
Data Placement in a Scalable Transactional Data Store

Björn Patrick Swift
bst360@few.vu.nl

Student number: 1999672

Master’s thesis
Parallel and Distributed Computer Systems

Vrije Universiteit, Amsterdam

Supervisor: Guillaume Pierre

February 19, 2012

Abstract

Distributed data stores have recently become increasingly popular. This can be largely
attributed to their impressive ability to scale. However, to achieve this scalability, they sacrifice
properties such as atomicity and consistency, important properties when constructing simple
control flows and asserting correctness.

CloudTPS is a transactional layer on top of distributed data stores, bringing back trans-
actional consistency. Its request latency is related to how many servers are involved in servicing
each transaction, and in this thesis we explore methods to reduce this number. First, we in-
troduce a data placement mechanism to CloudTPS, providing a real environment to test and
benchmark placement policies. Second, we implement a distributed approach to minimum k-cut
partitioning including load-balancing and a tunable migration cost-model, both of which can
bring important benefits to CloudTPS’s performance.

Contents

1 Introduction 4

2 Background and related work 7
2.1 Scalable Relational Databases . 7
2.2 Distributed Data Stores . 8

2.2.1 CloudTPS . 9
2.3 Data Placement Policies . 10

3 Data Item Relocation Mechanism 11
3.1 Request Routing . 11
3.2 Distributed Lookup Table . 11

3.2.1 Knowledgeable Nodes . 11
3.2.2 Local Knowledge . 13
3.2.3 Local Cache . 13
3.2.4 Inconsistent Values . 13
3.2.5 Underlying Storage . 15
3.2.6 Lazy Population . 15
3.2.7 Yielding Transactions . 16
3.2.8 Initial Cache Miss . 17

3.3 Item Migration . 18
3.3.1 An Example of a Migration . 18

3.4 Fault Tolerance . 20
3.5 Implementation Details . 20

4 Data Item Placement Policy 22
4.1 Collecting the Transaction History . 23
4.2 Workload Interpretation and Partitioning . 25
4.3 Distributed Approach . 25

4.3.1 Simulation . 27
4.3.2 Anchor Nodes . 27

4.4 Load Balancing . 31

2

5 Evaluation 32
5.1 Lookup Table Overhead . 32
5.2 Optimal Placement . 33
5.3 Discussion . 33

5.3.1 Cache Misses . 33
5.3.2 Node Imbalance . 33
5.3.3 TPC-W Trace . 37

6 Conclusion and Future Work 42

3

Chapter 1

Introduction

Data intensive applications commonly rely on Relational Database Management Systems (RDBMS)
to store their structured data. Relational databases offer important guarantees such as atom-
icity, consistency, isolation and durability, which are often referred to as the ACID properties.
These properties have become an important foundation for developers when constructing simple
control flows and asserting correctness.

As applications grow in size, storage systems can become bottlenecks and RDBMSs have
proven difficult to scale. To address their limited scalability, a number of distributed data stores
have surfaced, both for structured and unstructured data [4, 6, 10]. These systems have been
designed from the get-go with high-scalability and high-availability as their foremost require-
ments, while features that are difficult to implement in distributed systems, such as atomicity
and consistency, have come second and have been sacrificed. These design decisions have allowed
these data stores, sometimes referred to as NoSQL, to reach impressive scale.

The relaxed consistency model of distributed data stores traces back to the CAP theorem
which states that a distributed shared-data system cannot guarantee data consistency, system
availability and tolerance to network partition—only two can be achieved at any given time
[3]. Some argue that network partitions in large distributed systems are a given, so there are
only two choices: consistency or availability. Favoring availability requires a relaxed consistency
model, whereas favoring consistency implies that under certain conditions the system may not
be available [17].

However, the importance of transactional consistency should not be underestimated. Besides
situations where users prefer consistency to reduce complexity, there are several applications
which simply cannot make use of data stores that are weakly-consistent. Financial applications
are a typical example. Working with weakly-consistent data stores can be complex, to the point
where Jeff Dean stated that, in retrospect, not supporting multi-row consistent transactions in
BigTable was a mistake. Application developers within Google wanted transactions semantics
and ended up implementing their own protocols, however, often incorrectly [9]. Google has been
working on a new distributed data store which will have both a strong and weak consistency
model, and support for distributed transactions [8]. We argue that a scalable transactional data

4

C

D

EF

G

H

BI

AJ

(a) Random distribution

C

D

EF

G

H

BI

AJ

(b) Intelligent placement

Figure 1.1: By careful item placement, transaction span can be reduced.

store is an important foundation for current and future applications.
CloudTPS bridges the gap between RDBMSs and distributed data stores by combining the

ACID properties of relational databases with the scalability characteristics of distributed data
stores [18]. CloudTPS is a transactional layer on top of distributed data stores, serializing
item reads and writes in a distributed manner, where each storage node acts as a transaction
manager for locally stored items. As items are randomly placed on CloudTPS’s Chord-like ring,
this approach scales well in terms of number of items and nodes. It is, however, limited by
the number of nodes involved in each transaction, the transaction span. Another system, called
Schism, showed that the more nodes are involved in any given transaction, the longer it will
take [7]. Schism further shows that by clustering related data items, transaction span can be
reduced and, as a result, latency reduced and throughput increased.

Schism’s approach is interesting. However, it has two limitations. Firstly, it uses a centralized
approach when deriving its item placement, which will not scale well. Secondly, its approach
harvests traces from a completed run, brings down the system, rearranges items, brings the
system back up and reruns the same benchmark on the new placement. This may not always
be feasible.

The focus of this project is to address these limitations in the context of CloudTPS. First,
we need a method to estimate which items are being accessed together in transactions. This
estimation needs to be scalable, so aggregating logs for central analysis in not an option. Second,
we need to interpret the estimations and use them to devise a new item placement. Third, we
have to migrate items from one node to another, while the system is running and accepting
requests, without affecting system availability. Finally, as item location can no longer be calcu-
lated via hashing, the system has to keep track of item location and correctly route requests to

5

their current location. All this item-location communication introduces overhead. However, if
done sensibly, we stand to gain performance as fewer nodes will be involved in each transaction.

Our solution is presented in two parts, mechanism and policy. The mechanism includes a
distributed transaction history for workload analysis, a distributed lookup table for item place-
ment and request routing, and finally, support for live item migration within the CloudTPS
transactional framework. Our policy relies on a distributed minimum k-cut partitioning, per-
forming local optimizations through gossiping, gradually moving the system closer to an optimal
state. The policy also includes support for load-balancing the system and features configurable
cost-model for item migrations.

The placement mechanism contributes towards a real-world platform for researchers to de-
velop and benchmark placement policies on a transactionally consistent data store. The contri-
bution of our distributed placement policy is twofold. Firstly, it presents an implementation that
is likely to scale well, making it a practical option for large deployments. Second, it introduces a
migration cost-model, where an operator can tune the cost of migration and thus the incentive
to migrate items.

This thesis is structured as follows. Chapter 2 presents background and related work. Chap-
ter 3 covers the mechanism implemented in CloudTPS to support item placement and live
migration. Chapter 4 focuses on our distributed placement policy and Chapter 5 evaluates the
performance of our modified CloudTPS compared to the performance of Vanilla CloudTPS.
Finally, we present our conclusions in Chapter 6 and discuss future work.

6

Chapter 2

Background and related work

Before discussing our solution we will view prior work on three topics: scaling relational databases,
distributed data stores and data placement policies.

2.1 Scalable Relational Databases

Relational Database Management Systems (RDBMSs) are arguably the most widely used storage
engines for structured data. They are based on the relational model as introduced by Codd in
1970 [5] and implement a well-defined feature set. Most RDBMSs guarantee the four ACID
properties; atomicity, consistency, isolation and durability. These provide an environment that
many programmers have become comfortable with and is widely accepted.

As the applications grow in size, storage systems become bottlenecks and RDBMSs have
proven difficult to scale. Whereas the application layer is often stateless and easily scalable, a
replicated database layer is a shared-state system in which all servers must see all writes (see
Figure 2.1). Each database server processes 1

n ∗ Read_Queries +Write_Queries, where n is
the number of replicas. Even with infinite replica count, all servers process all write-queries,
which may overload each replica. As a result, more advanced scaling techniques are required.

The two most common approaches to scaling the database layer are vertical and horizontal
partitioning. With vertical partitioning, the data set is partitioned logically, whereas in hori-
zontal partitioning logical partitions are spread amongst multiple servers, typically by range or
random placement. Figure 2.2 illustrates how a bank might vertically partition users, savings
accounts and checking accounts, and horizontally partition savings and checking accounts. Even
though partitioning has proven to scale well [15], it presents two challenges. Firstly, it requires
changes to application logic, as the application must handle routing requests and merging data.
Secondly, by partitioning the dataset onto multiple independent RDMBs, atomicity, consistency
and isolation have all been sacrificed.

7

User

Application

Database

User

Application

User

www.draw-shapes.de www.draw-shapes.de www.draw-shapes.de

Database

Application

www.draw-shapes.de www.draw-shapes.de www.draw-shapes.de

Database

www.draw-shapes.de

(a) No scaling

User

Application

Database

User

Application

User

www.draw-shapes.de www.draw-shapes.de www.draw-shapes.de

Database

Application

www.draw-shapes.de www.draw-shapes.de www.draw-shapes.de

Database

www.draw-shapes.de

(b) Application scaling

User

Application

Database

User

Application

User

www.draw-shapes.de www.draw-shapes.de www.draw-shapes.de

Database

Application

www.draw-shapes.de www.draw-shapes.de www.draw-shapes.de

Database

www.draw-shapes.de

(c) Database scaling

Figure 2.1: Whereas the application layer typically scales well, the same does not hold for the shared-
state RDMBs layer.

Application

www.draw-shapes.de

Users Savings accounts Checking accounts

Figure 2.2: Whilst partitioning the dataset achieves greater scalability, this sacrifices the atomicity,
consistency and isolation guarantees of RDBMSs (ACI in ACID).

2.2 Distributed Data Stores

Distributed data stores have been designed from the get-go with high-scalability and high-
availability as their foremost requirements, while features that are difficult to implement in
distributed systems, such as atomicity and consistency, came second and were sacrificed. Google
and Amazon described their proprietary data stores, Bigtable [4] and Dynamo [10], in papers
which were influential if only for demonstrating that non-relational databases—frequently coined
NoSQL—can be used as building blocks for highly-available applications.

Whilst the two systems are frequently cited at one and the same time, the two systems are
quite different and built with different requirements. Bigtable is a sparse, distributed, multi-
dimensional sorted map, built to scale to petabytes of data. Reads and writes of single data
items are atomic and consistent; however, multi-row atomicity is not supported. Dynamo’s prime
design goal was high-availability, where writes could be accepted, even in the event of a network
partition. To achieve this, Dynamo employes a weak-consistency model where multiple nodes can

8

B

C

D
E

F

G

H
A

User Application

www.draw-shapes.de

CloudTPS Distributed
data store

Figure 2.3: CloudTPS is a transactional layer between the application and the data store (adapted
from [18]).

accept writes which later get reconciled, either automatically or with the help of the application,
depending on causal relations. The data model is simple, Dynamo is a key-value store. Yahoo’s
PNUTS [6] is another example, focusing on geographical scalability. PNUTS offers a configurable
per-record consistency model and read-modify-write-register semantics, allowing applications to
implement transaction-like semantics on a per-record basis.

These papers sparked several open source data stores. HBase and Riak are examples of
projects based on Bigtable and Dynamo, respectively, and Cassandra aims at combining Dy-
namo’s eventual consistency model and Bigtable’s column family data model. More recently, a
surge of smaller distributed data stores have come to be, such as Redis, MongoDB and CouchDB,
each with their own different feature sets. One thing they have in common, however, is their
lack of transactional consistency.

2.2.1 CloudTPS

CloudTPS is a scalable transaction manager, bringing transactional consistency back to the
table. CloudTPS nodes implement transaction managers (TM) which are randomly placed on a
Chord-like ring [16]. Items are placed on the same ring, based on their item key-hash, and belong
to their successive TM. Item access is routed through the item’s TM, making CloudTPS system
a per-item single-master system, guaranteeing consistent items reads, multi-item atomicity and
isolation.

Membership is global and shared by all TMs. As a result, routing is a local computation: find
the item key-hash and dispatch request to the successive TM. Because multi-item transactions
run across all the data-items’ TMs, there is a strong incentive to cluster items that are frequently
accessed together. This would lower the number of TMs involved, and therefore lower the
transaction’s service time.

These properties make CloudTPS a convenient platform on to which our project can be built.

