
A DECENTRALIZED WIKI ENGINE FOR COLLABORATIVE
WIKIPEDIA HOSTING∗

Guido Urdaneta, Guillaume Pierre, Maarten van Steen
Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

guidou@few.vu.nl, gpierre@cs.vu.nl, steen@cs.vu.nl

Keywords: wiki, peer-to-peer, collaborative web hosting, decentralized.

Abstract: This paper presents the design of a decentralized system for hosting large-scale wiki web sites like Wikipedia,
using a collaborative approach. Our design focuses on distributing the pages that compose the wiki across a
network of nodes provided by individuals and organizations willing to collaborate in hosting the wiki. We
present algorithms for placing the pages so that the capacity of the nodes is not exceeded and the load is
balanced, and algorithms for routing client requests to the appropriate nodes. We also address fault tolerance
and security issues.

1 INTRODUCTION

The development of the Internet has facilitated
new types of collaboration among users such as
wikis (Leuf and Cunningham, 2001). A wiki is a web
site that allows visitors to edit its content, often with-
out requiring registration. The largest and best known
example is Wikipedia (Wikipedia, 2006), which is
a free content encyclopedia implemented using wiki
technology. As shown in Figure 1, Wikipedia’s traffic
is growing at an exponential rate, which now makes
it one of the most popular web sites on the Inter-
net (Alexa Internet, 2006).

Current wiki engines, including the one used by
Wikipedia, are based on a centralized architecture that
typically involves a web application with all the busi-
ness and presentation logic, coupled with a central
database, which handles all the data. The particu-
lar case of Wikipedia deserves special attention be-
cause it shows that a wiki can become a very large
distributed system, and also how difficult it is to scale
a system with a centralized architecture.

Wikipedia consists of a group of wiki projects,
with each project typically associated with a specific
language edition of the encyclopedia. The biggest

∗Supported by the Programme Alban, the European
Union Programme of High Level Scholarships for Latin
America, scholarship No.E05D052447VE.

Figure 1: Average number of daily update operations in the
English language Wikipedia. Note the log-scale of the y-
axis.

Wikipedia edition by far is the English language
version, which accounts for over 60% of the total
Wikipedia traffic (Alexa Internet, 2006). Currently,
Wikipedia is implemented as a set of PHP scripts that
access a MySQL database. Wikipedia uses replica-
tion and caching in order to scale its architecture.
The database is fully replicated to several servers, so
that read operations can be spread across a number
of replicas. The PHP scripts are replicated to multi-
ple web servers as well. In addition, Wikipedia uses

front-end cache servers that can handle most of the
read requests, which helps reduce the load on the web
and database servers. For most Wikipedia editions,
including the English version, the database, web and
cache servers are located in Tampa, FL (USA), with
additional cache servers in Amsterdam (Netherlands)
to handle European traffic and Seoul (South Korea) to
handle Asian traffic. The total number of servers is
around 240.

The centralized architecture of Wikipedia poses
both technical and financial problems for its operator.
On the technical side, we have one of the most popu-
lar web sites in the world experiencing an exponential
growth in its activity and relying essentially on only
a few access points and a single centralized database
for its operations. The resulting quality of service is
acknowledged by Wikipedia itself to be occasionally
very poor. It is reasonable to expect that, no matter
how much it is expanded, this centralized architecture
is eventually going to become an even greater bottle-
neck than it already is. Among the possible reasons
we mention that the capacity of the database may not
be able to sustain the growth in site activity, and that
access from certain locations is subject to delays im-
posed by network latency and the possible low band-
width of intermediate links. In addition, power con-
sumption will impose a limit to how much the central
location can grow in size.

Several popular web sites have solved their scal-
ability problems using fully distributed architectures.
For example, Google maintains an infrastructure of
several hundreds of thousands of servers in multiple
data centers around the world (Markoff and Hansell,
2006). Amazon.com moved from a centralized ar-
chitecture similar to Wikipedia’s to a completely dis-
tributed service-oriented architecture spread across
multiple data centers (O’Hanlon, 2006). Others rent
the infrastructure provided by Content Delivery Net-
work (CDN) vendors (Akamai Technologies, 2006),
which typically consists of thousands of servers dis-
tributed across many countries. It is not unreasonable
to speculate that Wikipedia will need to move to a
similar massively distributed architecture in the near
future. However, an architecture based on redundant
distributed data centers is economically viable only
for businesses where improved quality of service gen-
erates extra income that can compensate for the con-
siderable costs involved.

