
1

Enforcing collaboration in a

collaborative content distribution

network

Namita Lal (154403)

Faculty of Sciences

Vrije Universiteit Amsterdam, The Netherlands

August 2007

Master’s thesis, Computer Science

Supervisors:

Prof. Maarten van Steen

Dr. Guillaume Pierre

2

ENFORCING COLLABORATION IN A COLLABORATIVE CONTENT DISTRIBUTION

NETWORK... 1

1 INTRODUCTION.. 3

2 RELATED WORK .. 8

2.1 CDNS AND COLLABORATIVE CDNS ... 8
2.1.1 BURSTY WORKLOADS... 10
2.2 MECHANISM DESIGN.. 12
2.3 ITERATED PRISONER’S DILEMMA AND TIT-FOR-TAT .. 13
2.4 BITTORRENT .. 14

3 SYSTEM DESIGN: ENFORCING COLLABORATION IN THE CCDN CONTEXT 16

3.1 FIXED NEIGHBORHOODS ... 17
3.2 ACCOUNTING ... 18
3.2.1 PAIR-WISE TRADING SCHEME AND TIT-FOR-TAT WITH FORGIVENESS 18
3.2.2 JOINING THE SYSTEM.. 21
3.2.3 BUILDING TRUST .. 21
3.3 VALIDATING CLAIMS ... 24
3.3.1 MOBILE IPV6 AND TCP HANDOFFS.. 24
3.3.2 VALIDATING THROUGH RANDOM CHECKS ... 25

4 SYSTEM IMPLEMENTATION.. 28

4.1.1 NEW APACHE SERVER MODULE STRUCTURE AND MODERATOR PROCESS................................ 29
4.1.2 STRUCTURE OF PERIODIC REPORTS EXCHANGED BETWEEN NODES ... 29
4.1.3 ACCOUNTING INFORMATION AT EACH SERVER.. 30
4.1.4 BANDWIDTH THROTTLING.. 31

5 EVALUATION... 33

5.1 TEST SETUP .. 33
5.2 CLIENT-SIDE WORK LOAD GENERATION .. 34
5.3 RESULTS ... 38
5.3.1 SINGLE SERVER PERFORMANCE WITH AND WITHOUT COLLABORATION.................................. 38
5.3.2 SERVER PERFORMANCE WITH FREE RIDING ... 40
5.3.3 SERVER PERFORMANCE WITH FREE RIDING UNDER ENFORCED COLLABORATION 43

6 CONCLUSIONS .. 47

REFERENCES ... 48

3

1 Introduction

Cooperative peer-to-peer (P2P) systems are overlay networks of nodes that rely on the

resources contributed by the participating nodes themselves; such systems allow

geographically distributed nodes to come together for some mutual benefit such as content

sharing, resource sharing, etc. P2P architectures differ from the traditional client-server

systems in that the latter rely on the resources of a few server nodes that are used to serve the

clients of the system. Pure P2P networks however, do not have the notion of clients and

servers, instead such networks consist of “peer” nodes that are both the clients and the

servers of services in the system. Such networks are useful for many purposes, such as

information sharing, multicasting, sharing bandwidth resources, etc. However, an important

criterion for the proper functioning of cooperative P2P networks is that the nodes in the

network contribute their resources (bandwidth, storage space, and computing power)

properly so that as more users join the system, the collective strength of the system to serve

these users increases as well.

In practice, however, it is seen that in the absence of incentives to contribute resources, users

act selfishly (rationally) and exploit the system without making any contribution themselves

(a notion that we will refer to as free riding henceforth). This kind of user behavior is

extremely detrimental to the performance of the system due to the decrease in the resources

available to the users as a whole. It also produces strain on the few good nodes in the system

which further decreases the incentive to contribute positively. Thus the benefits of a

collaboration decreases tremendously as more and more nodes resort to free riding (a

phenomenon often referred to as the tragedy of the commons in economics [2]).

Additionally, free riding also affects the robustness of P2P networks, throwing the system

back in to a client-server mode, where few nodes act as the servers of the resources and the

performance of the system as a whole depends on the performance of these few nodes.

In the past, many file-sharing P2P networks that implemented their protocols with naïve

assumptions of voluntary cooperation have shown to have a large percentage of free riders.

For example, studies on Gnutella have revealed that about 70% of the nodes in the system

contribute no files at all, and nearly 50% of all responses are returned by the top 1% of

sharing hosts [1]. Hence today most of the peer-to-peer systems implement some mechanism

to enforce the nodes to co-operate with each other and force them to contribute positively to

4

the collaboration. Such mechanisms have been developed by file-sharing systems such as

Kazaa, BitTorrent, eMule, etc., that keep track of node behavior, and reward or punish them

accordingly. These efforts seem to have paid off in the sense that they have reduced the

number of free riders and have motivated nodes to become cooperating members of the

network if they wish to avail the services provided by other users in the collaboration.

The mechanisms implemented by these P2P file-sharing systems for enforcing collaboration

essentially work by holding the nodes accountable for their resource usage and their resource

contribution, and can be roughly classified as reputation-based or trade-based mechanisms.

Reputation-based schemes use a rating system to assign points to peers in the network based

on the past behavior of the node. This rating is then used by other nodes to determine the

suitability of the peer during interactions. Usually, users with low reputation rating are

allowed access to fewer resources, are mistrusted and find their transactions restricted. On

the other hand, trade-based schemes try to limit resources consumed by the users using

micropayments or pair-wise trading mechanisms. Although many such solutions exist in this

space, most of them are very specific to file-sharing networks, where the following

assumptions hold:

(i) Collaboration can be locally fair, i.e. fairness is local in time. Services offered by one

node to another needs to be immediately compensated for in order to carry the transaction

forward in time. For instance, in BitTorrent – a P2P file sharing protocol – peers

exchange fragments of files that they are interested in. A server uploads k fragments to its

peer and then waits for the peer to reciprocate with fragments that it is interested in. If no

such packets are forthcoming it ‘chokes’ the connection to that peer by temporarily

refusing to upload to it. Thus, the service provided by a peer needs to be paid back

immediately in time for the transaction to move forward and for it to get more file

fragments from the peer node.

(ii) The second assumption is that nodes in the system are the direct consumer of services

provided by their peers and hence they can easily verify the parameters of the services

provided by each other. Again, in the case of BitTorrent, peers exchange fragments of

files they are interested in, thus they can verify the fragment contents themselves and the

rate at which the data was uploaded to them by a peer. This directly establishes the

service quality provided by a peer node.

5

However, there are many scenarios of peered systems in which these assumptions do not

hold and thus the existing solutions will not be able to serve the purpose of enforcing

collaboration. Systems where the services offered by the nodes are not temporally related (as

in assumption (i) above) require special considerations to be taken into account. For example,

bandwidth sharing systems such as in 2fast [9] require nodes to remember the contribution of

collaborating peers. Peers may not need reciprocal service immediately but only at a later

point in time. Similarly, there may be peered systems in which the service provided by the

nodes is consumed by clients that are not part of the collaboration. For example, in a

collaborative content distribution network (CCDN) consisting of peered Web servers, the

services of the servers are consumed by Web clients that are not participants of the

collaboration.

The peered systems described above require two special considerations as far as cooperation

is concerned: (1) a collaboration mechanism that is globally fair, i.e., over time the system is

fair to all nodes providing them resources in proportion to the resources they contributed; and

(2) with the additional requirement that the consumers of the service may not be the peers

directly, and hence there is a requirement for proper monitoring schemes to be in place in

order to verify node behavior correctly.

This thesis addresses the problem of enforcing collaboration in the context of CCDNs.

CCDNs present a scenario in which both the assumptions of local fairness and direct

behavior ratification of nodes do not exist. These networks are an effective technique for

Web content providers to increase their quality of service by pooling their resources and

serving their collective set of clients together -- without increasing the cost of hosting,

hardware, or bandwidth. The contents of an origin server (a server that provides a site) are

replicated across the collaborating servers; HTTP requests for the origin site may be

redirected to the collaborating servers depending on several parameters such as the network-

based proximity of the client to the servers and the load on the servers. However, like any

collaborative system, collaborative CCDNs face the problem of providing correct incentives

to the participating servers to contribute their resources correctly. For instance, in the absence

of a mechanism to enforce good behavior, a Web server may redirect all its clients to the peer

servers, utilizing their bandwidth resource without reciprocating this assistance and refusing

6

to serve the peer’s clients in return. Thus, there is a requirement to enforce fairness in such a

system.

Moreover, if a surrogate server provides content to its peer’s client, it may not have an

immediate requirement for the peer’s resources (it may not have clients requesting data at

that moment in time), thus the assistance provided by a peer must be remembered over time

and returned when the need arises. Also, since the clients (the immediate consumer of the

services) are not directly aware or part of the collaboration, the origin server cannot easily

ascertain that a peer indeed serviced its clients for the claimed data volume or at the claimed

rate. This brings in the necessity to verify a peer’s contribution by additional means.

Along with the assumptions stated above, we also introduce an additional requirement for the

framework: there is no global picture of behavioral characteristics available to the nodes in

the system. In other words, they must act based on information available to them locally.

Such an assumption is important to create protocols that have low overhead and are scalable

across large distributed systems. The goal is therefore to provide a protocol:

(i) that is fair on the nodes in the system, i.e., the benefits that nodes receive from the

system is in proportion to their contributions to the system;

(ii) the implementation of which has low overheads and does not impinge on the costs of

the functional protocols;

(iii) that is resilient enough to take into account many free-riding scenarios (such as nodes

behaving nicely in the beginning, only to turn into free riders later on).