9

2.3 Data Placement Policies

Data placement policies have been studied in various settings for over 20 years [13], and now
with the recent popularity of distributed data stores, the topic has received renewed interest.
Recent work can be split largely into two categories. First, geographical placement policies, such
as Volley, move content between geographically sparse data-centers, minimizing latency between
data host and consumer [2]. Second, data partitioning policies, such as Schism, move items
between nodes, minimizing the total number of nodes involved in carrying out transactions [7].
In our work we explore the latter category, in the context of CloudTPS.

Schism is a graph based placement policy which makes its decisions based on workload
traces. It constructs a graph based on transactions in the trace and employs graph partitioning
algorithms to find optimal placement. This approach has been shown to be effective and is the
inspiration for our partitioning strategy. Schism’s policy is interesting. However, the system as
a whole has several practical limitations, for example, live item migration and live trace analysis.
In addition, Schism is inherently a centralized approach, and does not scale well with the number
of items.

10

Chapter 3

Data Item Relocation Mechanism

Our solution is presented in two parts, mechanism and policy. This chapter focuses on mechanism
and discusses the components that build on top of CloudTPS.

3.1 Request Routing

When a distributed data store receives a read request for a particular item x, it first needs to
route this request to the node responsible for storing x. CloudTPS uses hash placement, where
the location of x is determined by hash(x). This method of determining x’s location is consistent
amongst all nodes in the system and can be calculated locally.

When we start moving items around, we need some other mechanism to determine the current
location of item x. Instead of the hashing function hash(x) we need some sort of lookup function
lookup(x). Whatever its implementation, all nodes must adhere to this same protocol.

3.2 Distributed Lookup Table

We introduce a lookup table that maps unique data item identifiers to physical nodes, to imple-
ment the lookup function lookup(x). The granularity is currently one-to-one, so each data item
in CloudTPS will have a pointer in the lookup table. The CloudTPS operator can choose, on a
per-table basis, whether tables should use hash or lookup placement.

In the following subsections we will describe the components that together implement the
lookup table.

3.2.1 Knowledgeable Nodes

When using hashing, all nodes can locally compute where item x is stored. These local routing
decisions, however, are not possible when items are placed using an arbitrary placement policy.
Instead, we place pointers to items at fixed nodes, and call these nodes knowledgeable. The
pointers are placed using hashing, and so each node can locate item pointers just as they could
previously locate the items themselves.

11

C

D

EF

G

H

BI

AJ

locx

x

C

D

EF

G

H

BI

AJRead locx

locx

x

C

D

EF

G

H

BI

AJ

locx

x

C

D

EF

G

H

BI

AJ

locx

x

C

D

EF

G

H

BI

AJ

locx

x

coordinatorcoordinatorcoordinatorcoordinatorcoordinator
Read locx Read locx

locx = D locx = D

Read x Read x

C

D

EF

G

H

BI

AJ

locx

x

coordinator

Read x

C

D

EF

G

H

BI

AJ

locx

x

coordinator
Read locx

locx = D

Read x

x = ? x = ?

Figure 3.1: Routing a read request for item x.

We denote the location pointer for item x as locx and define the node knowledgeable of x’s
location as the node that holds the locx pointer:

knowledgeable(x) = hash(locx)

Figure 3.1 illustrates how node J would route a read request for item x.

1. Node J does not know where item x is located. Therefore, it needs to ask the node that
is knowledgeable of x’s location. We find that knowledgeable(x) = hash(locx) = H and
dispatch a read request to H for locx.

2. Node H returns the value of locx = D.

3. Node J dispatches a read request to D.

4. Node D returns the value of item x.

Consistency vs. Performance

There are two ways to perform these lookups. One is using CloudTPS’s transactional framework,
where J would coordinate a distributed transaction involving H and D. This would provide
strong consistency and guarantee that the location pointer locx would be consistent with the
actual location of x. However, this would be prohibitively costly, especially in the context of
CloudTPS which currently does several optimizations for read-only requests, which would no
longer be feasible.

The other approach is to perform these lookups outside of CloudTPS’s transactional frame-
work and allow for the occasional inconsistent read. This both avoids the transactional overhead
and allows us to do optimizations, such as to cache location pointers, as we will discuss in Section

12

3.2.3. We have chosen this latter approach and perform lookups in a separate component, the
placement manager.

3.2.2 Local Knowledge

Since location lookups are performed outside of transactions, we may occasionally route requests
incorrectly. For example, looking back at Figure 3.1, we see that item x could have been migrated
away from node D between the time that J received x’s location and the time that J dispatched
the request to D. In this case, the request needs to be rejected and sent back to the coordinator,
or rerouted (further discussed in Section 3.2.4).

We find that two pieces of information need to be consistent: the actual location of item x

and the value of the locx pointer on the knowledgeable node. Therefore, the node that currently
stores x and its knowledgeable node have to be in agreement on x’s location.

Whereas before each node was only responsible for item pointers, we now add that each
node is also responsible for knowing which items are stored locally. Together, we call this local
knowledge (LK), and LK is always consistent. In Figure 3.1, both H and D will have a strongly
consistent local knowledge of the location of item x. The methods used to keep the LK consistent
are discussed in Sections 3.2.6 and 3.3.

3.2.3 Local Cache

The lookup table previously described has the ability to route requests based on location pointers
and the ability to handle incorrectly routed requests. However, the cost of the location-pointer
lookup is so costly that it can outweigh even the benefit of optimal item placement. To tackle
this, we add a local cache to each node which caches recently read pointers.

Figure 3.2 compares the required requests for caches misses (3.2a) and cache hits (3.2b). Once
the cache has been populated, the lookup(x) function has the same complexity as hash(x). The
cache itself is limited in size and entries are evicted using a Least Recently Used (LRU) policy.

3.2.4 Inconsistent Values

With each node caching item location, the chance of location pointer inconsistencies and false
request routes increases substantially. Figure 3.3 illustrates how node J would incorrectly route
a request for item x to D, based on an outdated, locally cached lookup pointer. In this case,
node D can do one of two things. First, in the case of read-write transactions, node D will
send an abort message to the coordinating node J , and piggyback an invalidation request for
the outdated location pointer. Node J will then clear the offending value from its local cache
and may restart the transaction1. Second, in the case of read-only transaction, as a performance

1Due to a performance optimization in CloudTPS we cannot restart transactions directly, as CloudTPS makes
the assumption that a restarted transaction will be carried out on the same set of nodes. Therefore, we need to
abort the transaction and start from scratch.

13

C

D

EF

G

H

BI

AJ

locx

x

C

D

EF

G

H

BI

AJRead locx

locx

x

C

D

EF

G

H

BI

AJ

locx

x

C

D

EF

G

H

BI

AJ

locx

x

C

D

EF

G

H

BI

AJ

locx

x

coordinatorcoordinatorcoordinatorcoordinatorcoordinator
Read locx Read locx

locx = D locx = D

Read x Read x

C

D

EF

G

H

BI

AJ

locx

x

coordinator

Read x

C

D

EF

G

H

BI

AJ

locx

x

coordinator
Read locx

locx = D

Read x

x = ? x = ?

(a) No cache, or local cache miss.

C

D

EF

G

H

BI

AJ

locx

x

C

D

EF

G

H

BI

AJRead locx

locx

x

C

D

EF

G

H

BI

AJ

locx

x

C

D

EF

G

H

BI

AJ

locx

x

C

D

EF

G

H

BI

AJ

locx

x

coordinatorcoordinatorcoordinatorcoordinatorcoordinator
Read locx Read locx

locx = D locx = D

Read x Read x

C

D

EF

G

H

BI

AJ

locx

x

coordinator

Read x

C

D

EF

G

H

BI

AJ

locx

x

coordinator
Read locx

locx = D

Read x

x = ? x = ?

(b) Local cache hit.

Figure 3.2: Request routing with and without a cocal cache.

C

D

EF

G

H

BI

AJ

1
locx

x

coordinator

C

D

EF

G

H

BI

AJ

1
locx

x

coordinator

C

D

EF

G

H

BI

AJ

1
locx

x

coordinator

2

C

D

EF

G

H

BI

AJ

1
locx

x

coordinator

2

3

(a) Request aborted.

C

D

EF

G

H

BI

AJ

1
locx

x

coordinator

C

D

EF

G

H

BI

AJ

1
locx

x

coordinator

C

D

EF

G

H

BI

AJ

1
locx

x

coordinator

2

C

D

EF

G

H

BI

AJ

1
locx

x

coordinator

2

3

(b) Request forwarded.

Figure 3.3: Request routes, based on outdated location pointers.

14

optimization, node D can forward the request to the node currently storing item x. This is
possible since read-only transactions do not follow the same two-phase commit protocol as read-
write transactions.

This latter performance optimization is inspired by transposition table driven scheduling,
where tasks are passed on to other workers without explicitly asking permission [14]. Although
our setup is somewhat different, this does allow for several performance optimizations. For
example, in Figure 3.3b the invalid route only causes one extra message to be sent, namely from
node D to node G. This example makes two assumptions. First, node D is aware of x’s current
location, which can be stored in D’s local cache upon migration. Second, we do not count the
purge request from D to J as this is an asynchronous message that does not affect the request’s
service time.

Caching dramatically reduces the number of location pointer lookups, at the cost of increasing
the inconsistency window, and therefore increasing the number of incorrect routes. Usually, the
cost of incorrect routes is far outweighed by the benefit of caching pointers, and therefore we
find this to be a sensible trade-off to make.

3.2.5 Underlying Storage

The lookup table can grow quite large, holding up to one location pointer for each item in the
data store. We make use of CloudTPS itself for storing this metadata, as any other table. We
choose the knowledgeable nodes to be the same nodes as the ones CloudTPS chooses to store
the location pointer data items themselves. This way, CloudTPS keeps the underlying data
table consistent, and our placement manager keeps the local knowledge consistent, on both the
knowledgeable node as well as the node currently holding the item.

3.2.6 Lazy Population

The local knowledge is populated lazily, both to limit startup time and memory usage. This is
illustrated by Figure 3.4.

1. Node J dispatches a message to node H, requesting to read locx, item x’s location.

2. NodeH does not have the locx in its local knowledge, so it asks its local placement manager
to read the lookup table entry from the underlying CloudTPS table.

3. The placement manager on H determines that item x should be stored on node D. A
message is dispatched to D, requesting that its local knowledge is updated accordingly.

4. Node D acknowledges the local knowledge population requests.

5. At this point, the local knowledge on x’s knowledgeable node H and x’s home node D is
consistent, and we can send locx to J

6. Node J will cache locx = D and dispatch the read request to D.

15

C

D

EF

G

H

BI

AJ

locx
x

C

D

EF

G

H

BI

AJ
1

locx
C

D

EF

G

H

BI

AJ
1

5

locx
x

C

D

EF

G

H

BI

AJ
1

5

6
locx

x

coordinatorcoordinatorcoordinatorcoordinator

C

D

EF

G

H

BI

AJ
1

locx

coordinator

C

D

EF

G

H

BI

AJ
1

locx
x

coordinator

C

D

EF

G

H

BI

AJ
1

locx
x

coordinator

2 2

3

2

3

4
2

3

4
2

3

4

(a) First request triggers population.

C

D

EF

G

H

BI

AJ

locx
x

C

D

EF

G

H

BI

AJ
1

locx
C

D

EF

G

H

BI

AJ
1

5

locx
x

C

D

EF

G

H

BI

AJ
1

5

6
locx

x

coordinatorcoordinatorcoordinatorcoordinator

C

D

EF

G

H

BI

AJ
1

locx

coordinator

C

D

EF

G

H

BI

AJ
1

locx
x

coordinator

C

D

EF

G

H

BI

AJ
1

locx
x

coordinator

2 2

3

2

3

4
2

3

4
2

3

4

(b) Request carries on after population.

Figure 3.4: The lookup table is populated lazily on first item access.

Initial Placement

The previous example assumes that locx, the location of item x, exists in the underlying
CloudTPS datastore. For this to be a general assumption, the system would have to iterate
through all items and create location pointers, if we wanted to enable lookup placement for a
given table. This can be costly, and so we choose not only to populate the local knowledge lazily,
but also to lazily populate the underlying CloudTPS table.

This introduces a special case within step 2 in Figure 3.4a. The local placement manager
attempts to read locx from the underlying CloudTPS datastore. If the value exists, it is returned
as previously demonstrated. If not, the placement manager will create an initial placement and
write locx to persistent storage before continuing. The initial placement is currently chosen to
be local to locx, that is locx = hash(locx). This is essentially random placement, as before;
however, it is based on a different key (prefixed with CloudTPS__placement_). The benefit is
that we reduce the cost of steps 3 and 4 in the previous example, as these operations are now
local.

Other initial placement strategies could be explored, such as placing a new item in proximity
to other items in the write transaction. For example, if a user adds an item to a shopping cart,
it may be sensible to store this item on the same node as the shopping cart itself.