Another option is the utilization of a collabora-
tive CDN (CCDN), which allows multiple indepen-
dent web site operators to combine their resources
collaboratively so that the content of all participants is
delivered more efficiently by taking advantage of all
the contributed resources (Wang et al., 2004; Freed-

man et al., 2004; Pierre and van Steen, 2006). The
incentive to participate in such a system is that a user
who cannot afford to pay for a commercial CDN can
get remote resources for hosting his site in exchange
for helping other users host their sites. However, the
fact that CCDNs keep all updates centralized reduces
their relevance for systems like Wikipedia.

In this paper, we take the position that the issues
described above can be solved by hosting Wikipedia
using a decentralized and collaborative wiki engine.
Similarly to the way content is created and updated,
we expect that a number of Wikipedia supporters
will be willing to share some of their personal com-
puting resources to participate in the hosting of the
system. This approach is, in a sense, similar to
Seti@Home (Anderson et al., 2002), except that the
goal of the system is to host a complex web site in-
stead of performing local computations.

To achieve our goal, we propose to remove the
centralized database and distribute the wiki pages in
an overlay network formed by the computer con-
tributed to help host the system. Each machine in the
system would then be in charge of hosting a number
of pages according to its processing and networking
abilities. This approach introduces two basic prob-
lems: how to decide where to place each page and
how to find a node that hosts a page when a client
makes a request. In addition to solving these prob-
lems, the system must be prepared to handle continu-
ous arrivals and departures of nodes, and it must guar-
antee that computers outside the control of the oper-
ator do not compromise the operational continuity of
the web site. Our main contribution is that we explain
the design of a system that can solve these problems.

The rest of the paper is organized as follows.
Section 2 discusses the functionality provided by
Wikipedia. Section 3 presents our proposed archi-
tecture. Section 4 discusses fault tolerance. Section
5 outlines our security strategy. Section 6 discusses
related work and Section 7 concludes.

2 WIKIPEDIA FUNCTIONALITY

Before motivating our design decisions, we first dis-
cuss how Wikipedia currently operates. As shown in
Figure 2, the functionality of the wiki engine is com-
posed of page management, search and control.

The page management part is the most important
since most of the information provided by Wikipedia
(e.g., encyclopedic articles, user information, discus-
sions, documentation) is in the form of wiki pages.
Each page has a unique identifier consisting of a char-
acter string. Pages can be created, read and modified

Figure 2: Current Wikipedia Architecture

by any user. A page update does not result in the mod-
ification of an existing database record, but in the cre-
ation of a new record next to the previous version. It
is therefore straightforward for a user to get a list of
all editions of a page, read old versions as well as re-
verting a page to a previous state. A page can be con-
figured to redirect all its read requests to another page,
similar to a symbolic link. Privileged users have the
option to rename, delete and protect pages from being
edited. Part of the load generated by page read opera-
tions is handled by a group of external cache servers.

The search part allows users to enter keywords and
receive lists of links to related wiki pages as a result.
This part of the system is isolated from the rest of the
application in that it does not access the centralized
database, but a separate index file generated periodi-
cally from the text of the pages.

The control part groups the rest of the functions:
i) user management, which allows users to authenti-
cate to the system and have their user names stored in
public page history logs instead of their IP addresses;
ii) user/IP address blocking, which allows administra-
tors to prevent page updates from certain IP addresses
or user accounts; and iii) special pages, which are not
created by users, but generated by the execution of
server-side logic and provide information about the
database or specific functions such as uploading static
files to be referenced in wiki pages.

The search and control parts handle small or static
data sets and do not impose a large load on the sys-
tem in comparison to the page management part.
Page management consumes most of Wikipedia’s re-
sources and the centralized database it depends on is
a bottleneck that severely limits scalability, especially
when considering that the page update rate increases
exponentially, as we showed in Figure 1.

Figure 3: Proposed Wikipedia Architecture

To address these scalability problems, we propose
a decentralized implementation for the page manage-
ment functionality relying on a set of collaborative
nodes provided by individuals and organizations will-
ing to contribute resources.