This work proposes a solution to the problem of enforcing collaboration between nodes in a

peer-to-peer content distribution networks by employing a mechanism similar to the

BitTorrent tit-for-tat protocol. Based on the observations made by Axelrod [3] we know that

cooperation in a collaboration system can emerge only when nodes can (1) recognize other

nodes (in order to punish or reward node behavior); and (2) when there is certainty that nodes

have repeated connectivity. Based on these, we propose to fix the overlay of nodes

participating in a CCDN in such a way that mutual inspection of behavioral history becomes

possible. Such a neighborhood structure ensures that the servers recognize each other, and

have repeated transaction with each other, the conditions essential to ensure accountability.

Further, [3] also states that the tit-for-tat strategy is most effective in the iterated prisoner’s

dilemma (IPD) game and that cooperation between rational nodes may evolve as a

7

consequence of implementing this protocol. By relating the transactions between the nodes in

a CCDN as an IPD game, we implement a tit-for-tat protocol between them. Each peer node

in a neighborhood maintains an account for every other neighbor, recording the services

provided by the peer, its bad behavior, etc. This accounting information is used to enforce

fairness both for the data volume as well as the data rate exchanged between the peers. The

protocol ensures that free riders cannot exploit the nodes in the system by establishing an

upper threshold for the loan that a node is willing to provide to its neighbors (loan is the

difference in the bytes uploaded for a peer’s clients by a node and the bytes the peer has

uploaded for that node’s clients). As we will see later this mechanism is a low-overhead,

resilient implementation of the tit-for-tat strategy, which in turn provides a global

equilibrium condition in which cooperation can evolve in the system.

Further, when the origin server’s clients are redirected to a peer we also need to verify the

service provided by the peer node to these clients. In order to solve this problem we employ

random checks that can be conducted by the origin server using TCP socket migration over

IPv6. If we assume that the connection between the servers and the clients are over IPv6,

then a server that needs to verify a peer’s claims can ask the peers to hand over the client

back to itself (using socket migration and IPv6 handovers). Once it has reconstructed the

connection, it can create a temporary raw socket on the connection and use the

acknowledgement number received from the client to verify the number of bytes that have

been transferred over the connection. Since the origin server has information about the time

at which the client was handed over to the peer (all redirections go through the origin server),

the origin server can also verify the data rate contribution. Both these aspects allow the origin

server to verify a peer’s claims fairly accurately. By performing this check at random points

in time, there will be a constant pressure on the peers to provide accurate reports.

The rest of the thesis explains the details of the problem introduced in this section and the

solution proposed here. Section 2 describes the related work in this field that is important to

understand the motivation and effectiveness of our solution. Section 3 describes the design of

our solution in detail. Further, Section 4 gives the description of an example implementation

of the proposed protocol and finally, Section 5 describes the performance evaluation

experiments that we performed and the results that we collected from them.

8

2 Related work

Before we delve deeper into the solutions presented in this work, it is important to understand

a few concepts that form the basis on which the solutions are built upon. In Section 2.1 we

first study the characteristics of CDNs and CCDNs, their benefits and the problems of

creating an incentive mechanism that system designers face in deploying CCDNs in the real

world. We then turn our attention to the field of mechanism design (MD) which can be used

for developing strategies for building incentives systems for collaborative systems in Section

2.2. In Section 2.3 we delineate one such mechanism design -- the tit-for-tat strategy that has

proven to be very effective as an incentive mechanism for the BitTorrent file sharing protocol

which in turn is described in Section 2.4.

2.1 CDNs and collaborative CDNs

Content Delivery Networks (CDNs) are a very effective technique for content providers to

move away from the centralized mechanism of Web content delivery. In the centralized

scheme, each Web client connects to a single or a cluster of Web servers that field(s) the

requests of all the clients. CDNs replace the traditional centralized infrastructure and provide

several (edge cache) servers sitting at the edge of the Internet between the user and the origin

Web server, redirecting clients to suitable edge caches as need be. Essentially, CDNs are

composed of a content delivery infrastructure, a request routing mechanism and an

accounting mechanism, that together provide a better service to their users by routing their

requests to an “edge cache” close to the end users.

Figure 1 shows the conceptual architecture of a typical CDN, where many replicated web

servers are located at the edge of the network closer to the Web clients, and content requests

are routed to the closest replicated Web server instead of the origin server. Thus, they

provide many benefits to the origin Web server like decrease in client response time (by

redirecting requests to the edge server closest to the client), better bandwidth and resource

provisioning at the origin server’s side, protection from flash crowds, etc.

Many commercial as well as academic solutions have been implemented in this field,

Akamai and Mirror Image are chief among the commercial solutions. On the other hand,

Globule [10] and Coral CDN [21] are examples of collaborative CDNs, which are

9

collaborations consisting of geographically distributed Web servers, servicing their collective

set of Web clients together. Similar to the edge-cache scenario, the requests for one server

can be redirected to another depending on several parameters such as the load on the systems,

the proximity of the servers to the client, etc. Such collaborations provide a mechanism for

the participating servers to trade temporarily unused resources between each other which can

lead to better utilization of the pooled resources.

Figure 1 Conceptual architecture of a Content Delivery Network.

Despite these benefits, there are many obstacles on the path to effective deployment of

CCDNs: (i) the problem of trusting the integrity of the data served by the peers to foreign

clients, (ii) the problem of misbehaving nodes creating denial-of-service attacks for the

clients of the nodes in the collaboration, (iii) the problem of being exploited by the peers to

serve data on their behalf without the peer nodes reciprocating similar services, (iv) the

problem of verifying a peer’s Quality of Service (QoS) to clients, and other such malicious

and free-riding misbehaviors. In this work we look at the last two problems and try to

provide solutions to prevent the problem of free riders in the system. We do not look into the

aspects of deliberate malicious behavior launched by peer nodes to jeopardize the data or

service provided by good nodes in the system.

10

2.1.1 Bursty workloads

One of the important factors that make collaborative CDNs an effective model to serve

clients is that the rate of arrival of HTTP requests at the servers is bursty. Figure 2 illustrates

Web request burstiness over several time scales. This phenomenon can be explained as

follows: Requests to the servers are generated by a huge number of clients each with its own

think time characteristics – the time between two consecutive requests from the same client.

Furthermore, the distribution characteristics of this think time has a large amount of variance,

and additionally the think times of different clients are not independent of each other due to

human user’s wake and sleep patterns. Also, due to the scheduled publication of Web

content, requests arriving at a server seem to be correlated. Several studies have revealed a

self-similar property of network traffic in large distributed systems such as the WWW [4].

This self-similar property of the underlying traffic manifests itself as a bursty characteristic

of the request rate over several time scales. The upshot of this is that the request traffic

arriving at a Web server can come in bursts whose peak rate is 8 to 10 times the average rate

seen by the server. For example, studies have shown that HTTP request traffic contains

bursts observable over four orders of magnitude [6].

Such bursts in the traffic rate can temporarily overload a server beyond its capacity and lead

to a large degradation in the QoS seen by the clients. As shown by [5], even a small amount

of burstiness in the request arrival rate can degrade the performance of a Web server

considerably, leading to large client response times. Studies have shown that the reason why

the performance of Web servers goes down when the client load experiences bursty behavior

is because under such conditions the queues of critical server resources are more susceptible

to rapid buildups, which result in higher rates of request rejections [14][17].

We know that the load demand on the individual Web servers is highly variable in the

presence of bursty request arrival rate, and that burstiness has a strong negative impact on the

performance of Web servers. In such a scenario, provisioning high bandwidth at the server

can be wasteful, and the servers are better off offloading requests to each other for a short

time when they observe a burst in the traffic rate. Hence, by participating in a CCDN the

servers can be shielded from the performance degradation caused by such bursts without

provisioning extra bandwidth. Moreover, if the servers were to provision more bandwidth

individually, it would be a waste of resources when the bursts are absent in the traffic.

11

Figure 2 The figures show that the number of requests arriving at a Web site reveal

high variability or burstiness, peak rates during bursts may exceed the average rates by

factors of five to ten, momentarily putting the system in overload conditions [7].

Thus, CCDNs can help servers deal with bursts of high load by offloading requests to peer

servers that are not facing bursts of their own. Eventually, the collective set of clients of the

servers would see a better quality of service even though no individual node had to provision

more upload bandwidth capacity.

However, the big problem is that most of the CCDNs that exist today work on the naïve

assumption of voluntarily cooperating servers. As discussed before, such assumptions do not

work in real-world scenarios where participating nodes have selfish traits (at the very least),

and thus, lead to ineffective deployments. For example, although the ultimate goal of the

CoralCDN is to be able to run many third party nodes within it, due to security related

considerations, as of now CoralCDN only runs on centrally administered ‘trusted’ nodes

[20]. In order for these CCDN systems to be successfully deployed and utilized in a more

decentralized manner, we need a mechanism to impose cooperative behavior between

participating Web servers. In order to construct an efficient solution to this problem, we first

gather the basic requirements that must be fulfilled:

12

(i) We need to build a system that forces the nodes to co-operate with as low overhead as

possible.

(ii) Since we are dealing with large-scale distributed systems, nodes in the network will not

have a consistent global picture of the whole system and must act on the basis of some

local information available to them.

(iii) The system should be defined in such a way that the strategies open to a node to

maximize its benefit should also be beneficial to the system.

(iv) The incentive system should be fair on the nodes, i.e., the benefits that nodes receive

from the system are in proportion to contributions they make to the system.

It so happens that these characteristics are very similar to the requirements for solutions in

the field of mechanism design (MD), and its distributed, algorithmic version -- distributed

algorithmic mechanism design (DAMD). We look at the concepts of this field below, and

specific solutions developed along the lines of DAMD in the sections that follow.

