise they have individual

clusters. Thereby a high Cx can create more clusters.

The GlobeDB algorithm is simple and efficient. It first selects a data

unit di which has not been clustered to form a new cluster k. Then it

scans all the data units that are yet to be clustered. If a data unit dj is

sufficiently close to di, i.e., Sim(i, j) ≥ Cx, dj is merged into the cluster k.

This operation is repeated until any of the data units has been assigned to

a cluster. Obviously, the value of Cx has an impact on the quality of the

clustering.
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Figure 3.5: The increment of clusters when the similarity threshold of

GlobeDB clustering increases.

3.3 Summary

This chapter gave an overview of data clustering and introduced some im-

portant similarity measurements and clustering methods which can be used

by GlobeDB. The original GlobeDB clustering algorithm has been intro-

duced as well. In the next chapter these measures and methods are applied

in our system and the performance of these clustering are compared so that

we can find a best one for GlobeDB.
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Chapter 4

Proposed Clustering

Algorithms

As we have seen in Chapter 3, many clustering algorithms have been de-

veloped to work in a large variety of environments. Clearly, different goals

lead to different techniques. However, it is difficult to tell which clustering

works best for a given application. Before systematically comparing algo-

rithms, we present here some specific clustering algorithms that I developed

specifically for GlobeDB. In the following we use n, m and k to present the

number of data units, edge servers and data clusters respectively.

4.1 Revised GlobeDB Clustering

The original clustering algorithm proposed in GlobeDB is introduced in

section 3.2.3. We call it the GlobeDB Clustering. However, one pitfall of

this algorithm is that it cannot specify how many clusters will be created

given a threshold Cx. By other words, it cannot take the desired number of

clusters as a parameter of clustering. This shortcoming brings a difficulty

when we compare it with other algorithms. After all, the number of clusters

is an important factor that affects the performance of our system.

In order to specify the number of clusters, I developed a revised algorithm

which adopts binary search to find the proper Cx in the range of [0, 1]. In

the first iteration, we select any reasonable Cx as the first threshold. We

run GlobeDB Clustering and count k′, the number of generated clusters. If

k′ = k, the clustering stops and outputs the results. If k′ is less than k,
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Figure 4.1: Revised GlobeDB Clustering

we increase the Cx to the half of its upper range to create more clusters.

Otherwise we decrease the Cx to the half of its lower range.

However, sometimes the proper Cx is difficult to reach because the

GlobeDB clustering cannot create the exact k clusters no matter how many

iterations it takes. Therefore we have to change the stop condition. We

decided that we can stop clustering if the number of clusters created is close

to the goal, or if the clustering has already executed enough iterations. In

addition, we can record the result of each iteration, and only output the

best one.

Figure 4.1 presents the effects of revised GlobeDB clustering. The mid-

dle line in the left column shows the variance of threshold in each iteration.

The other two lines are the bounds of threshold. The right column shows

the difference between the target number of clusters and the actual number

of created clusters in each iteration. In the revised clustering, the target

number is almost achieved and the clustering can stop after about 8 itera-

tions.

4.2 Revised K-Means Clustering

We introduced the K-Means clustering algorithm in Chapter 3.2.2. How-

ever, the performance of K-Means depends to a large extent on the initial

cluster centroids, which are selected randomly. Therefore the performance

is nondeterministic and can vary significantly because of the variance of the

initial centroids.
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To solve the problem, we defined a revised K-Means clustering which

takes the cluster centroids generated by another clustering into account. We

refer the clustering served for K-Means as the “basic clustering”. The basic

clustering can be a hierarchical or GlobeDB clustering algorithm. Although

the clusters created by a basic clustering are applicable by the system, their

membership and centroids of clusters may not be stable from the viewpoint

of the K-Means algorithm, so K-Means can take the existing cluster cen-

troids as its initial stage and adjust the membership and centroids of the

clusters until they are stable. Therefore revised K-Means clustering can

improve the quality of clusters created by another clustering. In our follow-

ing experiments, we adopted the revised GlobeDB algorithm as our basic

clustering.

4.3 Binary Coding Clustering

Binary Coding Clustering (BCC) is a new algorithm which is totally different

from the existing ones because it is not based on any distance measure, but

on the placement of data units. Intuitively, since each data unit will be

placed in some server eventually, we can cluster the data units which will

have the same placement into a cluster.

The first step of this algorithm is to define a placement pattern for each

data unit. Then each placement pattern is assigned with a unique code so

that it is easy to gather the same patterns together. Finally, all the data

units with similar patterns are clustered together. Therefore, the algorithm

includes three phases: transferring, coding and clustering. They are detailed

in the following.

Phase 1: Transferring

Assume there are n data sets, m CDN servers and we need k clusters. Af-

ter clustering and placing, a data unit di has a placement pattern Pi =<

Pi,1, Pi,2, . . . , Pi,m > (Pi = 0, 1) . Here Pi = 0 means not to place the data

set in the server i, and Pi = 1 means to place it. It must be pointed out

that the placement pattern is a binary pattern, so it is very easy to compute.