3 PROPOSED ARCHITECTURE

As shown in Figure 3, we propose to decentralize
the page management functionality by distributing the
pages across a network of collaborative nodes. In this
system, each page is placed on a single node, such
that the capacity of each node is not exceeded, and
the load is balanced across all nodes. We assume that
the collaborative system contains sufficient resources
to host all the pages.

To build such a system, we first need a decentral-
ized algorithm to determine the placement of pages.
In this algorithm, nodes improve global system per-
formance by communicating pairwise and moving
pages such that the load is better distributed.

Second, pages can be expected to change location
regularly. As a consequence, it is necessary to provide
a redirection mechanism to route client requests to the
node currently hosting the requested page. Again, this
redirection mechanism should be decentralized. Dis-
tributed Hash Tables (DHTs) have proven to be effec-
tive as a decentralized request routing mechanism.

Third, it can be expected that nodes join and leave
the system relatively frequently, possibly as the result
of failures and subsequent recovery. It is thus nec-
essary to implement mechanisms that guarantee the
integrity of the system in the presence of rapid and
unanticipated changes in the set of nodes. Moreover,
the nodes participating in the system may come from

untrusted parties. Therefore, replication and security
mechanisms must be in place to prevent or mitigate
the effects of failures or attacks.

3.1 Cost Function

Before discussing how we move pages from one node
to another in order to improve the distribution of the
load, we need a method that allows to determine how
good a given page placement is. Intuitively, the good-
ness of a placement depends on how well each node
is suited to handle the load imposed by the pages it
hosts. To model this, we introduce a cost function,
which, when applied to the current state of a node, in-
dicates how well the node has been performing for a
given time period. The lower the cost value, the bet-
ter the situation is. We can also define a global cost
function for the whole system, which is the sum of all
the costs of individual nodes. The goal of the page
placement algorithm is to minimize the global cost.

The cost for a node should depend on the amount
of resources it contributes and the access pattern of
the pages it hosts. Examples of contributed resources
are disk space, network bandwidth, CPU time and
memory. To keep our model simple, and considering
that the application is fundamentally I/O bound, we
decided that the owner of a node can specify limits
only on the use of the node’s disk space and network
bandwidth (both incoming and outgoing).

The cost function for a node should have the fol-
lowing properties. First, its value should grow as the
resources demanded by the hosted pages grow. Sec-
ond, lower client-perceived performance should be re-
flected in a higher value for the cost. Third, the cost
should decrease as the resources provided by a node
grow, as this favors a fair distribution of the load. Fi-
nally, the cost should grow superlinearly as the re-
source usage grows, as this favors moving pages to
nodes with more available resources, even if all nodes
have the same capacity.

This leads us to the following formula for calcu-
lating the cost c(N,P,W) of node N hosting the set of
pages P over the time interval W :

c(N,P,W)= ∑
p∈P

[
α

(
i(p,W)

itot(N,W)

) j

+β
(

o(p,W)
otot(N,W)

) j
]

where i(p,W) is the total size (in bytes) of incoming
requests for page p during window W , itot(N,W) is
the maximum number of bytes that can be received
by node N during window W , o(p,W) is the number
of bytes to be sent out during during window W on
account of requests for page p, otot(N,W) is the num-
ber of bytes that node N can send out during window

W , α and β are constants that weigh the relative im-
portance of each term, and j is an amplifying constant
(j > 1).

Note that this function considers only network
bandwidth demands and ignores disk space. Indeed,
availability of more disk space does not translate into
better client-perceived performance. However, re-
gardless of any potential improvements in cost, a node
can refuse to receive a page if it does not have enough
disk space or if it is unable to execute the page move-
ment without exceeding a predefined time limit.

3.2 Page Placement

Our goal is to find a placement of pages that bal-
ances the load across the nodes without exceeding
their capacity. By definition, this can be achieved by
minimizing the cost for the whole system. However,
performing this global optimization presents several
difficulties. First, finding an optimal solution is not
realistic since the complexity of the problem can be
very high, even for relatively small system sizes. Sec-
ond, trying to directly minimize the total costs would
require collecting information from all the nodes.
Clearly, this is not a scalable solution. In practice it
may even be impossible, since the set of participat-
ing nodes can change at any time. A further compli-
cation comes from the fact that the only way to im-
prove an initial placement is by relocating pages, but
each relocation translates into a temporary reduction
of client-perceived performance, since part of the re-
sources normally used to process client requests must
be dedicated to move pages.