3.2.7 Yielding Transactions

Local cache misses may involve remote lookups and cause the transaction to block. However,
CloudTPS is based upon message-passing between single-threaded components, and so blocking
is not an option. To accommodate for this we yield transactions upon a cache miss and place
them in a blocked-transaction queue. The placement manager requests the location pointer and

16

Group sub-
transactions

Yield
(waiting for

location info)

Local knowledge
and cache miss

Local knowledge
or cache populated

Dispatch
transaction

Figure 3.5: Transactions are yielded while location information is resolved.

once retrieved, notifies the local transaction manager, requesting that the blocked transaction
be resumed (see Figure 3.5).

3.2.8 Initial Cache Miss

When a read misses the cache we spawn a worker to read the remote value and populate the
cache. After that, subsequent reads will hit the cache, until the entry is evicted. However, there
is a corner case, where a second transaction attempts to read the same value before the worker
manages to populate the local cache. This requires special handling, because otherwise multiple
workers could be spawned to resolve the same pointer.

The placement manager guards itself from this situation by creating a pending lookup value
and keeping a queue of transactions pending the returned value. For example, transaction T1

might request locx from its local placement manager, which would create a pending entry for locx
and add T1 to the notification queue. If transaction T2 requests locx before the value has been
resolved, T2 is added to the notification queue and the transaction yielded. Once the placement
manager populates locx, it will signal T1 and T2, which resume processing.

This prevention method is employed on two distinct layers in CloudTPS. First, the placement
manager (PM) will hold a queue for local transactions blocked on a particular lookup key.
Secondly, the PM will hold a separate queue with remote PMs which are reading location
information. Using the example in Figure 3.4, we can both have several local transactions on J

pending locx, and also have several nodes waiting on H to perform the lazy population or initial
placement. In the first case we keep account of local transactions and in the latter case we keep
account of remote nodes.

17

3.3 Item Migration

So far we have discussed how item location is stored and how requests are routed. The missing
piece of the puzzle is how items are migrated from one node the other. The requirement is for
CloudTPS to migrate items, one-by-one or several at a time, without affecting the availability
of the system.

An item migration involves several nodes. In addition to the source and destination nodes,
the item’s knowledgeable node also has to update its location pointer. An item migration needs
to be atomic, consistent, isolated and durable. Coincidentally, these are precisely the guarantees
that CloudTPS provides. Thanks to its extensible transaction framework, we were able to
implement live migrations by adding a new transaction type, a migration transaction with only
minimal modifications to the framework itself.

There are three steps in migrating an item. First, the item itself must be copied from source
to destination. As CloudTPS may be running on top of a weakly consistent data store, this
needs to happen within CloudTPS itself, persisting the value at the source and reading from
persistent storage at the destination is not guaranteed to be correct. Second, the location pointer
on the knowledgeable node needs to be updated. Third and finally, the local knowledge on all
three nodes must be updated to reflect the change.

3.3.1 An Example of a Migration

Figure 3.6 illustrates a transaction where data item x is migrated from node D to node E. In
addition to nodes D and E, the transaction will involve a Transaction Coordinator (TC) and
x’s knowledgeable node. Note that while the figure separates these four roles, they will typically
not be carried out on more than three separate nodes.

1. The Transaction Coordinator (TC) initiates a data item migration. Two sub-transactions
are created; an UpdateTransaction which gets dispatched to H, and a MigrationTransac-
tion which gets dispatched to D.

2. H receives the UpdateTransaction, which is handled like any other transaction, and H

sends back a ready vote.

3. D receives the MigrationTransaction, which contains information on which item should
be migrated and where. D spawns a derived MigrationTransaction containing the current
value of x and sends this transaction back to TC, along with its ready vote.2

4. TC receives D’s derived sub-transaction, expands the parent transaction and dispatches
the new sub-transaction to E.

2This usage of derived transactions is analogous to how CloudTPS implements updates to secondary indices.

18

D E

Prepare

H

Prepare migration,
spawn derived

transaction containing
current value of x

Prepare locx
entry update

TC

Prepare

Prepare migration,
create data item based

on received value

Commit

Update LK,
remove x

Update LK,
implicitly activates x

Update LK,
commit locx entry

Done

Figure 3.6: A migration transaction.

5. E stores the current value of x in its table buffer, is now prepared to take ownership of
the item and sends back its ready vote. Note, however, that since E’s local knowledge has
not been updated, E will still reject incoming requests for x.

6. Once all parties have handed in their ready votes, the coordinator will instruct nodes to
commit.

7. The knowledgeable node H will persist the lookup table entry locx to the underlying
CloudTPS table the same way it would persist any other item in an UpdateMigration. At
this point, locx has been persisted in CloudTPS. In addition, we have added a hook to the
UpdateMigration that will update the node’s local knowledge to keep it consistent with
the underlying CloudTPS store. From this point on, incoming requests for locx are replied
to with a pointer towards E.

8. D will start by removing x from its local knowledge3, effectively preventing D from accept-
3If D and H are the same node, x’s entry is not removed, but updated to point to E.

19

ing any further transactions involving x. At this point, there might be several transactions
locally queued for x which need to be cleared. Read-only transactions are restarted while
read-write transactions are aborted and can be re-executed4. In both cases, we piggyback
a request to purge the migrated item’s pointer from cache. Finally, x is removed from the
table buffer.

9. All E has to do upon commit message arrival is to update its local knowledge (everything
was prepared in the vote phase). Once the local knowledge has been updated, E is ready
to serve requests for x.

There may be a window where local knowledge structures are not completely synchronized,
for example when one node performs the commit before another. This inconsistency window
does not break correctness, although it can result in incorrect routes. For example, if the know-
ledgeable node commits its changes before the source and destination nodes, a new request might
be routed to the destination node before the destination node has officially taken ownership of
the item. This would result in the destination node either aborting the transaction or forwarding
it to whichever node it believes to home the item. This may cause some extra messages to be
sent, but the system will eventually converge.

3.4 Fault Tolerance

Our current implementation is not resilient to failures nor ring resizes. The current approach
would be to flush all local knowledge and local caches upon ring membership change, and have
the system slowly populate the structures as if the system had been rebooted. Whilst this should
guarantee correctness, it will bear a high performance penalty. This makes it impractical for
production where capacity might be added to increase throughput, but would result in degraded
performance as all cache entries would be flushed.

Fault tolerance and membership change could be handled similarly to vanilla CloudTPS,
where virtual nodes get rearranged on membership change. The challenge is how to keep locx

consistent between the knowledgeable node and the node that homes the item.
As a final remark on fault tolerance, when taking failures into account we find that the

lookup(x) method may return a pointer to a dead node. In this case, the pointer needs to be
deleted and a new initial placement derived.

3.5 Implementation Details

There are several details to the relocation and migration mechanism beyond what has been
covered in this chapter. This includes techniques to minimize the number of messages sent,

4As an optimization, CloudTPS stores read-write transaction state on remote nodes between restarts. There-
fore, we cannot restart read-write transactions, as the set of involved nodes has changed.

20

suspending and resuming transactions during item location lookups and other optimizations.
These details are intentionally left out, as they do not add to the overall design of the system.
Further information can be found in this project’s patch to CloudTPS.

21

Chapter 4

Data Item Placement Policy

In the previous chapter we discussed separation of policy and mechanism, and described the
mechanism we have implemented within CloudTPS. This chapter will focus on the placement
policy we have implemented on top of the mechanism.

The number of nodes required to service a given transaction is determined by item place-
ment. Figure 4.1 illustrates two transactions, each involving two data items. In one case, both
transactions T1 and T2 cross node boundaries and are carried out as distributed transactions.
However, by rearranging data items we find that both transactions can be executed as local
transactions. In general, the fewer nodes involved in a transaction, the lower its service time,
and so the goal is to arrange items in such a way that this is minimized. To summarize: n data
items are to be placed on m server nodes, such that we minimize the number of nodes involved
in each transaction.

A placement policy may have more objectives than minimizing the number of nodes involved.
For example, a policy may aim to spread work evenly amongst nodes in the cluster. These are
both desirable goals, but may work against each other. The greatest item locality is achieved
by placing all items on a single node as demonstrated in Figure 4.2. However, this would not
meet load balancing goals.

There are several approaches as to how a placement policy could be implemented. This

x T1

Node A

u

y

Node B

vT2

x T1

Node A

y

u

Node B

v

T2

Node A Node B

x

y

u

v
T2T1

(a) Distributed transactions.

x T1

Node A

u

y

Node B

vT2

x T1

Node A

y

u

Node B

v

T2

Node A Node B

x

y

u

v
T2T1

(b) Local transactions.

Figure 4.1: Two possible placements: a) with both transactions distributed and b) with both transac-
tions local.

22

x T1

Node A

u

y

Node B

vT2

x T1

Node A

y

u

Node B

v

T2

Node A Node B

x

y

u

v
T2T1

Figure 4.2: High locality can be achieved by naively placing all items on a single node. However, this
causes load imbalance.

T1 T2

T3

Node A

Node D

Node B Node C

Node Local history
A T1, T2

B T1, T3

C T2, T3

D T3

Figure 4.3: Three transactions, T1, T2 and T3, are executed on nodes A + B, A + C and B + C +D.
Each node keeps record of the transactions that it took part in.

depends on what input is used for decision-making. For example, placement policing can be
carried out within an application, or by mining its data. However, these approaches require
semantic information and are thus likely to be application-specific. We have chosen to log
transactions and use workload analysis to feed our policing, as this approach has been shown to
work for different workloads and access patterns [7].

4.1 Collecting the Transaction History

The first challenge with analyzing workload is collecting a transaction history for inspection
in a scalable way and with minimal performance and resource usage impact. A centralized
aggregation will not scale and so we choose to distribute the transaction history in such a way
that each node keeps record of transactions that involved local items (see Figure 4.3).

Figure 4.4 illustrates how the transaction history is populated and transmitted, from the
coordinator to other participating nodes. Once the coordinating Global Transaction Manager
(GTM) on A completes processing the transaction, it notifies the local Workload Manager (WM).
The WM logs the transaction locally and appends a log entry to a local send buffer which
gets flushed at regular intervals (currently set to 10 seconds), gradually propagating remote

23

A B

GTM

Workload
manager

Transaction
history

Send
buffer

Flush
buffer

Transaction
history

Buffer flushed
at regular
intervals

Figure 4.4: Transaction history message propagation.

transaction logs. We should note that participating nodes cannot log the transaction at an
earlier stage, for example when they receive their sub-transactions, as only the coordinator has
the full transaction view and is therefore the only node that can construct the history message
properly.

The transaction history is weakly consistent. In fact, it is not even guaranteed to keep record
of all executed transactions. The current implementation uses a bounded list that is garbage
collected to 60% usage at regular intervals. If items are added at a rate where they fill the
history between garbage collection runs, new entries may be discarded. This design aims to
limit the performance impact of collecting the transaction history. The Workload Manager runs
as its own CloudTPS component, on its own thread, and thus has minimal impact on general
transaction processing.

The transaction history can be seen as a sliding window, where the window size determines
the amount of entries stored. The cluster is likely to adapt sooner to changes in the access pattern
with a small window, at the risk of wave effects. A larger window will be more stable, at the cost
of memory consumption and slower reaction to changes in the access pattern. The Workload
Manager currently aims to log and equally weigh all transactions, but could for instance be
adapted for sampling and apply exponential smoothing.

24

Transaction Items
1 x, y, z
2 u, w, v
3 z, w
4 x, y
5 u, v

(a) Transaction log.

y

x

z

u

w v

2

1

1

1 1

1 2

(b) Graph representation.

Figure 4.5: A graph representation of a transaction log.

4.2 Workload Interpretation and Partitioning

The global transaction history can be represented as a graph where vertices represent items,
with edges drawn between items accessed within a transaction. Finally, edge weights represent
the number of times items accessed together. Figure 4.5 illustrates a graph representation of a
transaction history.

Once the graph has been constructed it should be split in k partitions, where k is the
number of nodes in the CloudTPS cluster. The goal is to minimize the number of transactions
that cross node boundaries. In other words, we would like to minimize the weight of edges
crossing partitions, the total edge cut. This problem can be solved using partitioning algorithms
such as Minimum k-cut, as done by Schism [7].

The advantage of using Minimum k-cut compared to hash placement is visualized in Figure
4.6, which illustrates a CloudTPS TPC-W trace simulated on an 80 node cluster. CloudTPS
server nodes are drawn as vertices, with edges color coded based on the number of transactions
spanning between any two nodes. The total edge cut when using hash placement (Figure 4.6a)
is 3,435,423, compared to 497,549 when using minimum-k-cut (Figure 4.6b).