This is essential for the efficiency of Binary Coding Clustering.

Once each data unit is assigned an access pattern, we can transfer the

access pattern into a placement pattern according to the GlobeDB placement
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algorithm. For example, if a data unit di has access pattern < 4, 10, 7, 1 >,

its fraction of access on the servers is < 0.18, 0.45, 0.32, 0.05 >. If we define

Px = 0.25, then only the second and third server can replicate the data

unit, therefore the placement pattern is < 0, 1, 1, 0 >.

Binary Coding Clustering first computes placement patterns from the

access patterns. All data units which have exactly the same placement

pattern will be replicated to the same server(s), so we can put them into a

cluster. We can therefore create at most 2m clusters. However, if k < 2m,

then we need to merge some similar clusters or patterns into one cluster.

The next two phases address this problem.

Phase 2: Coding

The goal of this phase is to assign a code to each placement pattern. If two

patterns have similar codes, they can be clustered together. To compute the

code, each server is assigned a weight. Because the servers which have most

access are more important in the system, we assign them higher weights.

To avoid different patterns having the same code, we adopt powers of 0.5 as

the value of weights. For example, if the total access pattern of servers is

< 43, 102, 74, 12 >, then the weight vector is < 0.125, 0.5, 0.25, 0.0625 >.

The code associated to a data cluster is defined as the aggregation of

each server’s weight multiplied by each corresponding value in the data unit’s

placement pattern. In the above example, the code of a pattern < 0, 1, 1, 0 >

is 0 ∗ 0.125 + 1 ∗ 0.5 + 1 ∗ 0.25 + 0 ∗ 0.0625 = 0.75. Obviously, codes range

within [0, 1].

After coding, two similar patterns can have close codes because they

have similar binary distribution. On the other hand, if two patterns have

different values in high-weight servers, their codes will be very different as

well. Therefore, we can simply cluster all the patterns based on their codes

in the next phase.

Phase 3: Clustering

After we can get all the codes of data units, we can cluster these patterns

based on their codes. Assume the minimum code is cmin and the maximum

one is cmax. Then we separate all the codes into k segments of width (cmax−

cmin)/k. The patterns whose codes are followed into the same segment can

be put into one cluster. For example, we need 3 clusters and the real range of
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Figure 4.2: Binary Coding Clustering

codes is [0.3, 0.9]. So any pattern whose code falls into [0.3, 0.5] is assigned

to the first cluster, any pattern whose code falls into (0.5, 0.7] is assigned to

the second cluster, and all the remaining patterns are assigned to the third

cluster.

If k is big, the range of codes of each cluster is small. It may happen

that some clusters does not contain any data unit if k is too big. We simply

ignore such case since the number of empty clusters is minor compared with

k, and the empty clusters do not impact the system performance very much.

Figure 4.2 illustrates the Binary Coding algorithm. Here n = 3200 and

k = 10. The data units are sorted by their codes. The dash line separate the

data units into 10 segments, each of which is a cluster. The first about 1300

data units are put into the first cluster, the second about 500 data units are

put into the second cluster, and so on.

It must be noted that the normal sequence of the system is to first cluster

data units and then place data clusters. Contrarily, the BCC algorithm first

performs the placement algorithm then clusters data units. This will only

work well if the placement algorithm is efficient, such as the original one in

GlobeDB. However, some fine placement algorithms have good performance

but their complexity is high [6]. If we adopt these placement algorithms,

then the efficiency of BCC will be impacted. This makes the BCC algorithm
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more suitable for reclustering than for clustering since before reclustering a

placement of data clusters already exists. Therefore we can obtain the place-

ment pattern directly and only perform the coding and clustering phases,

which are very efficient.

4.4 Summary

In this chapter, we introduced three data clustering algorithms developed for

GlobeDB. The Revised GlobeDB Clustering and Revised K-Means Cluster-

ing are improved algorithms on the basis of existing clusterings. The Binary

Coding Clustering is a new algorithm which clusters data units based on

their placements. In the next chapter these clustering algorithm are evalu-

ated and compared using a GlobeDB simulator.
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Chapter 5

Clustering Evaluation

So far we have discussed many clustering algorithms. The question is which

one is the best one for GlobeDB. This chapter aims to answer this question.

First of all, a good clustering algorithm should reduce the latency, band-

width and server load of the system in the greatest extent. After all, the

main goal of GlobeDB is to improve the performance of Web applications.

Second, a good clustering algorithm should achieve high performance

with the lowest possible number of clusters. As we discussed early, fine-

grained replication can result in best performance, but also significant over-

head of partial replication management. In addition, fine-grained replication

will create too many data clusters which cause high computation time for

the placement algorithm, especially for placement algorithms sensitive to

the number of data clusters [6].