2.2 Mechanism design

As discussed in the introduction, many solutions have been proposed to tackle the selfish

behavior of users in P2P systems. We are interested in a specific scheme called mechanism

design (MD), which are schemes in which it is assumed that nodes are rational and play

strategies to maximize their benefit. Certain “rules of the game” are defined so that the

system shows positive performance behavior even with rational users pursuing selfish

strategies. Formally, a mechanism is a specification of possible player strategies and a

mapping from the set of played strategies to desired outcomes. Mechanism design can be

thought of as inverse game theory – where game theory reasons about how agents will play a

game, MD reasons about how to design games that produce desired outcomes [15]. As we

can see, the problems that MD looks to solve are very similar to our problem of ensuring

node collaboration in a CCDN. We too need to ensure that the strategies open to a node in

the system to maximize its benefit are also the ones that maximize the benefit of the system

as a whole. However, many aspects of classical MD are computationally infeasible. The field

of algorithmic mechanism design (AMD) and distributed algorithmic mechanism design

(DAMD) address the computational issues of classical MD. The latter assumes that the

mechanism is carried out via a distributed computation. The aim of this work is to create a

13

well-designed mechanism that will provide incentives to the selfish nodes in a CCDN to

behave in a correct way so as to increase the overall benefits of the system.

2.3 Iterated prisoner’s dilemma and Tit-for-tat

One mechanism design to ensure cooperation is the tit-for-tat strategy between nodes. As

mentioned earlier, Axelrod [3] discusses the properties of tit-for-tat protocol being the best

deterministic strategy in the iterated prisoner’s dilemma (IPD) game [22]. This strategy has

been employed in the BitTorrent protocol to great benefit.

In game theory, prisoner's dilemma is a type of non-zero-sum game in which two players

may each "cooperate" with or "defect" (i.e. betray) the other player without prior knowledge

of the strategy of the other player, the only concern of each individual player ("prisoner") is

maximizing his/her own payoff, without any concern for the other player's payoff. Suppose

that two players are involved in a PD game, whose payoff assignments are as follows: T

(temptation to defect), R (reward for mutual cooperation), P (Punishment for mutual

defection) and S (Sucker’s pay off). If player 1 co-operates and player 2 defects, player 2 gets

T points and player 1 gets the Sucker’s playoff S. If both cooperate they get R points each,

and if they both defect they get the Punishment for mutual defection P. Furthermore, in such

a game the following inequality holds for the value of the payoff assignments:

T R P S> > > . Note that given this assignment, a player always benefits by defecting

regardless of what strategy the other player adopts. Thus, all rational players will choose to

defect, even though they could earn a mutually higher reward if both decided to cooperate.

In iterated prisoner's dilemma (IPD) however, the game is played repeatedly. Thus each

player has an opportunity to "punish" the other player for previous non-cooperative play.

Cooperation may thus arise in equilibrium, since the players now have to worry about future

outcomes that depend on the opponent’s reaction to their current strategy. The incentive to

defect is overcome by the threat of punishment, leading to the possibility of a cooperative

outcome. However, for cooperation to emerge out of an IPD game the following inequality

must hold in addition to the one stated previously:

2 R T S> +

In a further experiment, Axelrod ran IPD tournaments between players with different

strategies, with the assumption that players could recognize each other and maintained

14

behavioral history about each other, and he discovered that tit-for-tat was the simplest and

the best strategy in IPD games. This strategy can be summarized as follows:

(i) Cooperate in the first interaction

(ii) Thereafter defect or cooperate according to what the other player chooses

Additionally, he also states the following conditions must hold in order for the strategy to be

successful:

(i) Be nice, never defect first, always cooperate until and unless your opponent defects,

(ii) Retaliate bad behavior, the node with some high probability must return bad behavior,

this prevents nodes from being exploited and discourages free riding,

(iii) The node must be forgiving, as in it must retaliate so long as the opponent defects, but

cooperation must again be reciprocated with cooperation.

(iv) Clear behavior, i.e., the semantics of a node’s behavior must be clear to its opponent.

Thus, by relating the interactions between the nodes in a CCDN as an IPD game and then

implementing the tit-for-tat strategy, we know that there is a possibility for introducing

cooperation in the system.

2.4 BitTorrent

BitTorrent is a P2P file sharing communication protocol forming an excellent example where

a tit-for-tat like strategy has already been employed to enforce cooperative behavior between

nodes. The protocol works as follows. Data files in BitTorrent are divided into equally sized

fragments. Peers exchange these fragments to build the complete file. Peers that wish to

download a file using this protocol contact a “tracker” that tells them from which peers they

could download the pieces of the file they are interested in. A group of peers connected to

each other in order to exchange pieces of a file is called a swarm. If the swarm consists of

initial seeders only (a node that has the complete file) the node can request file pieces directly

from them. As more peers join the swarm the peers begin trading pieces with each other

based on a tit-for-tat protocol.

This is done by choking (not uploading to) and unchoking (uploading to) a peer node. Each

peer maintains the current download rates from all the peers it is connected to. Using this

information, it unchokes (starts uploading to) a set of ‘u’ connections with the highest

15

download rate. All other connections are choked; however, a mechanism called opportunistic

unchoking allows peers to look for a good link periodically. If during the process of

opportunistic unchoking a node finds a peer with a rate higher than one for the current

unchoked connection, the new node replaces the old slower connection.

This concept of choking and unchoking depending on the service received by the peers builds

an incentive mechanism in the swarm for nodes to upload the file fragments at good rates to

the peers if they want to download file fragments at a good rate as well.

Although the BitTorrent protocol works well in the file-sharing scenario, such a protocol

cannot be directly applied in an environment such as CCDNs since in such systems the

service provided by a peer does not need to be immediately remitted in time for the

transaction to move forward. In a CCDN environment nodes would need to remember a

peer’s contribution so that it can be compensated for at a later point in time when the peer

actually needs the node’s services. Also, unlike the file-sharing scenario, the nodes in a

CCDN are not the direct consumers of the services provided by the peers, which makes

accounting for a peer’s contribution a challenging problem.

16

3 System design: Enforcing collaboration in the CCDN context

In CCDN systems with rational nodes, system designers encounter a node’s conflict between

the benefit of offloading its own client requests to other peers in the network and the cost

incurred in having to serve its peer’s Web clients. In the absence of any accounting

mechanisms, most nodes will prefer to offload their requests to their peers without giving

service to the clients of their peers in return, i.e., the most beneficial strategy of these rational

nodes is to free ride the system. In the context of MD, we need to design a strategy or an

incentive mechanism that forces the peers to cooperate by making that strategy the one that

brings maximum benefits from the system. This can be achieved by a simple mechanism of

rewarding nodes that contribute resources to the system and punishing those that free ride it.

As a study of evolution of collaboration in a system, Axelrod [3] observed that cooperation

can only emerge when nodes can (1) recognize other nodes (in order to punish or reward

node behavior) and (2) when there is certainty that nodes have repeated interactions. Based

on these observations, we propose to fix the overlay of nodes participating in the CCDN in

such a way that mutual inspection of behavioral history becomes possible.

As described in Section 2.3 we can build a low-overhead protocol to provide fairness to

nodes in a CCDN system by relating the scenarios in an IPD to the interactions that may

occur between peers in such a system. We can then designing a tit-for-tat strategy for their

interactions. The advantages of such a mechanism are manifold:

(i) It fits well with our requirement that the nodes must interact with each other and choose

strategy based on local information, and thus has low overhead.

(ii) We believe that tit-for-tat can be applied for a solution that requires globally fair

behavior between nodes.

(iii) The architecture of a fixed overlay scenario where we assume that the nodes can

recognize each other and have repeated interactions satisfies the premise laid down by

the solution research.

Building such a system requires three main mechanisms. First, in order to ensure the

requirement that the nodes in the system recognize each other and have repeated interactions

with each other, we need to make sure that the peers that a node interacts with are fixed.

There is thus, a necessity of fixing the neighborhoods in the system. Additionally, in order to

17

prevent Sybil attacks (which we explain below) it should not be easy for nodes to jump

between such neighborhoods. We address this by building a central overseer of the structure

of such groups and their memberships. We discuss these mechanisms in Section 3.1.

Second, within a group, peers need to implement the tit-for-tat strategy to make sure they are

not exploited by their neighbors. This brings us to the requirement that the peers should

maintain some accounting information about each other and take actions based on that

information. A node will need to account for a peer node’s contribution in terms of data

uploaded to the redirected clients, and the rate at which this data was uploaded. It can use this

information to decide its own strategy based on how good or bad the peer has been. Details

of this accounting information are explained in Section 3.2.

Finally, since the direct consumers of the services of the system are outside the information

loop, our system must also verify a node’s contribution without blindly relying on the reports

sent by the peer. Section 3.3 discusses the details of such a mechanism, which uses the

concept of random check using socket and IP-level migration of network connections

between the servers to verify each other’s behavior.

3.1 Fixed neighborhoods

In this section we will look at the principles of organization of nodes in our system. One of

the main problems in P2P systems is that of Sybil attacks [8]. In one form of such attacks,

nodes can subvert the reputation or accounting mechanisms in the system by leaving and

rejoining the system using different identities after exploiting its resources. A system’s

vulnerability to such Sybil attack depends on how easy is it for attackers to generate new

identities.

In order to prevent this form of Sybil attacks, we first assume that the nodes have a fixed

overlay. When a new node joins the system it is assigned to a neighborhood by a central

overseeing server. The function of this overseer is restricted to assigning and keeping track of

neighborhood structures in the system (in that sense the system we are proposing is a hybrid

peer-to-peer system, with at least one node that has some ‘super’ peer powers).

