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ABSTRACT

Many  large-scale  distributed  applications  rely  on  collaboration,  where  unrelated  users  or 
organizations share their resources for everyone's benefit. However, in such environments any 
node  may  attempt  to  maximize  its  own  benefit  by  exploiting  other's  resources  without 
contributing back. Collaborative systems must therefore deploy strategies to fight free-riders, and 
enforce collaborative behavior. This chapter explores a family of mechanisms to enforce fairness 
in asynchronous collaborative environments, where simple tit-for-tat policies cannot be used. Our 
solutions rely on enforced neighborhood relations, where each node is restricted in the choice of 
other nodes to collaborate with. This creates long-term collaboration relationships, where each 
node must behave well with its neighbors if it wants to be able to use their resources.

INTRODUCTION

Service-Oriented Architectures offer the vision of distributed applications offering functionality 
to each other, such that complex applications may be realized mostly by composition of existing 
software components provided by independent parties. An example is the recent popularity of 
Web  mashups,  where  any  programmer  can  take  advantage  of  service-oriented  functionality 
offered  through  Web  services.  However,  users  of  service-oriented  applications  do  expect 
reasonable  performance.  This  requirement  can  be  translated  into:  how can a  service  provide 
constant performance regardless of the request load addressed to it by independent third parties? 
Obviously, a single server machine cannot handle arbitrary amounts of load so one must design 
services such that they can expand their capacity by using additional computing resources when 
necessary.

One way a service may obtain temporary access to extra resources when it needs them is the use 
of collaborative environments.  Such environments are characterized by multiple users sharing 
their  resources for  everyone's  benefit.  For example,  peer-to-peer file  sharing applications can 
improve everyone's download speed of a file under the condition that those users are willing to 
donate their resources to upload file contents (Cohen, 2003). Similarly, a service operator may 
use  a  collaborative  content  delivery network,  which relies  on  the  willingness  of  Web server 
administrators to help each other if one experiences a temporary overload (Pierre and van Steen, 
2006); another possible method is to use grid computing, where system administrators are willing 



to  contribute  their  resources  in  exchange  for  future  use  of  global  resources  (Foster  and 
Kesselman, 1998). 

One important issue in such environments is free riding, where some users try to use the shared 
resources without contributing an equivalent quantity of resources back to the system (Adar and 
Huberman, 2000). Free riding can be extremely detrimental to the performance of collaborative 
systems as it decreases the quantity of resources available to users as a whole. Additionally, it 
produces  strain  on  the  remaining  good nodes  in  the  system,  which  reduces  the  incentive  to 
contribute positively.

An efficient  mechanism to  enforce  collaboration is  the  tit-for-tat  policy,  as  implemented for 
example in the BitTorrent file sharing system (Cohen, 2003). This policy dictates that, after a first 
altruistic  interaction,  resources  are  granted  to  a  user  under  the  condition  that  an  equivalent 
amount of resources is simultaneously contributed back. A few properties of BitTorrent make this 
scheme effective and easy to apply. First, collaboration is symmetric, meaning that collaboration 
happens pairwise with no third party involved. Fairness enforcement can thus be realized by the 
two  concerned  peers  themselves,  without  requiring  the  need  for  external  services  such  as 
reputation  systems.  Second,  collaboration  is  local  in  time  in  that  the  balance  of  respective 
contributions  must  be  judged as  fair  by both parties  at  any instant  of  the  collaboration.  The 
system therefore does not need to maintain a memory of past interactions.

However, tit-for-tat is not a panacea for solving all fairness issues in collaborative environments. 
Many such environments rely on asynchronous collaboration, where the services are not provided 
simultaneously  from A to  B  and  from B to  A.  A good  example  is  a  collaborative  content 
distribution network, where Web servers call each other for help only when they experience an 
overload. For such environments we need more sophisticated mechanisms.