This advantage of minimum k-cut placement is further illustrated by the frequency graphs
in Figure 4.7. A large number of transactions are carried out on 4 or fewer nodes when using
minimum k-cut (4.7b), whereas a fair number of transactions required 7, and up to 11 nodes,
when using random placement (4.7a).

4.3 Distributed Approach

Whilst a centralized minimum k-cut partitioning scheme provides good partitions, it will soon
become a bottleneck in a large distributed system. Firstly, aggregating the transaction history
to a central machine becomes increasingly difficult as system throughput increases. Secondly,
graph partitioning algorithms are complex and do not scale linearly. Therefore, there is an upper
bound to how much a central component could partition in real-time. In this section we will
focus on our research on how to implement minimum k-cut in a distributed setting; alleviating

25

C0

C1

2690

C2

2267

C3

2245

C4

910

C5

1036

C6

913

C7

949

C8

595

C9

722

C10

684

C11

570

C12

572

C13

677

C14

566

C15

598

C16

685

C17

754

C18

722

C19

669

C20

680

C21

724

C22

689

C23

674

C24

699

C25

809

C26

694

C27

667

C28

728

C29

827

C30

677

C31

639

C32

749

C33

928

C34

797

C35

820

C36

766

C37

853

C38

762

C39

788

C40

1144

C41

1192

C42

1167

C43

1219

C44

1105

C45

1258

C46

1248

C47

1274

C48

1001

C49

1174

C50

1235

C51

1153

C52

1289

C53

1305

C54

1141

C55

1117

C56

1054

C57

1178

C58

1141

C59

1058

C60

923

C61

1009

C62

1019

C63

1070

C64

591

C65

677

C66

582

C67

661

C68

605

C69

642

C70

557

C71

686

C72

629

C73

714

C74

650

C75

673

C76

649

C77

867

C78

590

C79

618

2198

2303

910

947

965

898

701

636

541

681

697

608

618

521

756

702

687

778

685

636

658

646

812

675

700

692

832

691

696

720

776

754

798

803

849

792

830

789

1219

1048

1186

1135

1130

1150

1184

1227

1101

1043

1133

1196

1235

1188

1054

1015

1102

1068

1001

1007

947

842

1097

1019

690

577

572

641

635

598

638

611

701

616

724

719

771

675

619

638

2647

916

979

927

956

696

604

620

657

598

648

632

747

759

791

727

827

641

754

755

865

811

741

730

862

716

738

736

874

828

892

869

896

820

836

806

863

1237

1192

1149

1194

1092

1163

1288

1354

1181

1074

1229

1244

1276

1183

1154

1146

1219

1175

1080

1159

914

946

1116

1178

615

613

571

739

567

623

674

729

661

626

751

792

703

730

621

795

1012

990

1080

956

647

710

718

619

644

639

717

654

760

817

788

716

747

717

830

822

806

729

771

743

713

656

811

721

751

862

863

873

831

792

831

817

1206

1167

1178

1082

1156

1125

1365

1204

1087

1209

1238

1199

1271

1132

1229

1156

1121

1130

1107

1075

923

895

1200

1020

700

709

740

678

633

570

717

670

702

653

908

732

720

757

834

689

2486

2028

2085

629

744

571

620

681

737

764

628

772

842

690

711
727

768

758

766

760

754

714

756

700

793

662

777

830

884

794

891

828

963

820

814

1154

1231

1132

1061

1139

1251

1321

1315

1104

1173

1154

1196

1164

1250

1159

985

1097

1186

998

1060

851

924

1125

1000

640

770

628

667

572

749

678

692

709

735

674

707

732

776

656

706

2072

2032

701

576

629

546

750

604

690

688

751

724

713

649

806

706

774

785

791

724

737

726

788

648

683

715

868

829

844

787

892

841

777

787

1219

1128

1192

1132

1283

1127

1264

1314

1207

1005

1165

1204

1352

1202

1054

1175

1179

1073

1047

1039

1035

835

1095

1041

713

656

629

628

676

661

692

680

743

638

739

709

800

727

700

686

2493

564

585

589

682

737

641

596

662

672

764

710

744

785

716

684

762

659

702

756

878

749

672

668

810

757

826

893

820

759

743

789

797

1127

1130

1167

1220

1226

1142

1242

1278

1063

990

1094

1185

1216

1183

1042

1094

1056

1060

971

1138

909

919

1038

1107

571

727

593

734

561

527

595

697

569

613

712

826

674

713

666

752

598

604

669

565

589

763

682

586

718

691

781

660
679

715

804

734

683

650

842

673

661

617

690

673

756

816

913

808

827

769

865

771

1109

978

1176

1094

1242

1161

1369

1222

1043

975

1211

1092

1142

1159

1021

1003

1053

988

1091

1015

899

846

1119

1022

694

609

663

655

569

638

744

654

603

571

770

666

655

669

772

603

2472

2193

1968

852

946

915

870

656

784

681

625

643

750

692

687

658

738

693

669

664

753

599

706

794

895

741

840

821

951

724

773

1130

1209

1061

1085

1076

1138

1138

1239

1028

1103

1142

1124

1178

1237

1065

1034

999

1122

1050

984

839

910

969

1067

639

706

617

618

584

645

577

632

675

722

683

637

584

757

594

658

2072

2136

1027

901

923

866

788

709

716

755

725

643

668

604

786

702

644

690

716

710

718

602

868

819

795

842

850

816

774

731

1174

1117

1104

1130

1138

1172

1273

1193

1091

1001

1189

1164

1344

1149

1004

1036

1087

998

977

949

945

892

1070

960

625

645

566

643

652

547

630

652

696

603

662

657

754

613

701

588

2404

851

923

898

917

664

674

681

735

619

668

695

731

636

594

702

728

653

646

670

731

777

837

732

846

699

744

732

818

1063

1066

1135

1146

1043

1164

1140

1339

966

955

1137

1185

1085

1131

1025

1191

951

961

1043

1107

801

901

994

1052

604

638

546

638

528

491

594

708

613

590

647

731

607

661

569

690

894

880

982

838

601

639

735

578

690

612

769

625

583

666

743

605

644

647

712

640

784

750

859

790

741

718

847

724

1081

998

1096

1121

1063

981

1203

1108

1027

952

1146

1029

1197

1075

1089

975

1014

1004

1052

1011

875

801

1069

985

577

598

675

537

545

499

696

592

610

598

754

626

600

605

690

616

2554

2224

2098

677

765

625

628

757

804

718

760

675

723

696

737

699

732

699

624

744

943

799

789

779

822

792

846

1123

1170

1127

1190

1152

1187

1198

1242

1034

1181

1124

1059

1203

1247

1027

1098

1031

1110

994

1057

887

944

1129

1026

634

751

623

621

607

698

614

664

592

703

615

715

684

785

675

578

2118

2223

800

717

693

637

787

653

689

734

772

663

673

631

745

632

653

681

817

814

821

771

969

776

841

778

1227

1094

1115

1132

1250

1201

1250

1233

1230

1060

1082

1117

1264

1238

1143

1135

1111

1022

1082

1004

972

825

1070

1092

733

610

587

559

670

528

635

587

726

616

659

617

801

730

708

582

2508

710

669

648

760

732

654

667

803

654

739

737

774

672

731

686

783

718

876

884

969

809

793

769

868

1120

1109

1230

1231

1115

1165

1227
1251

998

1048

1107

1188

1129

1213

1058

1067

1029

989

1013

1072

929

883

1073

1132

551

579

700

694

626

595

633

732

607

651

650

694

684

654

675

661

658

681

734

638

662

662

689

651

692

622

796

653

679

649

736

675

706

794

975

755

769

868

829

743

1123

1087

1249

1153

1083

1057

1312
1114

1042

998

1137

1120

1170

1208

1098

976

1038

1017

1054

982

899

906

1171

990

584

566

627

553

601

531

728

614

659

564

795

656

619

663

753

553

2574

2269

2171
1041

1117

1068

1026

795

852

871

708

790

873

712

813

881

1044

958

894

1010

932

801

911

1173

1199

1164

1171

1218

1277

1293 1229

1154

1258

1270

1160

1215

1369

1056

1092

1093

1178

1056

1148

1056

1053

1137

1136

687

815

699

664

617

693

632

694

726

739

763

771

722

796

689

674

2128

2225

1097

1026

1133

971

889

785

783

775

871

764

736

787

959

857

953

1002

988

892

832

958

1303

1172

1277

1225

1325

1200

1311

1238

1163

1141

1254

1208

1263

1227

1174

1118

1179

1105

1069

1002

1078

915

1159

1000

771

711

729

689

719

644

706

681

748

728

775

780

911

811

680

639

2583

982

1075

1116

1073

864

768

807

784

730

734

664

855

882

847

851

958

828

902

862

1046

1138

1207

1151

1205

1127

1253

1280 1373

1041

1155

1145

1255

1231

1279

1076

1210

1161

1095

1090

1079

950

937

1056

1221

560

668

667

736

622

703

654

709

653

662

793

818

657

750

710

791

996

1037

1200

1032

799

908

810

761

801

767

786

761

861

946

1065

928

888

875

919

878

1232

1198

1316

1174

1248

1156

1350

1262

1125

1125

1321

1207

1320

1230

1216

1116

1093

1155

1176

994

982

924

1227

1007

672

721

746

630

651

565

739

672

677

647

879

692

693

743

781

703

2626

2328

2237

759

931

694

846

741

820

827

690

806

1021

921

866

828

951

938

852

1238

1245

1127

1152

1120

1270

1229

1252

1122

1212

1183

1234

1240

1259

1082

1118

1042

1096

1010

1057

920

974

1151

1080

647

772

657

664

608

719

678

636

698

801

741

720

739

723

732

723

2187

2297

800

737

737

736

848

752

748

834

917

914

925

841

963

865

929

908

1366

1202

1246

1133

1234

1204

1269

1338

1249

1232

1283

1095

1234

1279

1169

1073

1170

1166

1117

1046

1043

949

1114

1099

771

702

726

594

725

646

690

696

757

662

819

752

679

681

741

714

2625

779

778

828

882

838

754