To overcome these difficulties it is necessary to
implement a strategy that reduces the global cost
without relying on global information or excessive
page movement.

Our cost function has the desirable property that a
page movement can affect only the costs for the two
nodes involved. Thus, we can reduce the global cost
if we execute only page movements that result in a
reduction of the sum of the costs of the two nodes
involved. This has two main advantages. First, a
node only needs to collect information about the po-
tential target peer in order to decide if a page should
be moved or not. Second, this procedure can be exe-
cuted simultaneously by all nodes independently.

However, this simple heuristic is not enough.
While it allows to reduce the global cost without rely-
ing on global information, it does not prevent exces-
sive page movement. Moreover, it does not provide
a method to decide which pages to move or to which
peer to send a page to.

3.2.1 Peer and Page Selection

We propose to interconnect the participating nodes
using a gossiping protocol. Gossiping has been used
to implement robust and scalable overlay networks
with the characteristics of random graphs. This can
be exploited to provide each node with a constantly
changing random sample of peers. We use the Cyclon
protocol (Voulgaris et al., 2005), which has proven
to have many desirable properties. Cyclon allows
to construct an overlay network in which each node
maintains a table with references to n peers, and peri-
odically exchanges table entries with those peers. The
result is that at any point in time, every node has a
random sample of n neighbors that can be used as po-
tential targets to move pages to.

The next problem is to decide which pages to
consider for movement. Checking all possible page-
neighbor combinations might be costly due to the pos-
sibility that a node hosts a large number of pages. To
keep things simple, we consider only a random sam-
ple of at most l pages. For each neighbor, the algo-
rithm calculates the costs resulting from moving each
page from the sample to the neighbor and stopping
when a page suitable for movement to that neighbor is
found. We realize that there are page selection strate-
gies that might make the system converge faster to a
good distribution of the load, but the trade-off would
be significantly increased complexity, which we want
to avoid.

We want pages to be transferred between nodes as
quickly as possible. For this reason, we move no more
than one page at a time to the same neighbor. We
also stop trying to move additional pages from a given
node if a significant part of the outgoing bandwidth
is already dedicated to page movements, as sharing a
limited amount of bandwidth between several simul-
taneous page movements would slow down each such
movement.

3.2.2 Excessive Page Movement Prevention

A potential pitfall of the previously described algo-
rithm is that its repeated execution is likely to re-
sult in many page movements that produce negligible
cost reductions, but also significant reductions in the
amount of available resources for processing client re-
quests, thus worsening client-perceived performance.

To overcome this problem, we initiate page move-
ments only when the amount of requested resources
approaches the amount of contributed resources from
the concerned node over a time window W by a cer-
tain margin. The rationale for this is that even though
transient resource contention is unavoidable, it should

not become permanent to avoid damaging the user-
perceived performance.

The load of each contributed resource of node N
hosting the set of pages P can be calculated with the
following formulas:

or(N,P,W) =
∑p∈P o(p,W)

otot(N,W)

ir(N,P,W) =
∑p∈P i(p,W)

itot(N,W)

dr(N,P,W) =
∑p∈P d(p,W)

dtot(N)

where or(N,P,W) is the load on the contributed out-
going bandwidth, ir(N,P,W) is the load on the con-
tributed incoming bandwidth, dr(N,P,W) is the load
on disk space, d(p,W) is the average amount of disk
space used by page p during window W , and dtot(N)
is the total contributed disk space of node N.

These values are zero if the node does not host
any page and approach 1 as the load on the node ap-
proaches its maximum capacity. Note that the only
resource whose load can exceed the value 1 is the out-
going bandwidth.

We measure these values periodically and execute
the optimization heuristic if any of them exceeds a
threshold T (0 < T < 1).