Third, a good clustering algorithm in GlobeDB must have high scalabil-

ity with respect to the number of data units. Indeed, a distinct character

of Web applications is that their underlying data may be enormous. Dif-

ferent from the traditional shops, an e-business company can provide much

more commodities online since it does not need them in stock. For example,

Amazon.com could sell over 110,000 different books as early as 1996 [23].

Nowadays, even for a middle-size e-commerce Web site, it is normal to have

millions of data units in the database. In this scenario, the efficiency of clus-

tering becomes a critical issue for the system. A time-consuming clustering

algorithm is unacceptable in most systems even if it has excellent quality.

To summarize, a good clustering algorithm for GlobeDB should achieve

high performance of the system with the least number of clusters, be scalable

and efficient for large databases. In this chapter, we first detail the GlobeDB
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simulator that we built to evaluate clustering algorithms. Then we propose

evaluation criteria of clustering. Finally, we compare the clustering algo-

rithms, analyze the results and conclude. In the following experiments, we

use n, m and k to present the number of data units, edge servers and data

clusters respectively.

5.1 GlobeDB Simulator

Running experiments using the actual GlobeDB prototype is expensive be-

cause for each experiment, the system has to evaluate the network latency,

calculate the consumed bandwidth and record the server load for each incom-

ing request. Some experiments may need several days to complete. When

we study the clustering algorithms, lots of parameters needs to adjusted

and evaluated. It is therefore unacceptable to execute each experiment with

the real system. Instead, we decided to execute our experiments using a

simulator, which can reproduce the behaviors of the system and evaluate

the performance at low cost. In this section, we introduce the workflow of

the simulator, how it simulates the system and how it computes the cost of

operations.

5.1.1 Simulator Workflow

According to the system workflow introduced in Chapter 2.2, we designed

the simulator workflow as shown in Figure 5.1. It includes the following five

modules.

Input Module

The data input module is used to generate the access patterns of all the

data units. In GlobeDB, each data unit di’s access pattern is modelled as a

2 ∗ m-dimensional vector, Ai =< ri,1,ri,2,· · ·,ri,m,wi,1,· · ·,wi,m >, where ri,j

and wi,j are respectively the number of read and write accesses issued by the

edge server Sj to the data unit di. Unfortunately, we do not have proper

experimental data from a Web application, which are usually commercial

secrets. To address this problem, we adopted two different methods to

generate the input data.

One method is to synthesize the input data given numbers of data units,

servers, clusters, the total amount and ratio of reads and writes. According
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Figure 5.1: System Simulation

to previous research, the popularity of data units and the distribution of user

requests can be modelled using power-law distribution (Zipf’s law) [21]. This

law can help us specify the access pattern of data units. If we sort the data

units or edge servers according to their requests, each of them follows a Zipf

distribution, which is defined as Pn = k/nα, where 0 < α ≤ 1, n is the rank

of an item and 1 ≤ n ≤ N , Pn is the frequency of occurrence of the nth

ranked item, and k is a coefficient which depends on α and N to ensure that
∑N

n=1 Pn = 1.

The other method is to extract the access patterns from a real Web

trace of static Web pages, such as an Apache Web log. Here a data unit

is represented by a static Web page. From the trace, we can obtain the

number of Web pages, the number of requests to each Web page, and the

geographical location of each client by computing the request’s IP address

into longitude and latitude using the GeoIP library [24]. We decided to

arbitrarily specify the number and location of edge servers. Each request

is assumed to be served by the geographically closest server. Then we can

obtain the number of requests issued from each edge server and thereby the

access pattern of each data unit. In our experiments, we used two very

different types of Web traces to examine the applicability of GlobeDB. One

trace comes from the Web site of www.cs.vu.nl, the Department of Computer

Science, Vrije Universiteit, which has high number of Web pages but low

number of requests. The other one comes from www.electoral-vote.com, the

US Electoral Vote site, which has low number of Web pages but high amount
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of requests in some days.

Using Web traces can represent real Web applications, but it only pro-

vides the access pattern of reads. Moreover, the number of data units and

requests on a Web trace are fixed. On the other hand, synthetic data are

flexible so we can easily change and evaluate different parameters. If a clus-

tering algorithm can obtain satisfying results in both cases, we can say it is

effective.

Clustering Module

The clustering module receives an access pattern from the input module,

and clusters the data units using some clustering algorithm. This module

can take the expected number of clusters as a parameter. The output con-

tains the actual number of clusters created and the membership of data

clusters. I developed several clustering modules that implement the follow-

ing algorithms: Hierarchical Agglomerative Clustering, Hierarchical Divisive

Clustering, Revised GlobeDB Clustering, Revised K-Means Clustering and

Binary Coding Clustering. The interfaces of all these modules are the same.