822

873

838

930

911

971

955

824

832

958

1213

1275

1191

1250

1193

1268

1348

1364

1108

1232

1240

1345

1260

1324

1226

1339

1109

1132

1162

1189

1029

940

1100

1205

643

736

695

771

607

663

698

798

652

665

782

970

749

835

771

863 761

754

896

848

848

884

859

745

873

854

1060

870

889

973

941

878

1323

1198

1307

1223

1217

1282

1383

1372

1230

1112

1357

1361

1238

1184

1244

1082

1176

1144

1201

1182

1012

964

1157

1222

737

760

786

755

679

724

842

714

786

747

940

840

720

725

811

730

2639

2178

2186

1067

1094

967

1144

799

990

911

960

864

963

857

892

1179

1334

1195

1304

1222

1194

1223

1265

1087

1228

1173

1210

1202

1361

1111

1051

1095

1155

1132

1136

969

1010

1063

1127

732

754

691

647

636

751

653

655

694

733

777

780

748

789

736

672

2205

2264

1207

1044

1097

1136

896

886

906

897

1001

956

863

839

1285

1257

1198

1351

1303

1222

1301

1398

1145

1181

1215

1206

1371

1287

1117

1108

1196

1114

1152

1143

989

996

1136

1096

750

700

648

661

676

648

657

646

828

703

826

856

872

772

788

692

2528

1042

1072

1026

1094

868

879

909

992

850

895

862

997

1189

1364

1176

1243

1277

1298

1302

1380

1108

1178

1242

1317

1284

1264

1043

1222

1050

1206

1173

1178

952

969

1213

1255

675

701

663

757

623

658

740

833

716

680

801

852

704

799

789

778

1083

1107

1144

1113

896

910

973

826

852

863

943

943

1141

1245

1315

1171

1150

1112

1330

1209

1132

1167

1249

1202

1269

1223

1215

1115

1048

1197

1147

1095

979

875

1222

1113

729

675

753

668

640

689

813

666

655

677

832

798

736

755

773

687

2629

2292

2254

829

1044

888

874

877

989

878

898

1211

1216

1130

1245

1156

1227

1308

1302

1141

1181

1195

1266

1277

1350

1128

1090

1127

1132

1016

1165

958

1017

1122

1139

653

774

668

617

623

687

739

661

686

789

702

784

734

822

768

661

2303

2281

966

881

923

888

973

876

867

801

1237

1207

1198

1219

1276

1202

1315

1337

1224

1109

1184

1263

1354

1245

1131

1011

1127

1149

1105

1058

1018

908

1183

1111

743

734

697

611

707

594

740

653

728

696

770

782

870

757

754

781

2610

783

858

903

984

804

876

850

880

1129

1219

1167

1255

1222

1186

1178

1366

1218

1143

1213

1210

1343

1218

1113

1179

1043

1183

1022

1167

943

1004

1109

1127

635

651

646

756

606

637

646

744

662

720

713

865

787

709

689

745

911

887

951

898

906

955

982

902

1154

1199

1317

1140

1208

1331

1353

1260

1105

1034

1202

1214

1263

1245

1211

1123

1097

1090

1120

1117

899

939

1228

1098

680

674

826

656

661

634

712

685

722

649

876

751

689

760

767

729

2755

2555

2502

1405

1333

1253

1327

1365

1348

1343

1358

1328

1389

1426

1371

1242

1356

1409

1425

1402

1496

1184

1217

1246

1346

1209

1217

1071

1173

1291

1218

808

823

773

779

697

831

761

813

783

876

821

844

882

993

752

797

2548

2534

1331

1287

1405

1348

1464

1424

1387

1321

1514

1355

1436

1432

1410

1289

1397

1464

1541

1461

1293

1271

1341

1270

1204

1196

1266

1041

1335

1309

907

815

840

807

753

741

853

796

927

826

903

801

936

852

860

782

2905

1303

1323

1321

1335

1448

1340

1354

1459

1407

1458

1490

1505

1345

1268

1372

1456

1379

1587

1375

1363

1206

1328

1322

1355

1119

1171

1308

1431

845

866

850

876

793

815

835

896

746

875

846

977

816

879

861

894

1308

1312

1341

1303

1436

1404

1518

1358

1301

1347

1486

1421

1205

1327

1473

1304

1509

1444

1346

1293

1238

1294

1253

1286

1135

956

1483

1278

809

800

885

792

708

766

919

796

778

747

942

850

832

843

954

812

2876

2483

2454

1352

1426

1262

1311

1364

1430

1469

1433

1148

1462

1253

1320

1441

1498

1273

1310

1295

1403

1230

1320

1027

1111

1189

1282

786

834

774

761

687

871

727

861

828

938

856

848

882

967

826

804

2502

2509

1466

1296

1320

1292

1459

1287

1528

1477

1253

1232

1350

1255

1413

1270

1298

1249

1347

1325

1265

1223

1140

1017

1298

1356

896

798

871

711

825

796

866

816

951

832

834

862

922

823

840

773

2959

1303

1390

1361

1415

1404

1394

1453

1565

1207

1345

1400

1450

1443

1314

1352

1290

1245

1334

1258

1349

1077

1049

1288

1397

809

810

819

874

760

785

815

914

834

849

884

937

880

841

845

870

1291

1289

1402

1169

1279

1347

1548

1477

1267

1171

1395

1325

1358

1461

1384

1208

1232

1228

1456

1302

1089

1015

1394

1244

797

786

872

759

764

711

842

825

810

778

1008

849

882

825

992

833

3587

3224

3248

2093

2090

2205

2228

1760

1855

1837

1850

1952

2063

1734

1754

1758

1889

1758

1714

1524

1531

1766

1715

1137

1311

1178

1166

1010

1190

1117

1149

1232

1218

1191

1307

1227

1312

1138

1218

3142

3322

2214

2099

2265 2144

1697

1715

1947

1874

2002

1930

1646

1672

1785

1729

1669

1800

1579

1442

1747

1709

1232

1214

1161

1068

1189

1064

1120

1086

1244

1225

1275

1228

1255

1144

1163

1100

3714

2057

2254

2243

2299

1819

1715

1910

1889

1886

1940

1762

1768

1682

1698

1720

1822

1494

1488

1673

1797

1125

1115

1095

1237

1006

1095

1141

1269

1129

1131

1186

1209

1250

1160

1252

1273

2082

2084

2232

2262

1712

1677

2032

1878

1994

1880

1746

1761

1755

1732

1769

1586

1455

1483

1812

1655

1145

1138

1187

1079

1076

1057

1216

1135

1144

1118

1242

1274

1221

1175

1273

1066

3681

3477

3374

1747

1851

1778

1865

1896

1980

1722

1790

1656

1856

1686

1704

1533

1574

1745

1646

1147

1299

1101

1161

1189

1170

1080

1127

1222

1211

1196

1236

1120

1277

1165

1155

3457

3516

1722

1726

1874

1878

2014

1919

1748

1745

1758

1710

1704

1592

1674

1474

1744

1726

1167

1114

1143

1052

1136

1072

1156

1152

1181

1138

1197

1203

1244

1185

1249

1158

4033

1883

1876

2014

2055

1949

1950

1887

1988

1813

1935

1858

1878

1806

1624

1903

1923

1314

1259

1245

1307

1188

1225

1263

1346

1184

1247

1430

1479

1267

1228

1268

1353

1862

1805

2106

2034

2075

2054

1937

1896

1845

1922

1904

1771

1715

1520

2027

1889

1283

1301

1390

1210

1214

1200

1392

1205

1250

1226

1408

1323

1400

1317

1312

1275

3504

3178

3224

2180

2301

1976

1936

1541

1701

1533

1555

1390

1452

1489

1603

1053

1189

1087

1051

1044

1092

998

1086

1078

1151

1116

1202

1111

1341

1156

1080

3336

3248

2183

2077

1928

1870

1697

1674

1638

1537

1504

1349

1602

1512

1167

1074

1034

1054

1067

1017

1092

1026

1172

1103

1170

1176

1250

1145

1068

970

3817

2213

2254

2171

2098

1759

1824

1707

1892

1507

1559

1810

1809

1158

1084

1190

1220

1072

1146

1117

1176

1120

1229

1246

1338

1100

1162

1206

1302

2261

2233

2076

2098

1644

1734

1951

1721

1524

1534

1908

1793

1175

1182

1252

1137

1102

1109

1225

1169

1221

1178

1339

1227

1195

1220

1275

1187

3767

3246

3281

1867

1858

1768

1794

1578

1713

1766

1733

1204

1333

1243

1196

1131

1278

1276

1261

1236

1316

1317

1330

1215

1298

1240

1249

3317

3328

1820

1713

1863

1731

1723

1622

1902

1815

1227

1172

1218

1088

1232

1252

1142

1196

1349

1273

1322

1266

1365

1253

1250

1206

3453

1557

1674

1606

1680

1404

1446

1663

1696

914

1090

1027

1142

1024

1019

1071

1270

1031

1091

1182

1245

1121

1200

1155

1212

1582

1596

1730

1554

1452

1397

1799

1590

1052

964

1208

1110

1039

1000

1137

1159

1134

1003

1244

1172

1182

1123

1323

1026

3509

3040

3117

1746

1759

1923

1868

1156

1204

1137

1084

1078

1003

1061

1096

966

1239

1234

1200

1102

1120

1091

1087

3142

3066

1760

1736

1977

1920

1139

1073

1074

1013

1185

1046

1137

1141

1207

1089

1132

1176

1220

1199

1157

1025

3567

1621

1754

1997

1962

1067

1021

1068

1111

943

984

1050

1162

1058

1032

1093

1218

1028

1114

1072

1159

1798

1626

2051

1854

1139

1098

1119

961

1059

915

1159

1113

1014

1094

1223

1132

1038

1032

1172

1033

2994

2929

2994

915

939

904

875

823

929

855

885

869

1002

1007

940

955

1067

1037

984

2800

2839

1001

941

821

824

884

868

853

908

994

925

1032

980

1031

897

907

975

3474

1031

1128

1022

1207

1000

986

1114

1173

1039

1087

1148

1190

1156

1222

1150

1225

1131

985

1153

1087

1028

972

1165

1154

1084

1064

1244

1161

1064

1232

1189

1088

2488

2167

2158

873

966

873

894

659

785

669

713

647

806

596

655

2151

2135

933

883

930

868

830

643

656

726

833

734

655

626

2572

835

902

961

1063

685

669

643

818

625

661

642

731

861

846

1045

950

640

621

786

694

638

600

773

651

2485

2090

2134

595

766

637

647

632

714

610

640

2155

2169

727

579

592

594

712

609

635

584

2679

687

653

685

738

718

683

651

691

649

595

765

694

657

695

746

644

2613

2232

2239

1006

1103

902

895

2281

2235

1026

962

925

907

2690

931

1019

1036

1089

1020

1048

1109

1061

2634

2169

2131

2108

2098

2593

(a) Hash placement.