3.2.3 Summary

In our proposed architecture every participating node
contributes specific amounts of disk space and in-
coming and outgoing bandwidth. The wiki pages
are spread across the nodes. Nodes continuously try
to find a good distribution of the load by relocating
pages. We define a good distribution as one in which
pages are distributed such that every node hosts a set
of pages whose access pattern requires less resources
than those contributed by the node. To achieve this,
all nodes execute basically three algorithms. The first
is the Cyclon protocol, which creates an overlay net-
work that resembles a random graph. This provides
each node with a constantly changing random sam-
ple of peers with which to communicate. The second
is a load measuring algorithm. Every node continu-
ously measures the load imposed by its hosted pages
on each contributed resource over a predefined time
window. The third algorithm is the page movement
algorithm which is built on top of the other two. This
algorithm uses the load measurements to determine if
page movements are necessary and tries to optimize
a cost function by moving pages to peers provided by
the Cyclon protocol. Figures 4 and 5 show pseudo-
code of the page movement algorithm.

if outgoing bandwidth load > To OR
incoming bandwidth load > Ti OR
disk space load > Td

c = cost func(P)
S = random subset(P)
N = cyclon peer sample()
M = /0
for each n ∈ N

cn = n.cost()
xn = n.cost func parameters()
for each p ∈ S

if used bw page move() > K
return

pot = cost func(P−M− p)
potn= peer cost with page(xn,p)
if pot + potn < c+ cn

if n.can host page(pmetadata)
n.move page(p)
M=M∪ p
S=S− p
break

Figure 4: Page movement algorithm executed periodically
by all nodes to send pages to peers

n.cost()
return cost func(P)

n.cost function parameters()
return {req incoming bandwidth(P),

req outgoing bandwidth(P),
total incoming bandwidth(),
total outgoing bandwidth()}

n.can host page(pmetadata)
if size(p) > Kd*avail disk space OR

size(p)*avail incoming bandwidth() > Ki
return false

return true

n.move page(p)
//transfer data of page p

Figure 5: Routines invoked by the page movement algo-
rithm on the receiving peer n

3.3 Request Routing

Each participating node should be capable of handling
any page request by a client. Moreover, when a node
receives a request it is likely not to host the requested
page. Therefore, it is necessary to implement an effi-
cient mechanism for routing a request to the node that
hosts the requested page.

Several techniques have been proposed to route
requests in unstructured overlay networks like the
one formed by the gossiping algorithm described
above (Cholvi et al., 2004; Lv et al., 2002). However,
none of them provides the efficiency and high recall

offered by DHTs for simple queries in which an iden-
tifier is given. Therefore, we decided to implement
a DHT across all participating nodes using a hash of
the page name as the key to route messages. The node
responsible for a given DHT key is then supposed to
keep a pointer to the node that currently hosts the page
corresponding to that key.

When a node receives a client request, it executes
a DHT query and receives the address of the node
that hosts the page. It can then request the data from
that node and produce an appropriate response to the
client. This approach is more secure than forwarding
the request to the node hosting the page.

Page creation requests constitute an exception. In
this case, if the specified page indeed does not exist,
it may be created in any node with enough capacity
to host a new page. A new key must also be intro-
duced in the DHT. Note that initially, any node will
be acceptable, but after some time, the page place-
ment algorithm will move the page to a better node.

The DHT introduces a simple change in the page
placement algorithm. Every time a page is moved, the
nodes involved must route a message in the DHT with
information about the new node hosting the page.

Any DHT protocol can be used for this appli-
cation (Stoica et al., 2003; Rowstron and Druschel,
2001; Ratnasamy et al., 2001).

4 FAULT TOLERANCE

In a collaborative system such as ours, membership is
expected to change at any time because of the arrival
of new nodes and the departure of existing nodes, ei-
ther voluntary or because of failures. Node arrivals
are easy to handle. A new node simply has to contact
an existing node, and start executing the application
protocols. As a result, the new node will eventually
host a number of pages and DHT entries.

Voluntary departures are easy to handle as well.
We assume that whenever a node leaves, the rest of the
system maintains enough resources to take its load.
It is thus sufficient for the leaving node to move all
its pages to other nodes that can host them, move all
its DHT keys to the appropriate nodes, and refuse to
take any page offered by other nodes while it is in the
process of leaving.

Node departures caused by failures are more dif-
ficult to handle because a failed node is unable to
move its data before leaving the system. To sim-
plify our study, we make several assumptions. First,
we only consider node crashes which can be detected
by other nodes through communication errors. Sec-
ond, the DHT protocol tolerates failures so that the

data it hosts are always available. Third, the over-
lay network created by the gossiping protocol is never
partitioned into disconnected components. Fourth,
a crashed node that recovers and rejoins the system
does so as a new node, that is, it discards all data
hosted previous to the crash.