Placement Module

The placement module receives as input the access pattern of data units and

the membership of data clusters from the clustering module. This module

can accept Px, the threshold percentage of replication, as its parameter. If

a server generates at least x% of data access requests to a cluster, then the

cluster is replicated in the server. The output contains the access patterns,

the membership and placement of each cluster.

Evaluation Module

The evaluation module receives the output of placement module, which al-

ready includes all the necessary information for evaluation. Then the module

calculates the cost of each request if it runs in the system. The simulation

and calculation of cost is detailed in Section 5.1.2. This module can output

the value of each performance metric, e.g., latency, bandwidth and server

load, and the result of the cost function. In addition, the module can record

the elapsed time of the experiment.
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Reclustering Module

The reclustering module is a special module for studying the performance

gain from reclustering. It takes a reclustering condition as its parameter,

such as the reclustering period, and triggers the system to recluster the data

units. This makes the system re-place and re-evaluate new clusters. Finally,

the reclustering module records and outputs the performance variance after

reclustering by means of the evaluation module.

5.1.2 Cost Function Computation

In the evaluation module, we need to simulate the running of GlobeDB so

that we can compute the cost of each request in the system. This section

details how this computation is done in the simulator.

Each query can cause several actions in some servers. To calculate the

cost for each query, we first need to specify the cost of each action. To

simplify the system, we make the following assumptions:

1. There are 1 origin server and p edge servers (excluding the origin

server).

2. Each client addresses requests to its closest server, and the latency

between the client and the server is a constant.

3. The latency between any pair of servers is a constant.

4. The consumed bandwidth to transfer any query or receive any result

is a constant.

5. We only consider the following 4 atomic operations: send a request,

result or query, receive a request, result or query, read the local database and

write (update) into the local database. The load for each atomic operation

is the same. Load of any other operation is negligible.

Note that most of these assumptions can easily be removed with minor

modifications to the way the cost function is computed.

In the simulation, we assign each read or write operation a fixed latency

cost, each upload or download a fixed bandwidth cost, and each atomic

operation a fixed load cost. The three different costs are used in the cost

function introduced in Chapter 5.2.2.

Next, we need to study the actions of the system when it receives a

query and the corresponding costs of the actions. We already introduced

how the system works in Chapter 2. To compute the metrics for the cost

function, we must specify the actions of each case and compute the cost of
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Figure 5.2: Actions of GlobeDB to handle a query

each metric precisely. Figure 5.2 presents the 5 types of queries that have

different actions to deal with a query.

In the figure, “miss” means the server does not replicate the required

data unit and “hit” means it does. “hit master” means the server is the

master of the cluster containing the required data unit. If the query is an

update, it must be forwarded to its cluster’s master which consequentially

updates all the servers which have the cluster. So it is different for “hit

master” and “hit”. In the following, we present the costs of each case.

Assume S0 is the server which received a Web request from a client, C is the

cluster containing the required data unit, and s is the number of replicas of

C.

1. Read, Hit The server S0 has the cluster C and can reply the client

directly. The latency for the client is 2, the load in S0 is 3 (receive a request

from a client, read the local database, and return the result to the client),

and the total bandwidth is 2 (receive and answer the client’s request).

35



2. Read, Miss The edge server S0 has to first fetch the required data

unit from the origin server, and then return it to the client. The latency to

the client is 4, the total load is 7 (4 in S0 and 3 in the origin server), and

the total bandwidth is 6 (4 in S0 and 2 in the origin server).

3. Write, Hit Master The master server S0 has the cluster C and it can

reply the client directly, but the master has to update all the other s − 1

servers which have replicated C. Obviously the latency is 2 with respect to

the client, but it is more difficult to analyze the cost of load and bandwidth.

The load is s+2 in the edge server (receive a request, read the local database,

return the result, propagate the update query to s − 1 other servers), and

2 in each of the s − 1 servers which received the update query (receive a

update query and update the local database). So the total load is 3∗s. The

total bandwidth is 2 ∗ s (2 in S0 to receive and answer the request of client,

s − 1 in the master to propagate the update requests, and s − 1 totally in

all the other servers to receive the update request).

4. Write, Hit The edge server S0 (it may be the origin server as well)

has to first send the update query to the master. Consequently, the master

updates all the other s−1 servers which have replicated the cluster C. Using

the same method as above to analyze the cost, we get that the latency to

the client is 2, the total load is 3∗s+2, and the total bandwidth is 2∗s+2.

5. Write, Miss The edge server S0 first has to contact the origin server

to determine which server is the master of the cluster C. Then the edge

server sends the update query to the master and consequently the master

updates all the other s− 1 servers which have replicated C. The latency to

the client is 4, the total load is 3∗s+10, and the total bandwidth is 2∗s+7.

5.2 Performance Evaluation Criteria

To evaluate whether a cluster has high quality, we at least need a criterion.