This chapter explores a family of mechanisms to enforce fairness in asynchronous collaborative 
environments, based on observations from Axelrod (Axelrod, 1984). These observations state that 
cooperation can emerge only when:

• Nodes retain a unique identity over time
• Interactions are repeated many times between the same pairs of nodes

The intuition between these  rules  is  that,  to  sustain collaboration between the  well-behaving 
members (and to exclude free-riders), one must rely on some memory of past interactions with 
other nodes. In a large-scale system this implies that a given node regularly interacts with the 
same partners over and over again, to have the ability to gain some confidence that they will 
behave well in the future.

The  following sections  explore  the  application  of  these  general  principles  to  two  classes  of 
asynchronous collaborative environments. First, we study fairness enforcement in a collaborative 
content distribution network. In such a system, Web servers may request each other's help when 
they experience an overload. The interaction is thus necessarily asynchronous because a currently 
overloaded server cannot be of much help to another overloaded server. It makes more sense that 
underloaded servers help overloaded servers, thereby creating asynchronous collaboration. We 



then turn to peer-to-peer grids, where a user can allow jobs from other users to execute on his/her 
resources  in  order  to  gain the rights  to  later  run jobs  at  other sites.  Here,  in  addition to  the 
fundamental  asynchronous  nature  of  the  system  we  need  to  deal  with  an  extra  difficulty: 
restricting  the  number  of  neighbors  where  a  node  can  execute  its  jobs  has  an  unacceptable 
performance impact on the Grid as a whole.. We therefore focus on the way to enforce repeated 
interaction without limiting the scope of machines where a user may submit jobs.

WHAT IS FAIRNESS?

Defining fairness in collaborative environments is equally difficult as it is in human societies. 
Ideally,  fairness  would  mean  that  each  party  receives  resources  proportional  to  their  own 
contribution to the collaborative system. For example, Jain defines fairness in the context of a 
single resource that must be shared fairly between multiple users (Jain et al., 1984). This metric is 
meant to evaluate instantaneous fairness, in the sense that one user of the shared resource is not 
unfairly discriminated compared to the others. However, characterizing fairness in asynchronous 
collaborative  systems  is  much  more  complex.  On  the  one  hand,  a  good system must  allow 
resource sharing to be unfair at any point of time: certain nodes only contribute resources while 
others only receive them. On the other hand, it  must distinguish free-riders who intentionally 
refuse to contribute sufficient resources to the system from nodes that are willing to share their 
resources but are genuinly unable to do so (e.g., a collaborative Web server may need to refuse to 
help another one if it already experiences a high load).

In this chapter, we use a definition of fairness similar to that of (Böhm and Buchmann, 2009): the 
goal of a fairness enforcement system is that the presence of free-riders does not significantly 
impact the benefits that collaborative nodes get from collaboration. Note that this largely implies 
that the free-riders do not draw any significant benefit from their actions.

FAIRNESS IN A COLLABORATIVE CONTENT DISTRIBUTION NETWORK

A collaborative  content  distribution  network  is  an  overlay  of  independent  Web  servers  that 
organize to offload requests from each other when a server is overloaded (Lal, 2007, Pierre and 
van Steen, 2006). This guarantee is important because a Web server should expect its request 
traffic to contain significant bursts of activity (Crovella and Bestavros, 1996). Dimensioning any 
Web server  according  to  the  greatest  expected  load  peak  can  be extremely  expensive,  so  in 
practice  very  few servers  are  sufficiently  provisioned  to  sustain,  for  example,  the  load  peak 
created by having a major news site publish a link to the concerned Web server (Adler). In such 
situations, it becomes interesting to provision a server for its average load only, and rely on other 
currently  underutilized  servers  to  serve  the  excess  load  that  the  server  will  occasionally  be 
receiving.

For such a system to work in practice, each server must have the assurance that when an overload 
will occur, another underloaded server will accept to serve as a backup. A free-riding strategy in 
such a system could consist of utilizing other server's resources during periods of overload, but 
deny other servers to use the local resources when the server is underutilized. This system clearly 



belongs to the category of asynchronous collaborative systems: one server can help another one 
only if it  has spare capacity to donate. On the other hand, although collaboration will  at  any 
instant be only unidirectional, no server wants to be systematically exploited by its peers so a fair 
balance of respective contributions should be maintained in the long run.