We focus our discussion on the problem of ensur-
ing the availability of the pages. The key technique to
prevent data loss in case of failures is replication. We
thus propose to use a replication strategy that keeps
a fixed number of replicas for each page. To achieve
this first we need to guarantee the consistency of the
replicas. Second, we need to guarantee that, when
failures are detected, new replicas are created so that
the required number r of valid replicas is maintained.

The system will keep track of the replicas using
the DHT. Instead of a pointer to a single node hosting
a page, each DHT entry associated with a page name
will consist of a list of pointers to replicas, which we
call a hosting list.

Read requests may be handled by any of the repli-
cas. The node handling the client request can process
it using a randomly selected replica. If the selected
replica fails, it suffices to retry until a valid one is
found. The failed node must be removed from the
hosting list and a new replica must be created.

It can happen that different nodes accessing the
same DHT entry detect the failure at the same time
and try to create a new replica concurrently. This
would result in more replicas than needed. This can
be solved by introducing a temporary entry in the
hosting list indicating that a new replica is being cre-
ated. Once the page is fully copied the temporary en-
try can be substituted by a normal one.

Update requests must be propagated to all the
replicas. The node handling the client request must
issue an update operation to all nodes appearing in the
hosting list for the page being updated, with a simple
tie breaking rule to handle conflicts caused by con-
current updates. In addition, all replicas have refer-
ences to each other and periodically execute a gossip-
ing algorithm to exchange updates following an anti-
entropy model similar to the one used in (Petersen
et al., 1997). This approach has a number of advan-
tages. First, it guarantees that all replicas will eventu-
ally converge to the same state even if not all replicas
receive all the updates because of unexpected failures.
Second, it does not depend on a coordinator or other
similar central component, which could be targeted
by a security attack. Third, it does not require clocks
in the nodes handling client requests to be perfectly
synchronized. If a failed replica is detected during the
update operation, it must be removed from the hosting
list and a new replica must be created.

5 SECURITY

Any large scale collaborative distributed system such
as ours carries with it a number of security issues. We
concentrate here on issues specific to our application
and not on general issues related to the technologies
we propose to use. In particular, security in gossiping
algorithms and DHTs are active research areas that
have produced many important results (Castro et al.,
2002; Jelasity et al., 2003).

We assume that there are two types of nodes:
trusted nodes, which are under the control of the op-
erator of the wiki and always act correctly, and un-
trusted nodes which are provided by parties outside
the control of the operator. Most untrusted nodes be-
have correctly, but it is uncertain if an untrusted node
is malicious or not. We finally assume the existence
of a certification authority that issues certificates to
identify all participating nodes, with the certificates
specifying if the node is trusted or not.

The most obvious security threat is posed by the
participation of malicious nodes that try to compro-
mise the integrity of the system. Our first security
measure is preventing untrusted nodes from commu-
nicating directly with clients, as there is no way to
determine if the responses provided by an untrusted
node are correct or not. Therefore, all nodes that act
as entry points to the system must be trusted and must
not forward client requests to untrusted nodes.

Due to space limitations, we do not discuss all
specific security measures, but our general strategy
is based on digitally signing all operations in the sys-
tem, so that all nodes are accountable for their actions.
Certain operations, such as reading or updating the
DHT, are restricted to trusted nodes and other opera-
tions performed by untrusted nodes, such as moving
pages, require approval by a trusted node. This ap-
proach based on digital signatures has already been
applied successfully in (Popescu et al., 2005).

6 RELATED WORK

Several systems for collaborative web hosting using
peer to peer technology have been proposed (Wang
et al., 2004; Freedman et al., 2004; Pierre and van
Steen, 2006). However, all these systems apply sim-
ple page caching or replication algorithms that make
them suitable for static Web content only. To our
knowledge, no system has been proposed to host dy-
namic content such as a wiki over a large-scale col-
laborative platform.

7 CONCLUSIONS

We have presented the design of a decentralized
system for hosting large scale wiki web sites like
Wikipedia using a collaborative approach. Publicly
available statistics from Wikipedia show that central-
ized page management is the source of its scalability
issues. Our system decentralizes this functionality by
distributing the pages across a network of computers
provided by individuals and organizations willing to
contribute their resources to help hosting the wiki site.
This is done by finding a placement of pages in which
the capacity of the nodes is not exceeded and the load
is balanced, and subsequently routing page requests
to the appropriate node.