Without such an overseer entity, users may exploit nodes in a neighborhood group for their

benefit and move onto other groups without returning the services of the current group. Since

18

our model relies on maintaining and acting on local information, such an exploitation of the

system would be possible.

Furthermore, creating fixed neighborhoods is also important from the perspective of

maintaining repeated interactions between the nodes, so that they can recognize each other

and are able to make mutual inspection based on the history of interactions with each other.

This is an extremely important criterion without which it would not be possible to implement

a proper tit-for-tat strategy between the nodes.

3.2 Accounting

This section details of the accounting mechanism that implements the tit-for-tat scheme

between the nodes in a CCDN. We first look at the basic accounts maintained by each node

about its neighbor. Then we present the mechanism implemented by nodes to handle long-

term interactions with their peers. Long-term good behavior is rewarded in the system using

a notion of trust which allows larger and larger units of data to be traded between trusting

nodes. This trust mechanism also allows nodes to detect and punish a previously trusted peer

that could turn into a free rider after a long series of successful trading interactions. Such a

mechanism provides the incentive for the nodes to maintain good behavior over long periods

of time since the rewards are made proportional to the parameters of successful trading

interactions between them.

3.2.1 Pair-wise trading scheme and Tit-for-tat with forgiveness

As explained, CCDNs work by redirecting client requests to peer Web servers depending on

several load and latency parameters. Peers handle such redirected requests on behalf of the

origin server and expect similar assistance from the origin server when they need it. In order

to build fairness into the system we must ensure that no node can offload client requests to its

peers indefinitely without serving requests on behalf of the other nodes in the system as well.

Additionally, we must also ensure that not only is the number of data bytes served on behalf

of the nodes equivalent but also that the rate at which the data is served to the clients is the

same. Since the overlay neighborhood is fixed and there is only a fixed set of nodes to which

a node can offload requests, we can introduce a very simple, yet effective scheme to ensure

fairness by employing a pair-wise tit-for-tat strategy at every node. Normal interactions

19

between nodes in the network will proceed as follows. Each node maintains the following

two sets of accounts for each node in its neighborhood.

(i) A set of accounts for the volume of data exchanged with its peers

This set of accounts will primarily consist of two variables, the cumulative bytes served by a

peer on behalf of the node and the cumulative bytes served by the node on behalf of a peer

node. We call these variables CumulativeBytesConsumed and CumulativeBytesServed,

respectively. The difference between these two variables for each peer will give information

about their deficit. As long as the deficit of a peer is positive or is negative but within a

certain bound, its clients’ requests will be honored, i.e. client requests will be handled on

behalf of a peer as long as the following is true:

CumulativeBytesConsumed CumulativeBytesServed Deficit Threshold− <

This relationship can also be stated as follows: at any point, the maximum number of data

bytes that a node must serve its peer is:

Peer’s credit Deficit Threshold+

Where Peer’s credit max {0, CumulativeBytesServed CumulativeBytesConsumed}= −

The deficit threshold itself can either be a constant or a function of a “Trust” factor between

the nodes. How this trust factor can be built between the nodes is discussed later in Section

3.2.3. When a node sees that a peer’s credit has exceeded the maximum allowable limit, it

stops servicing that peer’s client until the credit is built up again (i.e. the peer has contributed

its own resources in serving the nodes clients).

(ii) A set of accounts for the data rate exchanged with the node

In addition to the accounting information regarding the volume of data contributed for and by

a peer, in order for the mechanism to be globally fair, we also need to keep track of the rate at

which this data was served to the respective clients. In the absence of such an accounting

mechanism, peers do not have the incentive to serve foreign clients (redirected clients) at

good data rates. Imagine a scenario consisting of two nodes A and B. At some point during

their interaction node B sees a high burst of client requests and redirects its clients to node A.

It is eventually in a debt of 1MBytes. At a later point node B has to pay back this debt to

node A. However, node B is aware of its load pattern and knows it does not require node A’s

assistance in the foreseeable future. In such a scenario, node B does not have the incentive to

20

serve node A’s clients at a high rate since it can build its credit back with node B even with a

slow rate and in time for its next requirement for redirection. This leads to an ineffective

strategy for node A, since its clients could be served at a very low data rate, decreasing their

QoS. Essentially, since the service provided by nodes cannot be traded instantaneously, we

need to remember more parameters to qualify the quality of service provided by the peers.

We thus arrive at the notion of maintaining the data rate that was provided to and by the

peers in addition to the data volume contributed by them. It may be possible to keep a fine-

grained record of how much data was served at what rate - and reciprocate such behavior.

However, such a mechanism would be highly cumbersome. As fluctuations in client access

rates and Internet related performance variability can lead to extremely variable data rates

served even by well-behaving nodes. Therefore, a fine-grained accounting mechanism will

produce an extremely strict system with no tolerance at all. In order to build more tolerance

into the system each peer maintains two rate trends instead: a trend for the rate at which data

was served to its client by the peer (RateConsumedTrend), and a trend for the rate at which it

served data to the peer’s clients (RateServedTrend). These trends can be maintained by

calculating the exponential weighted moving average (EWMA) by periodically assessing the

current data rate:

() () () ()RateConsumedTrend t RateConsumed t 1 – RateConsumedTrend t 1α α= + −

() () () ()RateServedTrend t RateServed t 1 – RateServedTrend t 1 ,α α= + −

Where 0 1α< < , and t is time at which the trends are calculated.

The weight parameter α can be tweaked to change the importance of past behavior vs. the

current behavior of the nodes. If α is high (say 0.9) then the trends are dominated by a node’s

current behavior, and the past history of the node is almost ignored. Similarly, if α is low (say

0.2) then the opposite is true: the current behavior of the node is ignored in favor of its past

history. In order to conform to the observations for proper functioning of the tit-for-tat

protocol laid out in the previous section, we need to make sure that the nodes are retaliatory

as well as forgiving, thus the value of the weight parameter should be kept high enough so

that the node’s current behavior is reciprocated, while at the same time some information

from its past behavior is reflected in the current decision as well to forgive temporary bad

service.

21

Note that these trends do not decay with time: the rates are calculated only as long as at least

one of the peers is serving foreign clients for the other. These trends will be used to affect the

data rate assigned to the peer in the following manner:

If
RateConsumedTrend

 rate _ limit
RateServedTrend

< ; Then punish the peer by decreasing the rate assigned

to serve clients of the peer by a fixed amount (in this case the deficit_limit of the peer

will also be decreased as described in the next section):

RateAssignedToPeer RateAssignedToPeer δ= − ,

If
RateConsumedTrend

 rate _ limit
RateServedTrend

> ; Then reward the peer by increasing the rate assigned

to server the clients of the peer by a fixed amount:

RateAssignedToPeer RateAssignedToPeer δ= + ,

where ‘rate_limit’ is a configurable parameter in the system between 0 and 1. If

‘rate_limit’ is set to 1 then the system is extremely exacting since it reacts to even the

smallest difference in data rates. If the parameter is set too low, it is make the system

becomes open to exploitation by making it too tolerant.

The parameters of the system must be chosen such that there is tolerance in the system so

that well-behaved nodes are not punished due to factors that degrade the service that are

beyond their control.

3.2.2 Joining the system

When a new node joins the system, no existing peer will serve its clients since the new node

does not have any positive account with them. In order to start transactions a new node must

provide an initial credit to the existing nodes that are part of its neighborhood. Apart from

kick-starting the new nodes, this also thwarts Sybil attacks by introducing a cost of joining

the system.

3.2.3 Building trust

The trust level between the nodes in the system increases as they interact positively with each

other. This increase in trust level can be translated into larger deficit limits between peers in

22

order to improve the efficiency and benefits of the system. Larger deficit thresholds allow

servers to handle large bursts more effectively by offloading requests to the peer. At a later

point when the burst has subsided, the node can reciprocate the contribution back to its peer.

Furthermore, it is possible that due to external problems even well-behaving nodes may not

be able to service requests temporarily in a proper manner. For example, the node may

experience temporary congestion, network outage, etc. Building a notion of trust between

nodes that have been interacting for a long time allows more leeway in such situations.

In order to build trust between peers, we need a mechanism to account for how good a node

has been during its history of interactions. Trust can be built by measuring many different

types of parameters such as the ratio of the number of successful interactions to the total

number of interactions with a peer node, or the cumulative number of bytes contributed by

the peer, or by relying on the number of times a node refused service even though it was in

debt. The trust factor of a node controls its deficit limit. High trust factors allow the node to

take larger loans from its peer and thus deal with larger bursts without running out of credit.

On the other hand, if the trust factor of the node is low, its deficit limit is lower (or even

zero) and its peers are reluctant to take any risks by loaning bandwidth to it.

By feeding this information back into the accounting system, we can increase the deficit limit

of well-behaving peers so that the peers with which a node has had a long-standing

interaction benefit from having maintained good behavior over a longer period of time. This

in turn provides incentive for nodes to be cooperative in an extended manner. The deficit

limit of a badly behaved node will be zero, i.e. no debts will be granted to the node unless

there is some positive contribution provided by it to begin with. As the node starts interacting

with a peer, its deficit limit increases or decreases as a function of its behavior in the

following manner:

(i) For every “x” bytes contributed the deficit limit is increased by
increase _ param

x
,

deficit _ limit deficit _ limit
increase _ param

x
= + ,

where increase _ param 1> . This can also be interpreted as the peer getting a reward

for every ‘x’ number of bytes it contributes. Thus, the deficit limit will increase as

23

long as the peer contributes data to the node. (In our experiments we used the value

100 for increase_param).