Fixed Neighborhoods

The  first  issue  to  address  is  that,  like  any  collaborative  environment,  collaborative  content 
distribution  networks  must  allow certain  levels  of  altruism to  initiate  the  collaboration.  One 
server must first accept to donate resources to another server with no immediate counterpart, in 
the hope that the favor will be returned later on. However, although altruism is a necessity to 
allow collaboration to start, we do not want to allow free-riders to exploit the generosity of every 
node in the system without ever reciprocating the favor.

We solve this problem by statically assigning a fixed set of helpers to each server. This means in 
practice that an external entity defines a set of neighbors for each server. These neighboring links 
are symmetric, so it is easy for a server to decide if a request for help comes from a server that is 
authorized to do so. This also enforces repeated interaction, since a given server is forced to 
establish long-term relationships with its neighbors. A free-riding server which would exploit the 
altruism of its designated neighbors without reciprocating the help would quickly be excluded by 
these neighbors, and therefore become unable to use the collaborative system any more.

Asynchronous tit-for-tat

In  an  asynchronous  collaborative  environment  such  as  a  collaborative  content  distribution 
network,  it  is  impossible  to  maintain  a  perfect  balance  of  mutual  contributions  at  all  times. 
Consider a pair of collaborative servers A and B. One of the two (say, A) has to donate resources 
to B, before B can reciprocate later on. On the other hand, A cannot have hard guarantees that B 
will effectively reciprocate when requested to do so. The only guarantee that can be provided here 
is trust, based on previous experience among these two particular servers.

Such trust  can  be  built  using  two  simple  mechanisms.  First,  each  server  must  maintain  the 
balance of mutual contributions it had with each of its neighbors. This allows to limit the amount 
of generosity toward any neighbor, and to deny resources to a neighbor which would request 
resources without  sufficiently reciprocating in the long term. Second,  the maximum tolerated 
imbalance in respective contributions can be adjusted according to past experience. At the start of 
a collaboration, this maximum imbalance can be set to a relatively low value, so each server 
minimizes the risk of being exploited by the other. Later on, if the neighbor behaves well and 
reciprocates  the  collaboration,  then  the  maximum  imbalance  may  be  increased  gradually  to 
expand the scope of the collaboration.

More  formally,  each  server  maintains  three  variables  for  each  of  its  neighbors: 
TotalBytesConsumed,  TotalBytesServed and  DeficitThreshold,  representing  respectively  the 
resources consumed from and donated to the neighbor, and the maximum tolerated imbalance for 
this  neighbor.  A  request  for  resources  originating  from this  peer  will  be  granted  under  two 



conditions:  (i)  the  requested  server  is  not  itself  currently  experiencing  overload;  and  (ii) 
TotalBytesConsumed - TotalBytesServed < DeficitThreshold.

While this simple model accurately represents the quantity of resources donated by each server to 
another, it is not sufficient to account for the quality of service with which one server has helped 
another. In a content delivery network, it matters a lot at which data transfer rate a server has 
served its neighbor's data to external clients. Thus, contributions should be expressed not only in 
terms of the quantity of donated resources, but also with their quality of service. However, the 
rate  at  which  a  neighbor  can  serve  any  particular  connection  does  not  only  depend  on  the 
resources it is capable or willing to contribute. The location of the client and the characteristics of 
the Internet path to that client also contribute to determine the transfer rate of this connection. We 
should therefore not  punish a neighbor server for  slow data rates observed on any particular 
connection. On the other hand, one can aggregate all requests served by a particular neighbor (for 
example, using exponential weighted moving average functions) and derive trends to indicate if 
the global quality of service offered indicates artificial contention created by the neighbor server. 
By comparing the trend of connection rates delivered by the neighbor to the one it provides to its 
own clients, a server can decide if the neighbor is playing fair or not, and consequently reward or 
punish it.