In this section, we detail two evaluation criteria. One captures the quality

of the clustering itself, while the other reflects the effect of the clustering on

system’s performance.
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5.2.1 Squared Error

A widely used evaluation criterion for a clustering algorithm is the squared

error. It is defined as the total distance between each of data units in

a cluster to the cluster’s centroid. If a cluster has a large squared error,

then it contains many dissimilar data units. Usually we wish to decrease

the squared error to make the clusters converged and thereby obtain high

quality of clusters.

This metric is very easy to compute, however it does not directly reflect

the effect of the clustering on system’s performance. For this reason, we also

need another criterion.

5.2.2 Cost function

GlobeDB aims to reduce the latency, bandwidth and server load of Web

applications. We use the cost function to evaluate the performance of the

whole system. The cost function is more costly to compute than the squared

error, but it can directly represent the system’s performance. In Section 5.4.2

we verify if the squared error can represent the quality of clustering to a

certain extent, so that we can decide if squared error is good enough to

replace the cost function.

5.3 Experiment Setup

This section discusses the setup of experiments. In the following experi-

ments, n, m and k represent the number of data units, edge servers and

clusters respectively.

We use two static Web traces in the experiments. “US-VOTE” and

“VU” represents the trace from the Web server of “www.electoral-vote.com”

and “www.cs.vu.nl” respectively. Both traces recorded the Web accesses

from September to October, 2004. The trace of US-VOTE only contains

thousands of data units, but it has lots of access each day, especially in the

vote day. On the other hand, the trace of VU contains about half a million

data units, but most pages have only few accesses each day and the load is

almost stable in a month. Figure 5.3 illustrates the variation of total access

number per day in the two traces.

The read/write ratio is another important factor to impact the perfor-

mance of the system. In most Web applications, there are more reads than
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Figure 5.3: Total access number in traces per day

writes. We use 4/1 as the default read/write ratio in the following experi-

ments.

When using synthetic data, we need two α values as the parameters of

Zipf distribution: α1 is used to model the popularity of data units, and α2

is used to model the popularity of edge servers. We did experiments on real

Web traces and found that the popularity of both data units and servers can

fit the Zipf distribution. We set α1 = 1 and α2 = 0.6 as the default values.

In addition, in the input module the average number of requests to each

data unit on each server is set to 5. The number of servers is at most 100,

but the number of data units can be as big as millions.

The number of edge servers m is fixed as 10 by default. Because this

thesis does not study the issue of placement, we simply fix the Px as 1/m.

Therefore if a server will replicate a cluster if it received more than the

average number of requests to the cluster.

In our system, we think the latency is the most important factor for a

Web application. Therefore, we set the default values of α, β and γ as 10,

1 and 1 respectively.

5.4 Experiment Results

So far, we have four similarity measures:

• Euclidean Distance

• City Block Distance
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• Chebyshev Distance

• Correlation Coefficient

We have two evaluation criteria:

• Squared Error

• Cost Function

We have five clustering algorithms:

• Hierarchical Agglomerative Clustering (HAC)

• Hierarchical Divisive Clustering (HDC)

• Revised GlobeDB Clustering (GlobeDB)

• Revised K-Means Clustering (K-Means)

• Binary Coding Clustering (BCC)

In this section, the goal of this section is to find the best ones of them.

All the following experiments were performed under the GlobeDB simulator.

5.4.1 Selection of Similarity Measure

First of all, we need to select a similarity measure between data units, since

it is the basic of clustering. To find the best one, we adopted the US-

VOTE trace and the HDC algorithm, adjusted the number of clusters, and

computed their overall cost. Table 5.1 presents the results.

Obviously, the correlation based similarity measure is the best one since

it issues the lowest costs. The reason is that similar shape is more important

than spatial distance when we calculate the similarity of two access patterns

k 10 55 100 145

City Block 7.69795 7.45141 7.45141 7.44371

Euclidean 7.69795 7.45141 7.44068 7.44427

Chebyshev 7.69795 7.45141 7.43958 7.44317

Correlation 7.69534 7.41978 7.41963 7.41963

Table 5.1: Comparison of different similarity measures.
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in GlobeDB. Two access patterns with similar shapes can be replicated to

the same servers, even though their spatial distance can be large. Among

the distance measures, the correlation coefficient is the only one to evaluate

the similarity of shapes. In the following, we use the correlation coefficient

as our similarity measure.

5.4.2 Selection of Performance Evaluation Criterion

Squared error is widely used to evaluate the quality of clusters. In GlobeDB,

the cost function is the final criterion to evaluate the performance of system.

We checked if the squared error can represent the quality of clustering.

The results are presented in Table 5.2. The first two lines adopt synthetic

data as input and the only difference is the number of data units. The

next two lines use the traces from US-VOTE and VU as input respectively.

The three clustering algorithms were evaluated using the both criteria. For

each input and each algorithm, we executed the experiments for a series of

k = 20, 40, ..., 200. Then for each series we computed the average squared

error, the average cost and the correlation coefficient of these squared errors

and costs in this series.