(ii) In order to prevent a peer from behaving well initially to build a high deficit limit and

then defecting to bad behavior, we will decrease the value of the deficit limit

considerably, each time the node behaves badly. A few examples of bad behavior on

the part of a node include:

a. Refusing redirecting requests even though the peer is in debt. These are direct

refusals in which the peer server does not accept a client redirection; this can

be detected by the origin server if the peer does not respond to an IPv6

handover.

b. A situation when the trend in the data rate provided by the peer is below a

certain lower limit. These are indirect refusals: once the peer accepts a

redirected client it can provide an extremely low data rate to the client, such a

case it considered bad behavior as well.

In such scenarios we decrease the deficit limit in the following manner:

 deficit _ limit decrease _ parameter * deficit _ limit= ,

where decrease _ parameter 1< . (In our experiments we used the value 0.1 for

decrease_param).

(iii) We record the number of times a peer’s deficit_limit has reached zero, and if it

happens too often (this is a configurable parameter to the system), the node can stop

communicating with (boycott) the peer altogether, marking it as a node with which an

extended relationship cannot be built. In such a case the node can ask the overseer to

assign it a new neighbor.

This accounting information is stored in permanent storage, so a node remembers a

misbehaving peer over time. This is useful when the misbehaving node tries to leave

and rejoin the system in a bid to wipe its history. Since we have kept the accounting

information local between each pair of interacting nodes, the effect misbehavior

related information is restricted. It is only applicable if a free-riding peer tries to leave

and rejoin a neighborhood that consists of a node that boycotted it previously. In

order to make sure that a misbehaving node cannot change its neighborhood too many

times to escape boycott, we need to make sure that the overseeing server is informed

24

about local boycotts in a neighborhood. The overseer already has some basic

information about all the nodes in the system (the neighborhood structure). In

addition to this, it could maintain a flag for each node indicating whether the node has

been boycotted by any of its neighbors. This information could be used to disallow

the node from switching neighborhoods or leaving and rejoining the system

subsequently.

(iv) If a peer fails a random check, it is considered a breach of contract. The node boycotts

it and seeks out a new neighbor from the overseeing server.

3.3 Validating claims

The additional difficulty in deploying a CCDN is the problem of validating a peer’s

contribution claims. The direct consumer of the service provided by the collaboration and

hence the entity that is capable of making accurate statements about a node’s contribution is

the Web client that actually receives content from the participating servers. However, since

CCDNs try to make their functioning as transparent as possible, the clients are not aware of

the existence of the collaboration between the participating Web servers. Thus, they are out

of the information loop in the system, and data about node behavior cannot be extracted from

them. In such a scenario, it is very easy for a node to claim that it has served ‘x’ number of

bytes to foreign clients at high data rates without actually having done so. Thus, without a

mechanism to verify node behavior, the accounting system, trust values between nodes etc.,

are all ineffective for preventing free riding in the system. In the following sections we

outline a solution to this problem based on IPv6.

3.3.1 Mobile IPv6 and TCP handoffs

In Mobile IPv6 each node has a permanent “home” address (HA), which acts as a permanent

identifier of the node, as well as, a temporary “care-of” address (CA), which identifies the

node’s current location. Mobile IPv6 ensures that network traffic sent to the home addresses

is transparently forwarded to their care-of counterparts. To this end, it relies on clients

communicating with mobile nodes to translate between home- and care-of addresses. In this

way, the node can move around and have different “care-of” addresses while at the same

time receive traffic addressed to its home address.

25

In order to redirect clients between Web servers and also to allow transparent random checks

about a node contribution, we adopt a mechanism very similar to the one used in [16] where

the authors employ Mobile IPv6 techniques to create a versatile Anycast system that

decouples the logical addresses of mobile nodes from their physical location. In our model of

CCDNs, we assume that the communication between client and server nodes is on top of

mobile IPv6, and assign a logical “home” address to each server to which its clients send

Web requests. We can now redirect the clients of the origin Web server transparently to any

of its peers by handing them over to the peer and treating the peer’s nodes as the “care-of”

addresses of the origin server. This can be done using the IP handover mechanism provided

by mobile IPv6.

Since the HTTP protocol usually runs on top TCP, when handing over client HTTP

connections between peer servers, it is not sufficient to hand over just the IP part of the

connection. This is because with TCP and HTTP on top, some transport and application layer

state is being maintained both at the client and the server side, and in order for the handovers

to be completely seamless, we need a mechanism for handing over TCP socket states from

one peer server to another without affecting the state of the connection at the client. Thus,

apart from utilizing mobile IPv6 mechanisms to switch between different IP addresses, we

need to transfer the TCP state of the connection between the servers as well. As discussed in

[16] we can implement TCP-level handover using tools such as ‘tcpcp’[19]. The handoff

mechanism itself requires the exchange of about 90 bytes of TCP connection state between

the peer servers, and the whole process of switching mobile IPv6 address and TCP state can

be optimized to about 236 ms in the worst case on a 1.5Mbps link (~200ms to transfer the

TCP state + ~36 ms for the IPv6 handover). This brings the cost of performing a random

check and handing the socket connection back to the peer to about 236 + 36 ms (since the

peer already has the socket state, we do not need to transfer it back to the peer). Thus, the

overhead of this method is low enough to not to degrade the client-perceived performance,

and can be employed to ensure proper node behavior in the collaboration.

3.3.2 Validating through random checks

In order to solve the problem of validating the claims of a peer, we implement a random

checking mechanism based on IPv6. This mechanism utilizes the separation of the logical

26

address and the actual physical address of a node in Mobile IPv6. As discussed before, this

decoupling allows transparent switching of IP addresses of a mobile node so that the node is

accessible at the same logical address, even though its physical address has changed. Our

solution uses a combination of IP handovers and TCP socket state migration and implements

a mechanism in which Web client connections can be transparently switched between the

peer servers without affecting the client side state.

The mechanism works as follows. The Web clients always initiate requests with the origin

server. Upon receiving requests the origin server will make a decision to redirect the client to

a peer server (based on its load, or proximity of the client to the peer server or the peer

server’s account) and may hand over the client to the peer. For every client that was

redirected to a peer, the origin server will maintain information that includes the timestamp at

which the client was handed over to the peer. As the client starts interacting with the peer

server, the origin server will receive periodic reports from the peer about the data volume and

the data rate contributed by the peer. In order to prevent the peer node from lying about its

contribution, the origin server can make random checks which will proceed as follows:

(i) Ask the peer server to hand over the client connection back to the origin server. Such

a handover will be completely transparent to the clients.

(ii) Since TCP is a reliable protocol it keeps track of the sequence numbers (sender’s

side) and acknowledgement numbers (receiver’s side) of the data bytes exchanged

between the sender and the receiver. The origin server will quickly create a raw

socket, and query the client.

(iii) The browser will in turn send out the correct acknowledgement number for this

connection, which also indicates the number of bytes it has received on this

connection.

(iv) The origin server can now verify the peer’s claim for data volume and rate (since it

knows the time when the client was handed over to the peer) that it has contributed.

(v) If all is good, the client will be handed back to the peer server.

As we will discuss later, this random check mechanism has a low overhead and thus, will be

effective in making sure that the peers do not lie to each other about their contributions.

Figure 3 summarizes the conceptual flow for the random check mechanism.

27

Figure 3 Summarizes the conceptual flow used for the random checking mechanism.

28

4 System Implementation

In this section, we describe an example implementation of the design described so far.

Figure 4 illustrates an overview of our implementation. We extended the Apache 2.2 Web

server by writing a new module that takes care of the collaboration aspects of the server. An

origin server can redirect its clients to its peer server. In such a case, the peer server will

check the account of the redirecting server before it honors the requests of the redirected

clients. If the accounting information allows it, the peer server starts handling the requests of

the redirected client and sends periodic reports to the original server about its contribution in

terms of data volume and date rate. The original server records this information on

permanent storage (hence peers remember each other’s behavior over time). This example

implementation is specifically built with the emphasis on measuring the effectiveness of the

proposed solution, and is not complete in terms of real deployment of the framework.

Aspects such as joining the system, obtaining new neighbors after boycotting a peer server,

membership management, neighborhood construction and IPv6 random checks where left out

in the interest of evaluating the performance of the core algorithm.

Figure 4 An overview of the architecture implemented for our experiments

29

4.1.1 New apache server module structure and moderator process

Figure 5 illustrates the details of the implementation of the collaboration mechanism for each

Web server. As the very first step, the pages of each Web server must be replicated at the

peer server so they can serve clients redirected from the origin server. A collaborator process

is started next which establishes a TCP connection with each neighbor’s collaborator process.

The collaborator processes will exchange contribution reports on this connection. The

collaborator process also creates a new network traffic shaping class in the node’s kernel for

controlling the outgoing rate of traffic for the clients of each peer. Both servers redirect

traffic to each other in a round-robin manner using HTTP redirection; every alternate request

is redirected to the other server. Next, we implemented a new module for the Apache Web

server that inserts its hook in the name translation phase of processing HTTP requests. When

a request is received, the module checks whether the target request URL is for an object that

belongs to a peer server. If this is the case, it marks the request as a foreign client, checks

whether the accounting system allows the request to be honored, if so it adds the client’s IP

address to the network traffic class that is assigned to the peer server and starts uploading the

requested file to the foreign client. The module also sends periodic reports to the collaborator

process about the number of bytes uploaded to the foreign client and the rate at which the

data was uploaded. The collaborator process in turn, updates the accounting information

about the peer, recalculates its deficit, its deficit threshold and trust parameters, and changes

the rate assigned to the network class for the peer based on this information. The collaborator

now consolidates the reports and sends them over to the peer. The collaborator process also

receives reports about contribution from the peer and performs similar accounting updates.