Validating claims

Enforcing collaboration in a collaborative content distribution network creates one extra difficulty 
that is not found often in other collaborative systems: to be able to suitably reward or punish a 
neighbor  server  according  to  its  behavior,  a  server  must  be  able  to  verify  the  claims  that  a 
neighbor server has actually served so many requests at so much data rate. However, the nature of 
collaborative Web sites makes such verification hard to realize: after a server has redirected a 
client request to one of its neighbors, it is no longer involved in this request. It therefore cannot 
verify whether the request was actually served, and at what rate. 

One simple solution consists of involving (a fraction of) the clients,  such that they report the 
quality of service they experienced to the origin server. Such systems have actually been built, for 
example to allow one to detect whether fraudulent content was delivered to the user (Popescu et 
al., 2003). However, this requires that a significant fraction of end users accept to install extra 
software to issue such reports.

A possible  alternative  solution  is  to  exploit  the  properties  of  a  new mechanism for  request 
redirection, named Versatile Anycast (Szymaniak et al., 2007). With versatile anycast, one server 
can handoff any of its TCP connections with clients to be served by a neighboring server. The 
handoff is realized at the IP layer, so that the client-side application does not notice it is being 
redirected. After redirection, the connection traffic is routed directly between the client and the 
neighboring server, with no traffic indirection through the origin server. This form of redirection 
has the advantage that it allows the origin server to check how much data its neighbors actually 
deliver to clients, and at which rate. In this scheme, a new client request is always opened with 
the origin server. If the origin server is overloaded, it can then hand off some of its connections to 
its neighbors. The neighbor is asked to serve the client requests, then to hand off the connection 
back to the origin server before closing it. The origin server can then check the data offsets of the 



TCP socket, and verify how much data has actually been exchanged with the client. The origin 
server can also measure how much time has elapsed between the connection was handed off from 
the origin to its neighbor and the time when it was handed off back, and derive the average data 
rate with which this connection has been served.

Evaluation

We evaluated the proposed approach by studying an implementation of two neighboring servers 
connected  to  the  Internet  by  emulated  ADSL-like  connections,  each  with  2  Mb/s  download 
bandwidth and 240 kb/s  upload bandwidth.  We assume that  the  documents  to  be  served are 
available at both servers, so no document replication cost is incurred in these experiments. Each 
server is addressed by a bursty workload, generated using a modified version of S-Client (Banga 
and Druschel, 1997). This tool allows us to control the burstiness of the traffic addressed to the 
servers. We express burstiness according to the notation in (Menasce and Almeida, 2001), using 
two parameters (a, b).

Parameter a denotes the ratio between the maximum observed request rate and the average rate 
during  the  evaluation  period.  Parameter  b denotes  the  fraction  of  time  during  which  the 
instantaneous request rate exceeds the average request rate.

Figure 1: Performance of two Web servers with and without collaboration

Figure 1 shows the average client-perceived latency of requests addressed to the two servers for 
several levels of traffic burstiness, with and without collaboration between the two servers. We 
observe three phenomena: first, obviously, request latency grows when the average request rate 
grows. Second, for the same average request rate, a bursty traffic is more difficult to serve, as 
indicated  by  greater  request  latency.  Finally,  we  observe  that  collaboration  between the  two 
servers allows to significantly reduce request latencies, especially when the traffic is more bursty. 
Two servers receiving similarly bursty traffic therefore have a common interest to collaborate.



Figure 2: Performance of a Web server with a free-riding neighbor

Figure 2 shows the damage that a free-riding neighbor can create. In this example, the free-riding 
neighbor denies 70% of requests for help from the origin server. In such cases, the origin server 
must first incur the latency of the denied request for help, then the cost of serving the request 
itself. We observe that the free-riding neighbor causes an increase of request latency compared to 
the scenario where the neighbor collaborates, but also compared to the standalone case with no 
collaboration. We conclude that  the best way to behave with a free-riding neighbor is not to 
collaborate with it any more, since doing so creates an extra burden compared to no collaboration.