C0

C1

228

C2

240

C3

247

C4

274

C5

226

C6

268

C7

281

C8

237

C9

225

C10

310

C11

233

C12

175

C13

250

C14

238

C15

271

C16

215

C17

232

C18

267

C19

219

C20

267

C21

203

C22

252

C23

263

C24

269

C25

188

C26

199

C27

217

C28

297

C29

241

C30

216

C31

222

C32

307

C33

260

C34

256

C35

198

C36

238

C37

252

C38

297

C39

253

C40

164

C41

139

C42

113

C43

17

C44

37

C45

157

C46

192

C47

111

C48

131

C49

None

C50

26

C51

173

C52

187

C53

30

C54

56

C55

None

C56

None

C57

None

C58

1077

C59

40

C60

153

C61

136

C62

149

C63

144

C64

185

C65

108

C66

None

C67

None

C68

None

C69

44

C70

110

C71

179

C72

64

C73

40

C74

39

C75

None

C76

110

C77

163

C78

None

C79

48

288

253

302

297

287

258

323

295

306

266

182

283

238

279

245

255

278

234

273

229

291

282

237

201

250

249

241

251

155

275

266

305

260

200

249

296

276

264

160

175

144

29

44

208

168

124

141

None

22

183

188

24

65

None

None

None

959

18

145

125

171

162

195

122

None

None

None

43

124

159

64

48

32

None

137

201

None

23

221

290

244

247

232

260

198

265

253

165

235

245

217

268

242

293

244

228

190

251

235

275

190

210

210

206

240

162

232

219

220

243

246

186

198

223

236

145

147

142

23

36

140

124

104

152

None

30

145

142

28

44

None

None

1

1007

21

147

142

113

104

173

113

None

None

None

30

113

120

42

54

43

None

117

193

1

35

274

269

285

255

304

288

329

309

173

273

272

245

264

259

285

286

272

213

264

282

254

245

283

244

242

212

206

241

290

243

240

230

283

239

258

337

162

163

201

27

28

134

167

139

157

None

32

157

201

31

42

1

None

None

949

19

169

166

148

157

200

144

None

None

None

27

103

125

54

55

46

None

133

187

1

42

243

273

249

303

314

334

272

204

279

280

217

291

285

294

280
300

200

244

233

246

194

218

223

222

268

244

286

239

209

228

222

240

274

285

293

150

205

148

33

21

163

196

142

133

None

24

159

154

50

45

None

None

None

1062

30

136

197

145

154

205

136

None

None

None

56

136

135

61

65

51

None

117

192

2

53

320

261

237

230

288

279

171

253

265

214

191

212

235

193

195

218

279

226

223

200

295

231

186

281

218

230

222

180

288

199

214

215

219

307

109

163

127

18

46

124

91

148

107

None

26

143

164

21

58

None

None

2

1056

36

144

136

171

167

185

127

None

None

None

37

158

134

58

84

39

None

144

199

None

44

262

304

247

310

294

206

359

287

315

232

275

269

276

264

228

251

272

255

185

299

241

220

325

246

289

296

249

239

228

287

226

266

281

175

131

179

26

29

170

150

166

137

None

31

156

185

36

54

None

1

None

964

23

111

141

188

165

157

143

None

None

None

44

129

138

47

35

44

None

118

192

None

51

346

298

277

327

197

348

304

218

272

325

276

269
271

280

263

345

265

214

253

217

219

264

235

271

253

248

250

281

256

272

249

319

180

184

177

34

27

163

196

141

141

None

21

187

166

35

56

None

None

2

985

35

174

160

197

126

211

172

None

1

None

31

137

131

39

63

46

None

110

167

None

49

366

304

319

196

313

276

216

249

276

264

254

301

201

325

258

247

222

316

231

227

280

230

239

308

244

240

192

291

301

293

302

162

139

177

30

25

210

172

164

171

None

29

235

185

41

42

None

1

None

811

28

166

176

130

179

211

140

None

None

2

35

105

120

59

47

42

None

100

179

None

42

276

267

230

294

259

259

274

347

309

332

273

257

281

218

244

249

299

177

261

329

215

317

338

256

251

229

297

252

279

304

187

142

107

24

26

147

146

196

121

None

18

169

205

46

44

None

None

None

976

21

169

178

204

129

214

137

None

1

None

43

90

121

37

56

57

None

117

162

None

47

351

254

280

293

279

328

345

359

276

283

235

362

257

237

212

252

215

257

316

253

287

244

215

232

258

239

257

265

354

181

149

203

32

14

167

170

180

223

None

27

160

169

28

45

None

1

None

916

23

181

135

197

176

192

177

None

None

None

39

127

127

64

53

45

None

118

214

None

49

214

370

350

306

269

360

333

283

336

233

363

284

329

234

372

244

230

317

275

302

350

320

249

267

288

237

328

318

182

202

163

24

26

186

169

196

198

None

28

189

178

38

52

None

None

None

889

16

166

159

169

153

192

153

None

None

None

50

102

121

46

59

39

None

94

181

None

45

248

262

210

214

245

245

184

217

207

200

202

174

146

214

147

200

203

156

203

233

142

179

179

153

162

203

178

127

94

110

41

36

114

126

104

145

None

17

129

127

34

58

None

None

None

1052

29

86

112

114

115

153

116

None

None

None

55

156

200

42

68

53

None

103

189

None

48

270

267

260

286

308

284

275

241

285

250

283

182

302

249

237

311

217

233

209

268

276

314

318

266

292

316

202

183

150

32

26

176

154

138

178

None

30

154

182

13

47

1

None

None

924

15

120

156

206

199

210

150

None

None

None

43

134

157

45

38

46

None

106

172

None

46

215

294

347

266

259

298

217

309

211

254

169

297

229

212

253

184

217

212

261

260

259

245

240

243

331

164

176

166

23

33

131

127
168

108

None

22

123

203

27

69

1

None

None

1000

29

155

159

173

137

185

157

None

None

None

43

107

123

47

42

59

None

139

195

None

50

277

299

262

212

256

230

335

241

231

149

319

221

183

230

189

245

244

243

238

193

221

257

251

295

139

141

152

27

16

111

167
206

107

None

30

125

158

34

48

None

None

None

1095

28

139

155

176

159

160

128

None

None

None

29

131

171

45

68

39

None

145

208

3

70

281

273

265
206

254

263

252

215

221

284

176

305

227

199

222

243

249

246

231

225

226

236

330

170

135

144

15

25

191

147 134

152

None

29

163

157

33

48

None

None

1

950

34

133

170

140

134

188

108

None

None

None

48

129

137

43

56

46

None

115

178

None

47

304

340

324

188

267

329

279

223

305

193

270

271

227

297

262

295

260

250

337

230

270

356

183

141

139

18

29

175

216

140

143

None

18

156

175

31

46

None

None

1

993

28

151

132

201

165

161

164

None

None

None

47

148

152

40

56

31

None

121

200

1

42

328

290

240

296

273

288

192

266

314

232

278

199

244

254

228

238

245

254

321

310

328

200

131

136

20

28

239

171 181

191

None

26

193

199

39

51

None

None

1

964

22

140

189

172

110

181

120

None

None

None

34

103

153

49

60

47

None

125

192

None

52

274

273

243

201

238

242

288

211

211

291

188

252

267

227

219

238

212

260

191

250

143

146

93

31

20

199

151

175

160

None

34

156

171

32

72

None

None

1

975

32

120

133

159

159

188

119

None

None

None

44

115

150

48

52

40

None

120

144

None

34

260

281

358

235

221

343

201

260

322

245

308

295

262

252

222

245

272

291

305

180

182

125

28

21

192

166

201

157

None

24

183

152

34

43

1

None

None

987

31

170

199

125

157

155

121

None

None

None

56

141

126

50

44

67

None

103

199

None

38

291

277

258

185

232

230

237

223

160

266

221

232

283

252

230

242

243

254

122

165

147

23

38

166

138

126

109

None

37

132

167

25

54

None

None

1

930

27

132

137

143

132

154

138

None

None

None

34

120

95

51

41

52

None

114

186

None

37

336

276

245

370

260

284

324

265

242

295

301

274

234

287

253

330

298

183

169

191

36

35

148

202

158

198

None

25

209

234

36

43

None

None

None

879

37

123

150

156

141

225

165

None

None

None

45

94

130

39

33

55

None

105

158

1

64 310

240

290

206

299

225

231

260

307

260

263

239

257

208

232

299

138

132

169

26

36

188

186

178

163

None

20

196

193

33

44

None

None

1

1037

22

181

168

192

206

199

182

None

None

None

43

94

171

44

50

51

None

119

191

None

49

187

311

231

264

216

203

294

243

227

235

290

230

248

282

326

137

133

125

34

37

109

135

173

138

None

25

168

185

40

43

None

None

3

940

25

157

182

167

162

216

144

None

None

None

43

117

128

54

64

37

None

134

188

None

46

236

207

224

185

164

174

200

215

218

205

224

197

204

227

115

100

153

28

38

117

133

128

96

None

27

140

134

28

44

None

None

1

1095

26

117

124

152

124

171

105

None

None

None

57

114

114

73

72

37

None

154

224

1

38

270

286

305

231

224

317

220

301

238

237

241

279

368

188

155

194

49

33

132

235

181

200

None

28

154

205

29

34

None

None

1

937

18

136

169

139

181

235

142

None

None

None

62

123

146

47

56

33

None

107

151

3

43

262

262

208

251

257

270

220

241

283

207

217

233

133

113

175

36

36

160

145

133

128

None

25

133

179

24

51

None

None

1

1003

16

132

132

135

131

165

104

None

None

None

27

101

149

43

45

52

None

116

193

None

47

251

191

235

345

261

212

253

277

231

258

232

141

152

133

29

36

158

185

151

196

None

35

184

147

30

46

1

1

1

971

39

109

173

145

104

205

172

None

None

None

41

132

132

46

47

49

None

115

158

None

50

241

241

316

291

217

231

212

256

259

246

175

179

103

28

31

147

172

210

143

None

30

174

177

24

46

None

None

1

982

28

145

190

115

166

201

110

None

None

None

50

132

129

42

57

48

None

128

186

None

50

231

220

203

282

179

207

231

190

279

117

141

102

33

25

113

153

123

161

None

25

93

132

47

54

None

None

1

1062

22

133

129

166

147

127

95

None

None

None

54

123

156

51

55

38

None

123

240

None

35

245

303

333

241

224

297

212

319

170

156

177

24

25

133

152

190

103

None

31

168

199

35

45

None

1

None

914

23

184

142

189

128

226

126

None

None

None

54

120

110

48

30

37

None

122

190

None

55

345

271

242

258

246

296

319

128

151

110

23

31

115

140

169

188

None

24

171

162

27

35

None

None

None

907

24

161

144

154

163

215

89

None

None

None

31

122

126

63

44

54

None

140

179

None

35

299

223

196

291

314

297

123

192

122

24

23

172

136

177

159

None

26

155

156

28

49

None

1

None

953

27

133

166

185

142

195

116

None

None

None

44

102

142

52

47

63

None

103

171

None

41

277

295

240

257

279

143

158

160

23

27

164

133

151

152

None

38

181

105

33

46

1

None

None

994

21

155

180

146

176

175

114

None

None

None

36

144

159

43

62

41

None

123

155

None

72

285

228

242

287

124

165

124

18

30

146

126

168

170

None

24

165

175

34

55

None

None

None

993

20

115

106

120

121

142

117

None

None

None

64

122

174

50

51

39

None

113

174

None

44

240

231

288

165

150

125

34

33

132

132

150

129

None

35

182

174

21

72

None

None

None

972

25

130

184

173

150

187

137

None

None

None

54

104

138

52

50

47

None

149

196

None

50

250

338

179

118

107

39

21

117

165

230

127

None

28

149

186

16

58

None

None

None

924

17

157

176

185

130

144

109

None

None

None

39

124

140

32

33

34

None

137

200

1

31

335

175

200

148

25

28

228

143

216

107

None

30

157

157

27

37

1

None

1

880

22

142

152

176

171

212

143

None

None

None

43

93

154

29

28

49

None

104

172

None

34

175

208

183

30

23

134

192

191

195

None

26

164

204

35

37

None

None

None

923

33

152

180

242

161

248

151

None

None

None

42

120

118

44

50

36

None

104

196

None

55

87

58

29

18

94

111

89

106

None

32

140

109

31

67

None

None

None

1171

32

81

67

96

104

74

85

None

None

None

43

123

150

56

45

44

None

192

236

None

45

65

28

20

84

100 98

104

None

26

76

64

21

48

1

1

2

1131

19

90

103

126

68

102

87

None

None

None

54

145

143

49

60

41

None

128

185

None

39

14

43

89

67

92

98

None

25

105

111

25

50

None

None

None

1192

15

75

99

103

93

111

70

None

None

None

47

139

159

68

63

46

None

164

253

None

66

61

22

18

26

22

None

37

31

26

52

87

None

3

1

1931

42

38

36

30

27

24

21

None

None

None

77

196

238

90

98

79

None

250

362

3

82

23

24

25

15

None

44

33

28

64

85

None

None

None

1928

37

19

28

23

45

18

41

None

None

None

84

229

263

99

83

75

None

193

304

1

78

93

113

104

None

29

70

132

26

72

None

None

None

1273

31

69

120

101

82

100

87

None

None

None

62

144

196

61

60

53

None

145

242

None

57

80

98

None

28

108

116

26

55

None

None

2

1179

27

88

71

92

85

113

82

None

None

None

68

148

157

72

53

44

None

130

204

None

54

105

None

26

103

113

32

44

None

None

None

1083

24

63

94

88

125

140

81

None

None

None

47

146

167

76

54

45

None

108

237

None

52

None

24

104

100

36

62

None

None

1

1100

19

81

73

60

62

114

69

None

None

None

46

126

157

51

53

56

None

133

207

None

54

None

None

None

None

None

None

None

None

2

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

1

None

None

None

26

29

51

66

None

23

1

2012

53

23

13

35

17

20

37

None

2

None

69

222

249

63

73

84

None

235

357

2

68

126

26

51

None

None

None

1209

25

104

81

114

85

130

81

None

None

None

46

134

153

78

50

39

None

137

200

None

52

45

64

1

None

4

1121

27

108

97

109

100

139

75

None

None

None

45

163

155

67

70

59

None

127

209

None

38

86

None

5

None

1883

34

25

30

19

31

21

27

None

None

None

47

190

237

110

104

85

None

211

358

1

84

1

4

4

2411

63

44

60

72

41

63

65

None

1

6

92

283

260

153

115

100

2

249

423

6

120

None

2

1601

7

None

1

1

None

None

None

None

None

None

50

174

252

23

27

45

None

180

316

None

65

None

1585

21

None

None

None

None

None

None

None

None

None

42

181

241

25

30

49

None

174

347

None

62

1742

26

None

None

None

None

None

1

None

None

None

47

236

254

26

33

47

None

194

364

None

67

2602

1236

1100

1106

1136

1100

1150

2

225

501

2429

5049

5555

2582

2644

2343

556

4894

7384

608

2516

28

31

41

34

36

29

None

2

2

97

326

442

73

79

75

2

245

471

3

95

117

72

108

102

68

None

None

None

68

144

132

78

69

53

None

154

247

1

69

70

128

127

67

None

None

None

44

125

178

54

67

35

None

136

211

None

51

76

150

80

None

None

None

44

127

127

56

57

42

None

166

222

None

44

116

86

None

None

None

39

134

168

53

63

56

None

98

225

None

55

121

None

None

None

47

126

186

43

44

36

None

145

223

None

53

None

None

None

60

198

186

61

51

40

None

162

224

None

68

None

None

None

None

None

None

None

None

None

None

1

None

None

None

None

39

4

4

None

None

None

27

46

None

None

None

49

19

1

2

None

None

56

62

None

None

224

260

96

90

92

None

246

377

9

94

561

244

235

274

66

468

734

71

226

282

307

307

24

589

885

69

322

100

85

3

214

372

7

99

102

16

264

418

5

89

None

271

349

7

106

52

112

None

None

724

54

223

116

423

10

(b) Minimum k-cut.

Figure 4.6: Graph representation of an 80 node partitioning using minimum k-cut. The total edge cut
is reduced from 3,435,423 (hash) to 497,549 (minimum k-cut). Yellow denotes light weights
whereas red denotes heavy weights. Yellow is better.

0k

60k

120k

180k

1 2 3 4 5 6 7 8 9 10 11

Tr
an

sa
ct

io
ns

Nodes

(a) Hash placement.

0k

60k

120k

180k

1 2 3 4 5 6 7 8 9 10 11

Tr
an

sa
ct

io
ns

Nodes

(b) Minimum k-cut.

Figure 4.7: Frequency graph showing the number of nodes involved per transaction.

the need for a central component.
We choose a gossip-style peer-to-peer approach, where nodes in the cluster contact other

nodes at regular intervals. When gossiping, the two nodes exchange their transaction histories
and make local optimizations to the data partitioning scheme. In theory, if these local optimiza-
tions work towards better over-all partitioning, this gossip-based approach should converge to
close-to optimal state.