4.1.2 Structure of periodic reports exchanged between nodes

The periodic reports exchanged between the peers have to be designed in such a way that

they survive temporary node unavailability. When contribution reports are sent to the origin

server it is possible that the receiving node is unable to receive them temporarily and the

reports may be lost. Lost reports mean that valid contribution may be lost forever from the

accounting system. For such cases, we need to make a provision that a lost report does not

mean lost contribution. Thus, we designed the reporting structure such that each report gives

the cumulative number of bytes contributed towards the peer’s clients. Thus, even if reports

30

are lost, subsequent reports will add the correct contribution to the peers account at the origin

server.

Figure 5 Details of the implementation of the collaboration mechanism in a Web server

4.1.3 Accounting information at each server

Table 1 shows the accounting information recorded by a node for each of its neighbors. The

record consists of two parts: a long-term section that is stored in permanent storage and

recorded over a large period of time, and a fine-grained section that is transient and may be

kept in memory and discarded over time. A permanent record consists of the overall

contribution of the peer, the cumulative data volume and rate trends, the (mis)trust factor

built up over the course of the interactions. The rationale behind keeping this information

relatively permanent is to prevent Sybil attacks, and keep track of misbehaving nodes that

leave and rejoin a system after a while. The transient information in the accounting records

includes the status of a node’s current clients that have been redirected to a peer and the

peer’s foreign client that a node is handling. Other data that are stored by a node includes

31

configurable parameters of the system such as the rate_limit parameter that is the lower

bound on the data rate provided by the peer, and the aging parameter that is used to weigh the

calculation for volume and rate contributions.

Name of the peer, IP, identification information

For each client

handed over to

this peer

- Timestamp of last report

- Timestamp of handover

- Bytes contributed for this client

Transient

For each client

being handled

for this peer

- Timestamp of last report

- Timestamp of handover

- Contribution towards this client

Transient

Random checks Next random check timestamp Transient

Peer accounting

information

- CumulativeBytesServed , CumulativeBytesConsumed

- RateConsumedTrend, RateServedTrend, RateAssignedToPeer

- DeficitLimit

- Boycott flag

Permanent

Configurable

Parameters

- Aging parameter α (for trend calculation)

- Rate_limit parameter (for capping the rate limit)

- Deficit limit Increase_parameter (for trust calculations)

- Deficit limit Decrease_parameter (for trust calculations)

- Rate assigned increase\decrease parameter (for trust

calculations)

Permanent

Table 1 Accounting information maintained at every node

4.1.4 Bandwidth throttling

Apart from maintaining an account and constraining the number of data bytes contributed

towards peers (using the tit-for-tat mechanism), the nodes must also restrict the rate at which

data is served to peer’s client. In order to apply such a mechanism for data rate, the

collaborator process uses a Hierarchical Token Bucket (HTB) packet scheduler to shape the

data traffic served to the peer’s clients [18]. During initialization, the collaborator process

creates:

(i) A higher-level CCDN class that will shape all traffic that is part of the collaboration,

i.e., a class that shapes all outgoing traffic for foreign clients that belong to any peer

in the system. This class will be bounded to a maximum bandwidth limit ‘L’ that a

node wishes to contribute to the collaborative CDN as a whole.

(ii) Within the higher-level CCDN class, the collaborator module will create a subclass

for every peer in its neighborhood. Initially these classes will be unbounded, meaning

they can share ‘the bandwidth limit ‘L’ equally. However, as relationships are built

and peers start redirecting traffic to each other, this bandwidth bound on each class

32

will reflect the rate assigned limit ‘l’ to the peer depending on its behavior trend and

accounting mechanism as discussed in section 3.2 This will bound the maximum

bandwidth contributed towards the peer’s client to this limit. Figure 6 illustrates this

mechanism.

Figure 6 The HTB mechanism implemented to ensure outgoing data rate accounting

We need to investigate further the case where the same client is browsing multiple sites

concurrently. Since the filters to classify traffic to different HTB classes are based on the

destination IP address only, this mechanism will break if the client is browsing multiple sites

whose servers have different accounts with their neighbor. Here we will need to investigate

how we can differentiate between the requests of the same client for different sites and filter

the traffic accordingly so that different requests are served at different QoS in accordance

with the accounts of the corresponding peer node.

33

5 Evaluation

This section describes the experiment we conducted to observe the performance and the

behavior of our incentive scheme. We begin by describing the test setup, the client side and

server side software, the WAN emulation that we set up between the clients and the servers,

and then we present the experiments we conducted and the results that were obtained.

5.1 Test setup

For the testing environment we used the Distributed ASCI Supercomputer 2 (DAS-2) [6].

DAS-2 is a wide-area distributed cluster of 200 Dual Pentium-III nodes designed by the

Advanced School for Computing and Imaging (ASCI). The DAS-2 consists of five clusters,

located at five Dutch universities. The cluster we used contains 72 nodes and runs RedHat

Linux. Each node contains:

• two 1-GHz Pentium III CPUs

• at least 1 GB of RAM

• a 20 GByte local IDE disk

• a Myrinet interface card

• a Fast Ethernet interface (on-board)

Figure 7 shows the basic architecture of our test bed in which we use a NISTnet emulator to

simulate a WAN-like environment between our client and server machines. We have two

Web servers in the test bed, each running Apache 2.2 and our collaboration architecture as

described in the section above. Further, we emulated a wide-area network (WAN) among the

servers and the clients by directing all the traffic between them to an intermediate router

which uses the NISTnet network emulator. This router delayed the packets sent between the

different machines to simulate a wide-area network. The router was configured to simulate

asymmetric ADSL connections with server-side download bandwidth of 2Mbps and upload

bandwidth of 240 Kbps. Also, the link latency was configured to 100ms between all

machines.

Four client machines were used to generate the request workload for the servers. These

machines generate Web requests using the S-Client mechanism [5]. We looked at several

34

synthetic Web traffic generators such as httperf [13], apacheBench, etc, but we found the

design of S-Client most suitable for generating highly bursty request rate in order to study the

effect of collaboration between servers in the presence of bursty traffic. We divided the client

machines into groups of two, and assigned them to generate work load for each of the servers

separately. The exact method for the load generation is described in the following section.

End users

Web server 1

End users

End users

End users

Web server 2

Internet
Internet

S-Client

Web server 1

S-Client

S-Client

S-Client

Web server 2

NISTnet

WAN emulator

Figure 7 The schema illustrating the NISTnet setup used in our experiments

5.2 Client-side work load generation

As mentioned above, the client load generation mechanism is based on the S-Client

architecture. Many workload generators assume a closed system model, where new job

arrivals are triggered only by job completions. However, as explained in [5] if closed system

models of request are used then as the load on the server is increased the request generation

rate at the client side goes down as well. The clients are thus unable to produce request rates

larger than the capacity of the server and hence, fail to create large bursts in the request rate.

35

For our tests we need to generate bursty client-side traffic, with peak rates about 8 to 10

times higher than the average rate in order to temporarily put the server into overload

conditions. Although real Web servers can easily be overloaded by the almost infinite

number of potential clients on the Internet, it is difficult to simulate such conditions in

laboratory environments with closed system models of request generation. What is required

is a method of generating requests where job arrivals occur independent of the rate of job

completion at the server side. S-client is one such architecture, which defines a scalable

method for generating high requests rates that can put the servers in overloaded condition.

The S-Client architecture tries to saturate the web server by generating a large number of

periodic requests by using low TCP timeout times in order not to be in lock-step with the

server.

The original version of S-Client generates a constant request rate and does not provide a

mechanism for controlled generation of bursty traffic based on some input parameters. In

order to study the effect of collaboration in bursty traffic condition, we modified the original

S-Client implementation to generate bursty traffic based on the model formulated by [12].

[12]characterizes the burstiness in request traffic using two parameters, (a,b). Parameter a is

the ratio between the maximum observed request rate and the average request rate during the

monitoring period. Parameter b is the fraction of time during which the instantaneous arrival

rate exceeds the average arrival rate.

A Web server just sees a train of requests, with some inter-request time between two

consecutive requests. The characteristics of the request arrival rate can be changed if we

manipulate the distribution of the inter-request times. Figure 8 illustrates this concept. Thus,

in order to model burstiness, we need to incorporate the two parameters mentioned by [12]

into our request generation mechanism.

Suppose that we need to send a total of N requests to the server, with an average request rate

r and with burstiness parameters (a, b) as described above. This gives us the total time T

for which the request generation mechanism should run:

N
T

r
=

Since a is the ratio between the maximum observed burst rate r+ and the average rate r, we

know the following relationship exists:

36

a

r

r

+
=

Web server

Inter-arrival time
Request Arrival

time

Web server

Inter-arrival time
Request Arrival

time

Time

Time

Bursty request rate with varying inter-arrival time between requests

Constant request rate with equal inter-arrival time between requests

Figure 8 Web servers see a train of requests; the inter-arrival times between requests can be used to

characterize their burstiness.

Now, we can define the following parameters:

(i) Arr+ is the total number of requests that should arrive at a rate larger than the average

rate and,

(ii) Arr- is the total number of requests that arrive at a rate that does not exceed the

average arrival rate

With the definitions of Arr+ and Arr- above, we have the following relationship,

N Arr Arr= ++ −

Also, since b is the fraction of time during which the instantaneous rate exceeds the average

rate, b * T is the total time when the instantaneous rate should be r+, thus we have:

Arr

(*)
r

b T

+
+ =

37

we know that ,
N

r
T

= , thus we have:

Arr T Arr
a *

(*) N (*N)

r

r b T b

+ + +
= = =

thus we have,

Arr a * b * N+ =

Also, from the relationship between Arr- and Arr+, we can obtain:

Arr N – Arr− = +

Thus, given the total number of requests, and average request arrival rate and the burstiness

parameters, we now have a mechanism to calculate the number of requests that should arrive

at an average r (and thus, with inter-request arrival time 1/r) and the number of requests that

should arrive at rate r+ (and thus, with inter-request arrival time 1/r+). Further, in order to

make the request generation mechanism efficient, we divide the total time for T into n equal

sub intervals of duration T/n each called epochs.