To solve the page placement problem we use a
gossiping protocol to construct an overlay network
that resembles a random graph. This provides each
node with a sample of peers with which to commu-
nicate. On top of this overlay, we try to balance the
load on the nodes by executing an optimization al-
gorithm that moves pages trying to minimize a cost
function that measures the quality of the page place-
ment. Routing requests to the nodes hosting the pages
is done by implementing a Distributed Hash Table
with the participating nodes. We further refine the
system by replicating pages such that failures can be
tolerated.

We also outline our security strategy, which is
based on the use of a central certification authority
and digital signatures for all operations in the system
to protect the system from attacks performed by un-
trusted nodes acting maliciously.

In the future, we plan to evaluate our architecture
by performing simulations using real-world traces.
We will also carry out a thorough study of its secu-
rity issues.

REFERENCES

Akamai Technologies (2006). http://www.akamai.com.

Alexa Internet (2006). Alexa web search - top 500.
http://www.alexa.com/site/ds/top sites?
ts mode=global.

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M.,
and Werthimer, D. (2002). SETI@home: an experi-
ment in public-resource computing. Commun. ACM,
45(11):56–61.

Castro, M., Druschel, P., Ganesh, A., Rowstron, A., and
Wallach, D. S. (2002). Secure routing for structured
peer-to-peer overlay networks. SIGOPS Oper. Syst.
Rev., 36(SI):299–314.

Cholvi, V., Felber, P., and Biersack, E. (2004). Efficient

search in unstructured peer-to-peer networks. In Proc.
SPAA Symposium, pages 271–272.

Freedman, M. J., Freudenthal, E., and Mazires, D. (2004).
Democratizing content publication with Coral. In
Proc. NSDI Conf.

Jelasity, M., Montresor, A., and Babaoglu, O. (2003). To-
wards secure epidemics: Detection and removal of
malicious peers in epidemic-style protocols. Techni-
cal Report UBLCS-2003-14, University of Bologna,
Bologna, Italy.

Leuf, B. and Cunningham, W. (2001). The Wiki Way: Col-
laboration and Sharing on the Internet. Addison-
Wesley Professional.

Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. (2002).
Search and replication in unstructured peer-to-peer
networks. In Proc. Intl. Conf. on Supercomputing,
pages 84–95.

Markoff, J. and Hansell, S. (2006). Hiding in plain
sight, Google seeks more power. New York
Times. http://www.nytimes.com/2006/06/
14/technology/14search.html?pagewanted=
1&ei=5088&en=c96a72bbc5f90a47&ex=
1307937600&partner=rssnyt&emc=rss.

O’Hanlon, C. (2006). A conversation with Werner Vogels.
Queue, 4(4):14–22.

Petersen, K., Spreitzer, M., Terry, D., Theimer, M., and
Demers, A. (1997). Flexible update propagation for
weakly consistent replication. In Proc. SOSP Conf.

Pierre, G. and van Steen, M. (2006). Globule: a collabora-
tive content delivery network. IEEE Communications
Magazine, 44(8):127–133.

Popescu, B. C., van Steen, M., Crispo, B., Tanenbaum,
A. S., Sacha, J., and Kuz, I. (2005). Securely repli-
cated Web documents. In Proc. IPDPS Conf.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and
Schenker, S. (2001). A scalable content-addressable
network. In Proc. SIGCOMM Conf., pages 161–172.

Rowstron, A. I. T. and Druschel, P. (2001). Pastry: Scal-
able, decentralized object location, and routing for
large-scale peer-to-peer systems. In Proc. Middleware
Conf., pages 329–350.

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R.,
Kaashoek, M. F., Dabek, F., and Balakrishnan, H.
(2003). Chord: a scalable peer-to-peer lookup proto-
col for internet applications. IEEE/ACM Trans. Netw.,
11(1):17–32.

Voulgaris, S., Gavidia, D., and Steen, M. (2005). CY-
CLON: Inexpensive membership management for un-
structured P2P overlays. Journal of Network and Sys-
tems Management, 13(2):197–217.

Wang, L., Park, K., Pang, R., Pai, V. S., and Peterson, L. L.
(2004). Reliability and security in the CoDeeN con-
tent distribution network. In Proc. USENIX Technical
Conf., pages 171–184.

Wikipedia (2006). Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?
title=Wikipedia.