Each gossip session consists of the following steps:

1. Gossip initiation
In the initiation phase, the “initiating node” chooses a “participating node” at random and
attempts to establish a gossip session. As CloudTPS maintains complete membership, we
simply choose a node at random from this global view. Although not tested, we believe
that our approach will also work in an environment where the global view is unknown and
nodes are drawn from a local view, maintained with gossip based peer-sampling [11]. The

26

participating node will either accept and establish the gossip session or reject the gossip,
if already engaged.

2. Exchange transaction logs and build graph
The participating node sends its complete transaction log over to the initiator, which
constructs the transaction graph, as described in Section 4.2.

3. Run Minimum k-cut
The graph is partitioned in k = 2 partitions using the METIS library [12]. When con-
structing the graph in our Java implementation, we take special care to use the same data
structures as the METIS library. This way, using the Java Native Interface, we can pass
references to these data structures directly to the METIS C-library, avoiding unnecessary
memory copies.

4. Interpret partitioning and migrate items
Finally, the METIS output is interpreted and items are migrated, using MigrationTransac-
tions as described in 3.3. The current implementation migrates items serially, one-by-one.
Items could be migrated in bulk, and multiple MigrationTransactions submitted in paral-
lel, but this could have a higher performance impact on the cluster. Only once all items
have been migrated, the nodes will round up their gossip session and become available to
engage in upcoming gossips.

4.3.1 Simulation

The gossip-based distributed partitioning was simulated using the same TPC-W trace as ref-
erenced in Section 4.2. The simulation was carried out in two phases. In the first phase the
complete trace was processed, building up a transaction history. In the second phase, gossips
were triggered one cycle at a time, recording the over-all placement after each cycle.

Figure 4.8 shows the results of our first simulation as total edge cut (total weight) over time
(gossip cycles). For reference, the hash and optimal k-cut placement’s edge cut is drawn in green
and blue, respectively. The red curve represents the total edge cut after each cycle, and we find
that it converges to the optimal k-cut placement.

4.3.2 Anchor Nodes

Under normal circumstances, graph partitioning has complete graph information. This is not the
case in our distributed approach, which reveals a problem where the number of items migrated
per cycle does not converge to zero. Figure 4.9 illustrates that even after 100 cycles, long after
the gossip-based and optimal k-cut total edge cut curves have converged, the system is still
migrating a large number of items (∼ 6%) each cycle.

The root cause for this high migration count is that the graph does not represent the item’s
current placement. This is best explained by means of an example. Let us say that nodes A and

27

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 10 20 30 40 50 60 70 80 90 100

To
ta

l w
ei

gh
t

Gossip cycles

64 node gossip (partial trace)

gossip (local k-cut)
hash
k-cut

k-cut + 10%
k-cut + 20%

Figure 4.8: Total edge cut (total weight) for hash, optimal k-cut and our gossip policy over time (gossip
cycles).

64 node gossip (partial trace)

gossip (local k-cut)
items moved

hash
k-cut

k-cut + 10%
k-cut + 20%

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0

To
ta

l w
ei

gh
t

 10 20 30 40 50 60 70 80 90 100
Gossip cycles

Figure 4.9: Number of items migrated does not converge.

28

y

x

z

u

w v

2

1

1

1 1

1 2

k=2

k=2

r s p q

x

z

u

w vy

k=2

r s p q

x

z

u

w vy

(a) Basic graph.

y

x

z

u

w v

2

1

1

1 1

1 2

k=2

k=2

r s p q

x

z

u

w vy

k=2

r s p q

x

z

u

w vy

(b) With anchor nodes.

Figure 4.10: Anchor nodes give the partitioning algorithm an incentive to keep items in place, if their
location does not affect the edge cut.

B are gossiping and their collective transaction histories are represented by the graph in Figure
4.10a. The transaction graph is not necessarily connected and thus certain tuples, such as (r, s)
and (p, q), are placed in either partition, based on chance. As a result, these two tuples can drift
from one node to another, even if the migration has no effect on the total edge cut.

To moor these drifting items we introduce anchor nodes. Two anchor nodes are created, one
for each gossip participant, and each node connects to all items stored on the respective server
node. Following the previous example, Figure 4.10b demonstrates how the two anchor nodes
connect to local items. By holding on to items, the anchor nodes give the partitioning algorithm
an incentive to leave nodes in place. Figure 4.11a shows the same TPC-W trace simulated,
but with anchor nodes. First, we note that the number of items migrated decreases over time.
Second, we note that far fewer items are migrated than before. Previously there was an average
migration count of ∼ 6% whereas now the count starts at ∼ 3% but quickly drops below ∼ 1%.

The anchor nodes provide incentive to keep items in place, and this incentive can be increased
or decreased at run-time by changing the weights of the edges between anchor nodes and local
items. The heavier the weight, the harder the anchor node will fight to keep the items locked
in place. This incentive can be used to take the cost of migration into account when evaluating
whether to migrate data items. Figure 4.11 demonstrates how varying anchor edge weight affects
total edge cut convergence and the number of items moved. The higher the weight, the fewer
items are moved during each cycle and the slower the system converges.

The varying anchor weight could also be used to focus on moving only the more important
items. For example, if after running the k-cut partitioning the number of item migrations were
above a certain threshold, the partitioning could be rerun, with increasing anchor weight, until
the number of items to migrate drops below the set threshold. This should provide much better
results than migrating only a subset of the first output. We should note that the graph does
not need to be rebuilt to change the anchor weight. The same structures can be reused, slightly
modified, and passed by reference to the METIS library.

29

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

2.5e+06

3.0e+06

3.5e+06

 0 20 40 60 80 100
 0

 20000

 40000

 60000

 80000

 100000

To
ta

l w
ei

gh
t

Ite
m

s
m

ov
ed

Gossip cycles

64 node gossip (weight 10, scale 10)

gossip (local-k)
items moved

items moved (scaled to y2)
hash
k-cut

k-cut + 10%
k-cut + 20%

(a) weight = 1

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

2.5e+06

3.0e+06

3.5e+06

 0 20 40 60 80 100
 0

 20000

 40000

 60000

 80000

 100000

To
ta

l w
ei

gh
t

Ite
m

s
m

ov
ed

Gossip cycles

64 node gossip (weight 10, scale 6)

gossip (local-k)
items moved

items moved (scaled to y2)
hash
k-cut

k-cut + 10%
k-cut + 20%

(b) weight = 1.6

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

2.5e+06

3.0e+06

3.5e+06

 0 20 40 60 80 100
 0

 20000

 40000

 60000

 80000

 100000

To
ta

l w
ei

gh
t

Ite
m

s
m

ov
ed

Gossip cycles

64 node gossip (weight 10, scale 4)

gossip (local-k)
items moved

items moved (scaled to y2)
hash
k-cut

k-cut + 10%
k-cut + 20%

(c) weight = 2.4

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

2.5e+06

3.0e+06

3.5e+06

 0 20 40 60 80 100
 0

 20000

 40000

 60000

 80000

 100000

To
ta

l w
ei

gh
t

Ite
m

s
m

ov
ed

Gossip cycles

64 node gossip (weight 10, scale 2)

gossip (local-k)
items moved

items moved (scaled to y2)
hash
k-cut

k-cut + 10%
k-cut + 20%

(d) weight = 5

Figure 4.11: The item migration count and speed of convergence can be adjusted by changing the
anchor edge weight.

30

0 %

0.005 %

0.01 %

0.015 %

0.02 %

0.025 %

0.03 %

 0 10 20 30 40 50 60

Ite
m

s
ac

ce
ss

ed

Node

64 node load balance

1.00
1.15
0.85

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

(a) Initial state.

0 %

0.005 %

0.01 %

0.015 %

0.02 %

0.025 %

0.03 %

 0 10 20 30 40 50 60

Ite
m

s
ac

ce
ss

ed

Node

64 node load balance

1.00
1.15
0.85

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

(b) After 2 cycles.

0 %

0.005 %

0.01 %

0.015 %

0.02 %

0.025 %

0.03 %

 0 10 20 30 40 50 60

Ite
m

s
ac

ce
ss

ed

Node

64 node load balance

1.00
1.15
0.85

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

(c) After 4 cycles.

0 %

0.005 %

0.01 %

0.015 %

0.02 %

0.025 %

0.03 %

 0 10 20 30 40 50 60

Ite
m

s
ac

ce
ss

ed

Node

64 node load balance

1.00
1.15
0.85

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

(d) After 6 cycles.

Figure 4.12: The system quickly balances load amongst nodes.

4.4 Load Balancing

By utilizing the multi-constraint k-way partitioning features in the METIS library, it was also
possible to incorporate load-balancing into the partitioning. We added weights to the vertices
in the graph, having weights denote the item hit count.

Figure 4.12 shows the same TPC-W as before starting out in an unbalanced state and quickly
converging to a balanced state.1

Node 48 is of special interest. It remains read, and according to our metrics, highly loaded.
Upon further inspection, it turns out that this node is only storing a single item. The item in
question was country: USA, which appears in a high percentage of transactions. This shows
that using item hit count alone may not be sufficient.

1We define a balanced state such that load imbalance is less than 15%.

31

Chapter 5

Evaluation

This chapter presents a performance evaluation of the lookup table (LT) mechanism. The
evaluation is organized in two parts. Firstly, we evaluate the costs introduced by using lookup
tables. This was done by comparing unmodified CloudTPS (Vanilla) and our modified LT
CloudTPS with random data placement (LTrand). Secondly, we evaluate the gains obtained by
using a good placement policy. This was done by preloading the lookup table with a placement
derived from running the policy described in Chapter 4 (LTopt).

All benchmarks are performed using CloudTPS’s TPC-W Zipf-enabled benchmark, with pre-
generated sequences to work towards repeatable results. We deploy CloudTPS over twelve nodes
on the DAS3 cluster at Leiden University [1]. Each node has one dual-core 2.6 Ghz processor
and 4 GB of RAM. We used nine additional nodes for the benchmark: two clients nodes, one
time-stamp node and six HBase nodes, implementing the underlying persistent cloud storage.

5.1 Lookup Table Overhead

The first metric of interest is the overhead introduced by the lookup tables, regardless of place-
ment policies. We compare our LT CloudTPS version (LTrand), without any policy, to Vanilla
CloudTPS. When lookup tables are used without a policy, items are randomly placed using
hashing, analogous to Vanilla CloudTPS, and thus comparing the two will allow for estimating
the added overhead.

As expected, LTrand latencies in Figure 5.1 are higher than the Vanilla latencies, averaging
at 13.3 ms compared to Vanilla’s 8.3 ms. The increased latency is mostly caused by two factors:
cache misses, where the item location is present neither in the local cache nor the local know-
ledge; and initial placements, where the item’s location is completely unknown and has to be
created, and written to persistent storage, before continuing. These operations involve internode
communication and can be blocked by other transactions, and are therefore costly. For example,
an initial write of item x will involve a cache read miss from the local node’s cache, a request
to the knowledgeable node, a cache read miss from the knowledgeable node’s local knowledge
and an attempted read from persistent storage. Since there is no placement persisted, an initial

32

placement will be devised and written to persistent storage. This is an example of the worst
case scenario, which, however, will occur once for each new item added to LT CloudTPS.

5.2 Optimal Placement

To find a good data placement, we recorded a trace from the previously described TPC-W
benchmark and fed through 50 cycles of the gossip based simulator introduced in Chapter 4.1

The output was then preloaded into persistent storage for the lookup table to use (LTopt).
Figure 5.2 extends Figure 5.1 by adding request latency for the close-to-optimal placement.

With item placement we make up for much of the overhead introduced by lookup tables. Even
so, at a 7.90 ms average request latency, LTopt only marginally outperforms Vanilla CloudTPS,
at 8.38 ms. Further, while the average LTopt latency is lower than Vanilla (Figure 5.2a), we
note that the LTopt 99th percentile is still considerably higher (Figure 5.2b). As discussed in
Section 5.1, these higher 99th percentiles are expected. All three configurations have similar
throughput during the experiment.

5.3 Discussion

In this section we will discuss three topics and how they affected these results: cache misses,
node imbalance and the workload generation.

5.3.1 Cache Misses

Performance is determined by the number of nodes involved in transactions, and by the cache
hit ratio. The higher the hit ratio, the fewer pointers need to be read from persistent storage,
resulting in lower overhead.

Figure 5.3 plots Vanilla and LTopt latencies over time on the y-axis, and the cache miss
ratio over time on the y2-axis. This strongly suggests a direct relation between cache miss ratio
and LTopt latencies. Figure 5.3 draws out this this relation and shows that for our workload,
LTopt outperformed Vanilla when cache misses were below 17.4%. These data show that LTopt
could do better than Vanilla over-all when fronted with a lower cache miss ratio workload. For
example, between times 420 and 470, when the cache misses drop below 7%, LTopt’s average
latency of 5.42 ms is 33% lower than Vanilla’s average of 8.11 ms.