Finally, using the definition of parameter b, we can define two important parameters:

(i) the number of epochs in which the request arrival is r+ (high) is:

Epoch b * n+ = ,

and each such epoch should have
Arr

Epoch

+

+
 requests each with inter-request arrival time

1

r +
.

(ii) the number of epochs in which the request arrival rate is r (average) is:

()Epoch 1 b * n− = − ,

and each such epoch should have a total of
Arr

Epoch

−

−
 requests each with inter-request arrival

time
1

r −
.

Now, by interspersing Epoch+ and Epoch- epochs in our request generation mechanism we

can produce the required characteristics of average rate and burstiness as required.

38

5.3 Results

We implemented the core of the architecture as described in Section 4 previously. This

implementation is specifically built with the emphasis on measuring the effectiveness of the

proposed solution, and is not complete in terms of real deployment of the framework.

Aspects such as joining the system, obtaining new neighbors after boycotting a peer server,

membership management, neighborhood construction and random checks were left out in the

interest of evaluating the performance of the core algorithm.

5.3.1 Single server performance with and without collaboration

In order to evaluate the effectiveness of the collaboration framework, we first need a

reference server and measure its performance when it fields client requests in as a standalone

server. We used a single Apache 2.2 server as our reference, and used 8 S-Clients (spread

across 2 dual processor machines) to generate load on it. The S-Clients generate the HTTP

requests at various levels of burstiness. Also, each client sends an HTTP request for a single

file of size 15360 bytes, receives the response and then repeats the cycle. Burstiness in the

request rate is generated by manipulating the inter-request times using the mechanism

explained in Section 5.2. Each S-Client had the connection establishment time set to 500ms.

The S-Clients measure the latency of the request by measuring the time between the start of

the request, and the time the request is satisfied. Figure 9 plots the average client-perceived

latency versus the total connection rate for three different levels of burstiness. The first

parameter in the label of each curve is the a factor and the second parameter is the b factor

expressed as a percentage. For example, (6, 15) refers to the case in which 15% of the time

the request rate is 6 times the average rate.

As we can see from Figure 9, even a small amount of burstiness in the request rate has the

capacity to degrade the service provided by the server. For request rates that are not bursty

the client side latency is almost linear and the server has no problem in serving the clients.

However, as the request rate turns bursty the server starts getting saturated at lower and lower

average request rates and the client-side latency increases tremendously. This effect becomes

more pronounced for higher average request rates with burstiness factors of (6, 15) and (6,

30).

39

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300

Average HTTP request rate (requests/second)

(6, 5)
No burstiness

(6, 15)

(6, 30)

A
v
e
r
a
g
e
 L
a
te
n
c
y

(m
il
li
se
c
)

Figure 9 Performance of a standalone HTTP server without collaboration

Further, in order to complete the basic reference, we also measured the performance of this

web server when acting in collaboration with an altruistic peer server (a peer who does not

free ride and cooperates voluntarily). The peer server uses the same Apache-based

configuration. The client set up for the peer server is similar to the reference server except

that all the 8 clients generate HTTP requests continuously at 50 requests/sec with burstiness

parameters (2, 5). Both servers redirect traffic to each other in a round-robin manner; every

alternate request is redirected to the other server. Figure 10 plots the client-perceived latency

versus the total connection rate of the reference server when in collaboration with its

altruistic peer.

From the results we can conclude that the collaboration with the peer server brings a

significant improvement in the reference server’s performance. Even for request traffic

without burstiness we see that at higher request rates there is an improvement in performance

since the benefits of collaboration outweighs the cost of such collaboration (the peer server

40

routes traffic at ~25 requests/sec with burstiness (2, 5)). The benefits of collaboration are

more pronounced for request traffic with high burstiness parameters (6, 15) and (6, 30) where

the differences in latencies with and without collaboration are much larger. Further, we also

notice that with collaboration the performance of the reference server at low burstiness (6, 5)

is comparable to the performance of the server without any burstiness in the request traffic.

This shows that collaboration is effective to reduce the performance impact of traffic bursts.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300

Average HTTP request rate (requests/second)

No burstiness(6, 5)

(6, 15)

(6, 30)

 With collaboration

 Without collaboration

A
v
er
a
g
e
L
a
te
n
cy

(m
il
li
se
c)

Figure 10 Performance of an HTTP server in collaboration with a peer server

5.3.2 Server performance with free riding

In order to evaluate the advantages of our collaboration system we first examine the effects

of free riding on the performance on a single server. To do so, we use the set up described in

the section above. However, this time the peer server does not voluntarily co-operate but tries

to free ride the system by refusing to honor requests from clients that belong to the original

reference server. We define the intensity of free riding as the probability with which the peer

will reject a foreign client. Rejected requests are retried back by the client at the origin

41

server. The origin server does not distinguish between fresh requests and the old request that

are retried because the peer server refused to honor them. Figure 11 and Figure 12 show the

performance of the original server with the peer server free riding at different intensity levels

under traffic with different burstiness parameters.

Figure 11 HTTP server performance in collaboration with a peer with 20% free riding level

Figure 12 Performance of an HTTP server in collaboration with a peer with 70% free riding level

The most obvious result that can be obtained from the figures above is that a free-riding peer

has an adverse effect of the performance of the reference server as compared to the

standalone configuration. The performance of the server degrades more as the free riding

level of the peer is increased. With 20% free riding level and burstiness parameter of (6, 5)

we see that the performance of the server is not tremendously affected by the free riding at

low request rates. As the request rate is increased the performance degrades, yet the latencies

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300

Average HTTP request rate (requests/second)

Collab-(6, 5)

Collab-20%Free riding-(6,5)

Standalone (6,5)

A
v
e
r
a
g
e
 L
a
te
n
c
y

(m
il
li
se
c
)

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300

Average HTTP request rate (requests/second)

Collab-(6, 15)

Collab-20%Free riding-(6,5)

Stand alone (6, 15)

A
v
e
r
a
g
e
 L
a
te
n
c
y

(m
il
li
se
c
)

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300

Average HTTP request rate (requests/second)

Collab-(6,5)

Standalone-(6,5)

Collab-70%Free riding-(6,5)

A
v
e
r
a
g
e
 L
a
te
n
c
y

(m
il
li
se
c
)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200 250 300

Average HTTP request rate (requests/second)

Collab-(6,15)

Collab-70% Free riding-(6, 15)

Standalone-(6,15)

A
v
e
r
a
g
e
 L
a
te
n
c
y

(m
il
li
se
c
)

42

are not worse than those obtained when the reference server was in standalone configuration.

However, further increase in the request rate brings the performance of the server worse than

the standalone case. With 70% free riding level and burstiness parameter of (6, 5) we can see

that the performance of the server is comparable to the standalone case at very low request

rates but degrades quickly as the request rate increases. From this we can conclude that free

riding is much more expensive to the server at higher request rate. In the majority of the

scenarios with free riding the origin server is better off without collaboration. This occurs

primarily because the bursts are 6 times the average request rate. At higher request rates a

burst has a large impact on the performance of the server. Thus, the cost of collaboration

(handling foreign clients), and the extra cost of handling redirections (clients who were

refused service by the free riding peer) are larger at high requests.

Furthermore, the amount of burstiness has a varying impact on the server performance. With

the free-riding level remaining constant, lower amounts of burstiness cause a comparably

lower amount of degradation in the performance of the server. As we can see in Figure 11

with a free-riding level of 20% the client perceived latency is much larger for burstiness

parameters of (6, 15), than for (6, 5). From this we can conclude that the cost of free riding is

higher as the request traffic become more and more bursty. This occurs because with an

increase in the burstiness parameter of the request rate, the amount of load on the origin

server increases: With (6, 15) burstiness parameter, bursts now occur 15% of the time as

opposed to 5% of the time that they would occur with parameters of (6, 5). Due to this

increase in load, the origin server is more susceptible to the costs of the free-riding behavior

of its peer. Free riding puts the additional load of handling the peer’s redirected clients

without any reciprocal benefits on an already loaded server. Thus, this additional load is

much more expensive to bear as the burstiness of the request rate (and hence the load on the

server) increases and we see a drop in performance of the origin server.

In a corresponding manner, Figure 13 shows the average client latency seen by the free-

riding peer. As can been seen from the graph, without the enforcement mechanism in place,

the free rider sees client latencies lower than that of an altruistic server that collaborates

voluntarily. This means that a free rider does better than an altruistic server in an unchecked

environment. This is thus an incentive for the nodes to free ride as they can exploit the

system to their benefit without contributing their resources in turn.

43

0

100

200

300

400

500

600

700

800

Standalone
No free riding
70% free riding

A
v
e
r
a
g
e
 L
a
te
n
c
y
 (
m
il
li
se
c
)

Figure 13 Performance of a free riding HTTP server at 70% free riding level

5.3.3 Server performance with free riding under enforced collaboration

Finally, we conducted a similar set of experiments as the Section above except now the

servers are part of collaboration framework developed in this work. These experiments were

carried out with an aging parameter of 0.75 for the trends calculations and rate limit factor of

0.5. Initially a debit limit of 30000 bytes is assigned between peers, with an increase

parameter of 10. This implies that the deficit limit is increased by 3000 every 30000 bytes

contributed by the peer. Further, we use a decrease parameter of 0.1, which implies that the

deficit limit is decreased by a factor 0.1 when bad behavior is detected. Again, the peer tries

to free ride at varying levels by refusing to honor requests from clients that belong to the

reference server. Figure 14 plots the performance of the reference server in this scenario.