From the results we find that the values of correlation are not high in all

cases. It means that squared error cannot represent the quality of clustering

in a large extent. Usually if the average error is higher, the corresponded

cost is higher, but there exists exceptions, especially for BCC. The Binary

Coding Clustering does not aim to reduce the squared error, but it can also

achieve low cost and thereby high performance. It is because BCC algorithm

does not use distance measure to cluster data units and it does not aim to

GlobeDB K-Means BCC

Avg Avg Corr Avg Avg Corr Avg Avg Corr

error cost coef error cost coef error cost coef

n = 103 0.103 24.583 0.563 0.073 23.881 0.971 0.282 22.828 0.590

n = 104 0.106 26.025 -0.030 0.068 24.884 0.926 0.294 23.535 -0.217

US 0.008 7.492 0.975 0.005 7.436 0.591 0.059 7.453 0.471

V U 0.013 7.933 0.966 0.004 6.922 0.991 0.023 6.761 0.927

Table 5.2: Comparison of squared error and cost.
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Figure 5.4: Comparison of running time of clustering algorithms

optimize its squared error. Therefore, we only can use cost function as the

criterion to evaluate clustering algorithms.

5.4.3 Comparison of Scalability

A scalable clustering can complete clustering in acceptable time for any

realistic number of data units. To evaluate the scalability, we fixed m = 10,

k = 100 and adjusted n from 200 to 106. We recorded the elapsed time.

Figure 5.4 presents the results. Obviously, the BCC algorithm is the fastest

one. GlobeDB is also fast, but it is significant slower than BCC when there

are over 10,000 of data units. The speed of K-Means is acceptable if there

are less than 10,000 data units. The two hierarchical clustering algorithms

are very inefficient, so they are not good candidates for GlobeDB. Therefore

in the following experiments, we do not evaluate the hierarchical algorithms

any more. If the number of data units is over 10,000, we do not evaluate

K-Means algorithms either.

5.4.4 Comparison of Performance

This section compares the performance metrics of each clustering algorithm.

First we applied the static Web trace to evaluate the performance metrics

of each algorithm using a cost function. Then we applied synthetic data

as input to verify the applicability of these clustering algorithms. If a clus-

tering algorithm has better performance in both cases, we can conclude it

outperforms the others.
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Figure 5.5: Comparison of clustering algorithms using Web traces with in-

crease of k

We first used the both traces as input and compared the overall cost of

different clustering algorithms with the increased number of clusters. Fig-

ure 5.5 illustrates the results. We can see that using US-VOTE, K-Means

is the best one and BCC is the worst, while using VU, BCC is the best one

and GlobeDB is the worst. The main difference of the two traces is n, the

number of data units. US-VOTE only has around a thousand data units,

but VU has about half a million data units.

To verify how far the n impacts the performance, we executed the same

experiments using two synthetic data as input. One of the input data has

2,000 data units, and the other has 500,000 data units. Figure 5.6 presents

the overall costs of the two groups. The results are similar like the trace-

based simulation. BCC has the best performance in the case of large data

units, but has the worst performance if n is low. GlobeDB clustering is

almost the opposite of BCC, and K-Means is better than GlobeDB since it

uses clusters generated by GlobeDB as its initial clusters.

In the above we only compared the algorithms by changing n and k. To

compare the performance of clustering algorithms under different number of

servers, m, we used synthetic data as input and fixed k = 100. We adjusted

m from 10 to 100 and evaluated the overall cost. Figure 5.7 presents the

results. BCC has better performance when m is low, but its performance

turns worse with the increase of m. We think the underlying reason is

that the precision of coding in BCC cannot increase anymore if m is high.

Therefore, if the application has high m, BCC is not the best choice.
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Figure 5.6: Comparison of clustering algorithms using synthetic data with

increase of k

5.4.5 Selection of Number of Clusters

Until now, we have not chosen the proper number of clusters. As discussed

before, the best clustering algorithm should achieve high performance with

the lowest possible number of clusters. From the above experiment results,

we can find that the overall cost value is close to the lowest value when

the number of clusters is only 10% or even less than 1% of data units.

For example, in Figure 5.5, the VU trace only needs around 200 clusters

to reach almost the same cost as with 500,000 clusters. This observation

indicates that the proper number of clusters can achieve similar cost as the

fine-grained replication with the lowest value. Therefore the application

administrator can plot the cost with the increase of k and select the point

which cannot decrease the cost too much even when k increases. In addition,

the proper k depends on the performance of placement algorithm since k is

also an important factor to affect the placement performance.

5.4.6 Conclusion

From the above experiments, we can conclude as following.

• We suggest to choose correlation based distance as the similarity mea-

sure between data units.