5.3.2 Node Imbalance

The policy presented in Chapter 4 included methods for load balancing items across nodes.
Figure 5.4a plots the number of items accessed per individual node. Judging by the deviation
graph in Figure 5.4b items are read fairly uniformly across nodes. Transient highs and lows are

1The trace was fed to the simulator as a single sample, and the simulation did not therefore account for
changes in access pattern.

33

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200 300 400 500 600 700 800 900 1000 1100

R
es

po
ns

e
tim

e

Time [s]

Average request latency (TPC-W)

Vanilla
No policy

(a) Average request time.

 0

 50

 100

 150

 200

 250

 200 300 400 500 600 700 800 900 1000 1100

R
es

po
ns

e
tim

e

Time [s]

TP 99% request latency (TPC-W)

Vanilla
No policy

(b) 99th percentile of response times.

Figure 5.1: Lookup table overhead is the area between the Vanilla CloudTPS and lookup table
CloudTPS curves.

34

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200 300 400 500 600 700 800 900 1000 1100

R
es

po
ns

e
tim

e

Time [s]

Average request latency (TPC-W)

Vanilla
No policy

Initial placement

(a) Average request time.

 0

 50

 100

 150

 200

 250

 200 300 400 500 600 700 800 900 1000 1100

R
es

po
ns

e
tim

e

Time [s]

TP 99% request latency (TPC-W)

Vanilla
No policy

Initial placement

(b) 99th percentile of response times.

Figure 5.2: Comparison of Vanilla CloudTPS, lookup table CloudTPS with no policy and lookup table
CloudTPS with close-to-optimal placement.

35

 0

 2

 4

 6

 8

 10

 12

 200 300 400 500 600 700 800 900 1000 1100
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

R
es

po
ns

e
tim

e

Time [s]

Average request latency (TPC-W)

Request latency
Cache miss ratio (on y2)

(a) Latency and cache miss ratio over time.

 2

 4

 6

 8

 10

 12

 14

 16

 18

0 % 10 % 20 % 30 % 40 % 50 %

Av
er

ag
e

re
sp

on
se

 ti
m

e

Cache miss ratio

Average response time over cache miss ratio (TPC-W)

Correlation
Vanilla average

(b) The intersection at 17.4% shows that lookup tables outperformed Vanilla when cache misses
were below 17.4%.

Figure 5.3: Relation between latency and cache miss ratio.

36

expected, as the load balancer operates and averages over the complete period, and therefore
does not account for items read times within the period.

The same cannot be said for transaction coordination. The number of locally coordinated
transactions is not properly balanced, as demonstrated by Figures 5.5a and 5.5b. Since the node
coordinating a transaction does considerably more work than other participating nodes, this can
have a detrimental effect on overall performance and latency.

This imbalance was caused by an optimization in transaction dispatching. When a Vanilla
ClouldTPS client submits a transaction involving items x and y, it will submit the transaction
to a random node in {hash(x), hash(y)}. If items are evenly placed, then transactions will
similarly be evenly coordinated. In the lookup table implementation, a faulty optimization
broke this random distribution. Instead of choosing from {hash(x), hash(y)}, LT chooses from
{lookup(x), lookup(y)}. If neither of those pointers are locally cached, the client will attempt
to resolve both pointers and submit the transaction according to the first dereferenced pointer.
However, and this is where the optimization violates even distribution, if any pointer in the set
is locally cached, the set is reduced to include only the locally cached pointers. For example, let
us assume that a client has cached pointers for lookup(x) and lookup(y) and is about to submit
a transaction involving items x and p. It will first construct the set {lookup(x), lookup(p)}, but
the optimization phase will reduce this to {lookup(x)}, causing the transaction to be always
submitted to lookup(x) and never to lookup(p). A potential solution, in the case of transaction
x and p, is to dispatch the request to x and asynchronously resolve the location pointer for p,
resulting in subsequent submissions to be randomly dispatched. This imbalance, which initially
appeared to be caused by faulty placement policy, demonstrates the importance of benchmarking
both policy and mechanism.

5.3.3 TPC-W Trace

Our evaluation was based on a CloudTPS TPC-W workload, modified to emulate locality. The
locality emulation was implemented by drawing customer and item IDs from a Zipf distribution.

This makes certain items more popular than other, and certain customers more active than
others. This is desired, but the default Zipf exponent of 1 resulted in a very skewed workload with
several extremely hot items and a very long tail. The single most popular item, for example, was
referenced in over 8% of all transactions. This does not skew the LTopt to Vanilla comparison,
but it does create a bottleneck on the node servicing this item, as item access is serialized by
the item’s local transaction manager, and this may therefore not demonstrate the system’s full
potential.

Lookup table CloudTPS’s greatest opportunity is with transactions involving several items.
For example, in our simulations, the policy reduced transaction span of large transactions from
7 - 11 nodes to 2 - 4 nodes (see Figure 4.7). Table 5.1 lists latency improvement for two popular
transactions involving the most common TPC-W order ID. These transactions involve 7 - 9
items and make up for 1% of transactions each. The placement policy reduced the span from 6

37

 0

 200

 400

 600

 800

 1000

 1200

 200 400 600 800 1000 1200

R
ec

or
ds

 p
er

 s
ec

on
d

Time [s]

Record access per node

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Node 10
Node 11
Node 12

(a) Item access.

-400

-300

-200

-100

 0

 100

 200

 300

 400

 200 400 600 800 1000 1200

R
ec

or
d

de
vi

at
io

n
pe

r s
ec

on
d

Time [s]

Record access deviation

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Node 10
Node 11
Node 12
Average

(b) Deviation.

Figure 5.4: Item access appears properly load balanced amongst nodes.

38

 0

 50

 100

 150

 200

 250

 300

 350

 200 400 600 800 1000 1200

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Time [s]

Transactions per node

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Node 10
Node 11
Node 12

(a) Coordinated transaction.

-100

-50

 0

 50

 100

 150

 200

 200 400 600 800 1000 1200

Tr
an

sa
ct

io
n

de
vi

at
io

n
pe

r s
ec

on
d

Time [s]

Transaction deviation

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Node 10
Node 11
Node 12
Average

(b) Deviation.

Figure 5.5: Transaction coordination is not properly load balanced. Three nodes dominate transaction
coordination.

39

Vanilla LTopt Improvement

Average 7.8 ms 1.5 ms 80%
50th percentile 6 ms 1 ms 83%
90th percentile 12 ms 2 ms 83%
95th percentile 17 ms 3 ms 82%
99th percentile 38 ms 6 ms 84%

Table 5.1: Latency improvement for two types of transactions involving the most common order, as
seen by the transaction coordinator. Transaction span reduced from six nodes in Vanilla to
one in LTopt.

nodes in Vanilla down to 1 node in LTopt, and as a result, average latency dropped by 80%. In
addition to average improvements, the 95th and 99th percentiles show similar improvement, an
important metric when reducing jitter and striving towards good overall performance. Despite
the improvements on these most popular transactions, the vast majority of the larger transactions
are spread over the Zipf’s distributions long tail and thus executed only a few times, or in the
worst case, only once. As a result, they do not get the opportunity to make up for the cost of
their initial cache miss.

In this context it is worth remembering that LT CloudTPS enables the operator to select
whether to use LT or hash placement on a table by table basis. An operator could therefore
choose to use lookup tables for tables with frequent transaction access patterns, while leaving
mostly-write or random-accessed tables in hash placement mode.

40

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 500 1000 1500 2000 2500 3000

Fr
eq

ue
nc

y

Items

Item frequency by type

index__customer__C_UNAME
shopping_cart_line

shopping_cart
order_line
customer
cc_xacts

country
address

author
orders

item

(a) Linear scale.

 1

 10

 100

 1000

 1 10 100 1000 10000

Fr
eq

ue
nc

y

Items

Item frequency by type

index__customer__C_UNAME
shopping_cart_line

shopping_cart
order_line
customer
cc_xacts

country
address

author
orders

item

(b) Log-log scale.

Figure 5.6: Item frequency, by type.

41

Chapter 6

Conclusion and Future Work

The focus of this project was to study data placement and whether latency can be reduced by
clustering related items and thus limiting the number of nodes involved in each transaction.
We developed a distributed placement policy, and an item placement mechanism on top of
CloudTPS, to evaluate our policy. The mechanism features an item placement lookup table,
distributed transaction history aggregation and transactionally-consistent live item migrations.

Our gossip-like policy has the potential to scale very well, in contrast to previous centralized
approaches, while still converging on similar results. The policy includes load-balancing and a
novel cost-model which can prioritize item migrations, so that items that greatly benefit from
relocation are migrated first. This allows operators to throttle the rate of convergence, depending
on system load.

Using lookup tables, backed by a good placement policy, can clearly outperform random
placement for certain workloads. When less than 17% of requested items are new to the system,
the lookup table version outperforms random placement with up to 80% reduction in latency
averages and 99th percentiles. Our work reinforces the results of Schism and extends these by
demonstrating that data placement can realistically be done live at runtime, without the need
for a centralized component.

Future efforts should be directed towards gathering more, and different, traces, and analyzing
the system under various load characteristics. In this respect, starting with several artificial
workloads, which in theory should demonstrate both sweet spots and weaknesses, could be
beneficial to gain a deeper understanding of system behavior. Additionally, there are several
aspects that should be understood better, such as the impact of varying transaction history
window size, transaction sampling, performance of the cost-model under different workloads
and the feasibility of partitioning and placing items at a coarser granularity than item-by-item.

42

Bibliography

[1] The Distributed ASCI Supercomputer 3. http://www.cs.vu.nl/das/.

[2] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan. Volley: Auto-
mated data placement for geo-distributed cloud services. In Proceedings of the 7th USENIX
conference on Networked systems design and implementation, 2010.

[3] E.A. Brewer. Towards robust distributed systems. In Proceedings of the Annual ACM
Symposium on Principles of Distributed Computing, volume 19, pages 7–10, 2000.

[4] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R.E. Gruber. Bigtable: A distributed storage system for structured data.
ACM Transactions on Computer Systems (TOCS), 26(2):1–26, 2008.

[5] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377–387, 1970.

[6] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.A. Jacobsen,
N. Puz, D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted data serving platform.
Proceedings of the VLDB Endowment, 1(2):1277–1288, 2008.

[7] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven approach to
database replication and partitioning. Proceedings of the VLDB Endowment, 3(1), 2010.

[8] J. Dean. Designs, lessons and advice from building large distributed systems. Keynote from
LADIS, 2009.

[9] J. Dean. Building Software Systems at Google and Lessons Learned. Stanford EE Computer
Systems Colloquium, November 2010.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-
subramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly available key-value
store. ACM SIGOPS Operating Systems Review, 41(6):205–220, 2007.

[11] M. Jelasity, S. Voulgaris, R. Guerraoui, A.M. Kermarrec, and M. Van Steen. Gossip-based
peer sampling. ACM Transactions on Computer Systems (TOCS), 25(3):8–es, 2007.

43

[12] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359, 1999.

[13] M. Mehta and D.J. DeWitt. Data placement in shared-nothing parallel database systems.
The VLDB Journal, 6(1):53–72, 1997.

[14] J.W. Romein, A. Plaat, H.E. Bal, and J. Schaeffer. Transposition table driven work schedul-
ing in distributed search. In Proceedings of the National Conference on Artificial Intelli-
gence, pages 725–732, 1999.

[15] J. Rothschild. High performance at massive scale – lessons learned at facebook, 2009.

[16] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of the 2001 conference
on Applications, technologies, architectures, and protocols for computer communications,
pages 149–160, 2001.

[17] W. Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, 2009.

[18] W. Zhou, G. Pierre, and C. Chi. CloudTPS: Scalable transactions for Web applications in
the cloud. Services Computing, IEEE Transactions on, (99):1–1, 2011.

44

	Introduction
	Background and related work
	Scalable Relational Databases
	Distributed Data Stores
	CloudTPS

	Data Placement Policies

	Data Item Relocation Mechanism
	Request Routing
	Distributed Lookup Table
	Knowledgeable Nodes
	Local Knowledge
	Local Cache
	Inconsistent Values
	Underlying Storage
	Lazy Population
	Yielding Transactions
	Initial Cache Miss

	Item Migration
	An Example of a Migration

	Fault Tolerance
	Implementation Details

	Data Item Placement Policy
	Collecting the Transaction History
	Workload Interpretation and Partitioning
	Distributed Approach
	Simulation
	Anchor Nodes

	Load Balancing

	Evaluation
	Lookup Table Overhead
	Optimal Placement
	Discussion
	Cache Misses
	Node Imbalance
	TPC-W Trace

	Conclusion and Future Work