From the results we can see that on the whole the free-riding peer is unable to exact as much

degradation in the performance of the reference server with our collaboration framework in

place as was possible without it. As the figure shows, with the peer free riding 20% of the

times, the performance of the reference server follows the standalone case for low request

rates and increases further as the requests rate increases. This increase in performance can be

attributed to the fact that even with the peer free riding 20% of the time, with the

collaboration framework in place, the reference server is able to avail the advantages of the

collaboration when the peer in not free riding (which is about 80% of the time).

44

Figure 14 Performance of an HTTP server with free riding peer and forced collaboration

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300

Average HTTP request rate (requests/second)

Collab-(6,15)

Standalone-(6,15)

Collab-20%Freeriding-(6,15)

Forced collab-20%Free riding-(6,15)
A
v
e
r
a
g
e
 L
a
te
n
c
y

(m
il
li
se
c
)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200 250 300

Average HTTP request rate (requests/second)

Collab-(6,15)

Standalone-(6,15)

Collab-70%Free riding-(6,15)

Forced collab-70% Free riding-(6,15)

A
v
e
r
a
g
e
 L
a
te
n
c
y

(m
il
li
se
c
)

45

Further, with free riding levels increased to 70% we see that the performance of the reference

server follows the standalone case more or less. However, these data illustrate the

effectiveness of the framework in that the reference server is almost isolated from the peer

and the free riding does not have a negative impact on its performance. At this point there is

no advantage of such collaboration and the peer should be boycotted.

0

100

200

300

400

500

600

700

800
Standalone
No free riding
70% free riding
70% free riding with accounting

A
v
e
r
a
g
e
 L
a
te
n
c
y
 (
m
il
li
se
c
)

Figure 15 Performance of a free riding HTTP server at 70% free riding level

Figure 15 shows the average client latency seen by the free-riding peer when collaboration is

enforced. As mentioned before, without the enforcement mechanism in place, the free rider

sees client latencies lower than that of an altruistic server that collaborates voluntarily.

However, with 70% free ride level and with collaboration enforced, the average latency seen

by the free rider’s clients is almost the same as those obtained when it was acting in

standalone mode. This confirms that the advantage that free riding can provide is removed

when collaboration is enforced. With our mechanism in place, the original server keeps track

of the contribution made by the misbehaving node and contributes only in proportion to what

it has obtained from the free riding peer. Since the misbehaving node free rides 70% of the

time, the original server does not collaborate most of the time and hence we see that the

latencies observed by the free rider are similar to its standalone mode. Thus, the incentive to

free ride has been removed and the only way the free rider can utilize the advantages of the

collaboration is by contributing its own resources to the system.

46

Figure 16(a) Percentage of surrogate

data uploaded by the servers, without

enforcement.

Figure 17(b) Percentage of surrogate

data uploaded by the servers, with

enforcement.

Figure 16 and Figure 17 show the comparison between the percentage of surrogate data (data

served out to foreign clients) served by the servers for a fixed amount of time. Both the

servers dealt with a request traffic of 10000 requests at 10 requests/sec with burstiness

parameter (6,5), with each request for a file of 5120 bytes. The cumulative data served and

consumed by each server was recorded with the peer server free riding at 20%, 40% and 70%

of the times without our collaboration framework in place. This experiment was then

repeated with the exact setting but with the servers now part of the collaboration framework.

As we can see, obviously the surrogate data served by the reference server is much larger

than the data served by the free-riding peer when the collaboration is not enforced. This

disparity in contribution becomes larger as the free-riding level is increased. However, with

the collaboration mechanism in place, we see that the surrogate data handled by each server

is almost the same, i.e. the tit-for-tat strategy ensures that the reference server does not

contribute towards the clients of the peer server unless the peer makes a reciprocating

contribution itself.

0

10

20

30

40

50

60

70

80

20% 40% 70%

Free-riding level (%)

Reference server

Free-riding server

D
a
ta
 v
o
lu
m
e
 (
%
)

0

10

20

30

40

50

60

70

80

20% 40% 70%

Free-riding level (%)

Reference server

Free-riding server

D
a
ta
 v
o
lu
m
e
 (
%
)

47

6 Conclusions

CCDNs are designed to share the bandwidth resource of participating nodes for the mutual

benefit good of all nodes in the system. By being part of such collaborations, nodes are able

to provide good QoS to their clients even in the face of temporary bursts in web traffic. This

is done by offloading requests to peer nodes during high request load bursts. However, like

any P2P system, CCDNs suffer from the problem of free riders. In the absence of proper

incentives the participating nodes will act rationally and may not contribute resources to the

system if they can utilize the system’s resources for free. Such free-riding behavior can be

detrimental to the overall performance of the collaboration.

In this thesis, we proposed a scalable and distributed mechanism for enforcing collaboration

among nodes in a CCDN based on DAMD. The system requires that the nodes are divided in

to neighborhoods and monitor each other’s service parameters during repeated interactions.

Nodes keep an account of the data volume and rate contribution made by their neighbors, and

indulge in a pair-wise trading scheme using a tit-for-tat strategy. Furthermore, in CCDN

environment nodes are not immediate consumers of each other’s services, hence

contributions made by peers need to be verified using external means. We designed a mobile

IPv6 random check mechanism that can be used to verify a peer node’s contribution.

Through our experimental evaluation, we have shown that nodes benefit from collaborating

with each other. Furthermore, the benefits of collaboration increases as the web request

traffic become more and more bursty. However, these advantages are quickly lost as peers in

the network start free riding. We have shown that our protocol removes the incentive among

nodes to free ride, in that a node is provided service from the system only in proportion to its

contribution to its peers. Further, we have also shown that our system prevents the free riders

from exploiting good nodes in the system. The performance of a well-behaved node is not

affected adversely in the presence of free riders.

Potential areas of future research include the study of system parameters on long term

interactions between nodes and to be able to study the behavior of the system in larger

deployments. Going further we would also like to investigate the effectiveness of

implementing transitive trade between the nodes in the system.

48

References

[1] E. Adar and B. A. Huberman. “Free riding on Gnutella”. First Monday, October 2000.

http://www.firstmonday.dk/issues/issue5_10/adar/index.html. 2000.

[2] G. Hardin. “The Tragedy of the Commons”. Science. 1968.

[3] R. Axelrod. “The Evolution of Cooperation”. NewYork: Basic Books. 1984.

[4] M. F. Arlitt, C. L. Williamson. “Web Server Workload Characterization: The Search

for Invariants,” Measurement and Modeling of Computer Systems. 1996.

[5] G. Banga, P. Druschel. “Measuring the Capacity of a Web Server”. USENIX

Symposium on Internet Technologies and Systems. 1997.

[6] M. E. Crovella, A. Bestavros. “Explaining World Wide Web Traffic Self-Similarity”.

ACM SIGMETRICS 96-5, Philadelphia, PA, USA. 1996

[7] M. Zukerman. “Traffic Modelling and Related Queuing Problems”. Presented at EE

Dept., City University of Hong Kong, April, 2002.

[8] J. R. Douceur. “The Sybil Attack”. In First International Workshop on Peer-to-Peer

Systems (IPTPS ’02). 2002.

[9] P. Garbacki, A. Iosup, D. Epema, M. van Steen. “2Fast: Collaborative Downloads in

P2P Networks”. In Peer-to-Peer Computing, 2006. P2P 2006. Sixth IEEE International

Conference on. 2006

[10] G. Pierre, M. van Steen. “Globule: A Collaborative Content Delivery Network”. IEEE

Communications, Vol. 44, No. 8. 2006.

[11] S. Jun, M. Ahamad. “Incentives in BitTorrent Induce Free Riding”. In Proceedings of

3rd ACM SIGCOMM Workshop on Economics of Peer-to-Peer Systems (P2PECON).

2005.

[12] D. Menascé, V. Almeida. “Capacity Planning for Web Services”. Prentice hall. 2001.

[13] D. Mosberger, T. Jin, “httperf A Tool for Measuring Web Server Performance”. First

Workshop on Internet Server Performance. 1998.

[14] P. Nain. “Impact of bursty traffic on queues”. Statistical Inference for Stochastic

Processes, Vol. 5, pp. 307-320. 2002.

[15] J. Shneidman, D. C. Parkes. “Rationality and Self-Interest in Peer to Peer Networks”.

IPTPS 2003 : international workshop on peer-to-peer systems N
o
2, Berkeley CA. 2003.

49

[16] M. Szymaniak, G. Pierre, M. Simons-Nikolova, M. van Steen. “Enabling Service

Adaptability with Versatile Anycast”. Accepted for publication, Concurrency and

Computation: Practice and Experience, 2007.

[17] A. Totok, V. Karamcheti. “Improving Performance of Internet Services Through

Reward-Driven Request Prioritization”. In Proceedings of the 14th IEEE International

Workshop on Quality of Service (IWQoS'06), 2006.

[18] Hierarchical Token Bucket, http://luxik.cdi.cz/~devik/qos/htb/

[19] W. Almesberger. “TCP Connection Passing”. Ottawa Linux Symposium. 2004

[20] http://wiki.coralcdn.org/wiki.php?n=Main.FAQ#runnode

[21] http://www.coralcdn.org/

[22] http://en.wikipedia.org/wiki/Prisoner's_dilemma