• We suggest to adopt the cost function as the performance evaluation

criterion.
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Figure 5.7: Comparison of clustering algorithms using VU trace with in-

crease of m

Figure 5.8: Suggested selection of clustering algorithm

• We suggest to use BCC algorithm to cluster data units if n is high

and m is low, and use GlobeDB clustering if n is high and m is also

high. Otherwise, K-Means is the best choice. Figure 5.8 illustrates

this conclusion.

• We suggest to plot the curve of cost by increasing k, and select the k

which cannot decrease the cost too much even if k is higher.

In addition to the above conclusion, the selection of clustering algorithm

is also based on the system’s computation capability. With increase of CPU

frequency and widely using parallel or distributed computing techniques, we

will be able to cluster more data units in less seconds. Therefore we suggest

the system administrator tests the suitable threshold of k or m several times

44



before he makes the decision.

5.5 Summary

In this chapter, we first detailed the GlobeDB simulator used in our exper-

iments. Then we introduced the evaluation criteria. Finally we did some

experiments on the simulator to evaluate the performance of clustering al-

gorithms according to the different n, m and k. Finally we gave several sug-

gestions about the selection of clustering algorithms under difference system

situations.
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Chapter 6

Reclustering

GlobeDB clusters data units based on their past access patterns. It is usually

reasonable to predict the future according to the recent past since normally

popularity does not change very quickly. But the access patterns will change

as time goes on, so the old clusters may not be accurate anymore. Conse-

quently, the quality of clusters will be impacted. That is why we need to

recluster the data units.

We cannot perform reclustering too often because of the high cost of

clustering and placing. But, on the other hand, if reclustering is too infre-

quent, the change of access patterns may degrade the system performance

significantly. Therefore our goal is to find a balance between them. We want

to maintain the performance of the system without spending too high cost

in reclustering.

One reclustering strategy is to periodically cluster data units using the

access pattern of the latest period. To apply this strategy we need to find

an optional reclustering period.

In this chapter, we first compare the performance of non-reclustering and

reclustering strategies, then we look for the proper period of reclustering.

6.1 Reclustering versus Non-reclustering

We used the GlobeDB simulator to execute the experiment of recluster-

ing. To compare the performance changes between reclustering and non-

reclustering, we divided a trace into many periods according to the time

stamp of each record in the trace. A period can be an hour, a day or several

days. According to the suggestion of clustering selection, we set m = 10
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Non-reclustering Reclustering

US-VOTE 11.129 9.438

VU 10.470 9.784

Table 6.1: Average costs of non-reclustering and reclustering strategies.

and k = 100 for the US-VOTE trace and used K-Means as its clustering

algorithm; we set m = 10 and k = 1000 for the VU trace and used BCC as

its clustering algorithm.

The reclustering strategy works as following. In the first period, we only

collect the access patterns. In the second period, we cluster all the data units

using the access patterns from the previous period, and place the created

clusters on edge servers according to the placement algorithm. Then we

evaluate the system performance of clustering using the access patterns of

this period. In the third period, we recluster data units and replace clusters

using the access patterns of the previous period, then evaluate the system

performance of reclustering using the access patterns of current period. All

the next period will repeat the action as the third period. Finally we record

the evaluated costs at the end of each period and compare the results.

For non-reclustering strategy, we only cluster and replicate data units at

the second period according to the access patterns in the first period, then

apply the clustering and placement configuration to any new coming data

units in all the following periods. At the end of each period, the evaluation

module calculates and outputs the overall cost in this period.

Figures 6.1 presents the results of above experiments on US-VOTE trace

and VU trace respectively. The reclustering period is set to one day. It is

clear that the reclustering strategy can achieve better performance than

non-reclustering for both traces. To make it clear, we plotted the difference

between the cost of non-reclustering and reclustering for US-VOTE in Fig-

ure 6.2. A sliding average line is used in this figure to present the tendency

of the difference. We can see that most values in this figure are positive1,

which means that reclustering performs better than non-reclustering. Ta-

ble 6.1 gives the average costs of both strategies.

1There are also a few negative points. Actually, the exception is caused by gaps in US-

VOTE trace. These gaps will change servers’ load in the pervious period, and consequently

effects the placement configuration and the system performance.

47



240 250 260 270 280 290 300 310

8

10

12

14

16

18

20
US−VOTE

Day

C
os

t

240 250 260 270 280 290 300

8

10

12

14

16

18

20
VU

Day

C
os

t

No−reculstering
Reclustering

No−reculstering
Reclustering

Figure 6.1: Non-reclustering vs. Reclustering

The performance gain from reclustering on VU trace is lower than from

the US-VOTE trace. We think it is because US-VOTE’s access patterns and

loads change frequently every day, while VU’s access patterns are relatively

stable (see Figure 5.3). Reclustering is more efficient for Web applications

whose popularity changes easily, since frequently reclustering and replace-

ment can react to the changes quickly.

6.2 How often to recluster

The next issue is to select the length of reclustering period. To study this

problem, we redid the reclustering experiments, but changed the reclustering

period as one day, two days and four days respectively. Figure 6.3 illustrates

the results, and Table 6.2 gives the average costs of each reclustering on both

traces.

The results indicate that the best reclustering period is one day for US-

48



Figure 6.2: Difference of Clustering and Reclustering on US-VOTE trace

VOTE, and two days for VU. It is interesting that if the reclustering period

increases, the cost of US-VOTE increases, but the performance of VU first

decreases and then increases. The underlying reason, we believe, is also that

the US-VOTE’s popularity changes faster than VU’s. A frequently reclus-

tering strategy is more suitable for an “unstable” Web application, whose

access patterns change easily, because this strategy can react to the variance

quickly. However, a short reclustering period is not proper for a “stable” ap-

plication, since a long-time popularity may be more accurate for predicting

the near future. Therefore, it does not make sense to perform reclustering

as often as possible, even without considering the cost of placement.

Although a short reclustering period is not suitable for any application,

a long period can decrease the performance gain from reclustering either.

Period 1 day 2-day 4-day

US-VOTE 9.438 9.610 9.922

VU 9.784 9.549 9.6490

Table 6.2: Average costs of reclustering with different period.
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Figure 6.3: Reclustering on different periods

To find the best period, we can execute reclustering by different periods and

plot the average costs. Then choose the period which achieves the least cost

as the best one for reclustering.

6.3 Summary and Discussion

In this chapter we compared the performance gain from reclustering and non-

reclustering strategies. The experiment results show that reclustering can

effectively improve the system’s performance, and the proper reclustering

period is based on the stability of application data.

There are some issues on reclustering left for future study. Although

periodically reclustering is simple, it does not care about the changes in

access patterns. If the popularity does not change very much from the last

period and the old clustering and placement configuration is still efficient,

then we do not need reclustering yet. On the other hand, if for example a
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flash crowd happens, the periodical strategy cannot respond in time if the

period will not finish soon. So we need some strategy which is flexible for

both cases.

In the above experiments, we recluster all data units and replace all

clusters in each period. Maybe in some cases only replacement is efficient

enough. In addition, K-Means can use the clusters created in the previous

period as its initial state. BCC can use the previous placement configuration

to generate its placement pattern. We think these strategies can improve

the efficiency of reclustering to some extent.
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Chapter 7

Conclusion

This thesis first presented the data replication problem in CDNs and intro-

duced a solution using partial replication. Then we introduced GlobeDB,

an autonomic data replicating middleware that employs partial replication

for Web-based applications. GlobeDB adopts data clustering techniques to

overcome the overhead of fine-grained replication. But the original clustering

algorithm in GlobeDB was never really evaluated. This thesis systematically

studied the issues of data clustering in the context of GlobeDB.

The most important issue is to select a proper clustering algorithm for

the system. This issue includes the following subproblems: 1) what are the

current existing data clustering algorithms; 2) what is the best performance

evaluation criterion, 3) how can we evaluate the quality of clustering; and 4)

which one is the best algorithm for GlobeDB and how many data clusters

we need.

To answer the first problem, we introduced several classical clustering

algorithm in the literature, and concepts such as similarity measures. In

addition, we improved the current GlobeDB and K-Means algorithms, and

developed a new algorithm, Binary Coding Clustering, for the system. The

revised algorithms and new algorithm can achieve better performance than

the original ones.

To answer the second problem, we introduced squared error, a traditional

criterion for clustering, and a cost function approach used in GlobeDB. We

found the cost function can represents the system’s performance realistically,

but the squared error cannot in most cases. Therefore we decided to use the

cost function to evaluate the quality of clustering.

To solve the third problem, we created a simulator for GlobeDB. It can
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accept Web traces and synthetic data as input, mimic the behavior of the

system, and evaluate the cost of each experiment. We used two different

types of Web traces to test the performance of different clustering algo-

rithms, then adopted synthetic data to verify their applicability. Therefore

we can widely study the quality of algorithms.

Finally, we concluded based on extensive experiments. Three clustering

algorithms are suggested to use in the system, and each of them has a proper

applicable range based on the situation of the system. We also introduced

a way to find out the suitable number of clusters for the system. Properly

choosing a clustering algorithm and number of clusters can improve the

system’s performance to a large extent.

Another issue studied in this thesis is reclustering. We need to reclus-

ter the data units to maintain high performance of the system. From the

experiments, we found the period of reclustering should be set as a suitable

value to achieve the best performance gain. The length of period is based on

the stability of application data’s popularity. The more stable the data, the

longer the period should be. Currently we only adopt periodically strategy,

which is simple but insensitive to events such as flash crowd. Future work

should explore improved reclustering strategies.

GlobeDB will be implemented in Globule project [25]. We hope it can

contribute to worldwide Web applications, and therefore provide Web clients

better and faster Internet experience.
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