Figure 3: Performance of a Web server with a free-riding neighbor, and enforced collaboration

Figure 3 shows the performance of the same server when the enforced collaboration mechanisms 
are activated. The average request latency in the presence of a free-riding neighbor becomes close 
to  the  case  with  no  collaboration.  This  demonstrates  that  the  free-riding  neighbor  no  longer 
impedes the performance of the origin server.



Figure 4: Performance of a free-riding server

We conclude this evaluation section with Figure 4, which shows the performance experienced by 
the free-riding server in these different scenarios. We see that free-riding with no accounting 
gives this server an extra performance advantage compared to regular collaboration with no free-
riding:  the  free-riding  server  can  exploit  the  resources  of  its  collaborative  neighbor,  without 
reciprocating. The request latency of the free-riding server therefore improves. However, when 
we enable  the  accounting mechanism to enforce  collaboration,  the  free-riding server  sees  its 
performance drop to a value close to the case with no collaboration at all. A server therefore has 
no incentive any more to free ride: using the enforced collaboration, the optimal strategy of any 
server is to collaborate with its neighbors, for everyone's shared benefit.

FAIRNESS IN A PEER-TO-PEER GRID

A different kind of asynchronous collaborative environment is a peer-to-peer grid (Foster and 
Kesselman, 1998, Weel, 2008). Here, collaboration happens when a node issues a computational 
job to be executed by some number of its peers. Similar to the situation of collaborative content 
delivery networks, each compute node is expected to accept running computations on behalf of 
other users, in order to gain the rights to later execute jobs on other nodes. Peer-to-peer grids 
however present two important differences with collaborative content distribution networks. First, 
in a peer-to-peer grid, a node expecting to run a job at other nodes expects to find several remote 
peers simultaneously available to run the computation.  Second,  it  is not a necessity that jobs 
should start executing immediately after they are requested: a reasonable delay before execution 
starts is acceptable in most cases.

In such a system, restricting collaboration to a fixed number of neighbors severely reduces the 
performance of the Grid itself: if this set is significantly smaller than the total size of the grid, this 
greatly  restricts  the  available  periods  when  a  sufficient  number  of  neighbor  nodes  can  be 
simultaneously available1.  Increasing the  number  of  neighbors  per  node is  not  a  satisfactory 
solution either: doing this would increase the possibility for a node to free ride, by exploiting the 
initial altruism of each of its neighbors.



We therefore see that a node cannot be restricted to running jobs only at its direct neighbors 
without greatly reducing the efficiency of the system. In the worst case, a computation request 
would require more nodes than the number of neighbors, and thus could not execute at all. On the 
other hand, we need to keep a notion of neighbors, since these are the core of the mechanisms to 
avoid exploitation of the well-behaving nodes.

We address this dilemma by building an economic system between nodes: each node is assigned 
a small number of neighbors. A node can of course trade resources with its direct neighbors, 
similarly to the solution discussed for collaborative content distribution networks. However, it 
can also trade resources with nodes that are not its direct neighbors: in such case, it must find a 
path of neighboring nodes that leads to the desired compute node. Intermediate nodes in this path 
are thus expected to mediate the collaboration between the requester node and the compute node. 
For example, if node A has a credit with node B, and node B has a credit with node C, then we 
can use the path A → B → C: B can act as a mediator to allow node A to use resources from node 
C. The problem thus translates into being able to find a path of nodes having credit with each 
other from the requesting node to the providing nodes (we assume that each compute node can 
carry only one computation at a time).

Fairness enforcement algorithm

Fairness enforcement in our collaborative grid works in two phases. First, when a job scheduling 
request is issued by one node requesting resources from its peers, the grid uses a decentralized 
scheduling algorithm to identify nodes that will be simultaneously available in the near future, 
and may be used to run this job (Fiscato et al., 2008). This algorithm initially selects a (random) 
set of nodes capable of executing the job together. It then iteratively improves its choice of nodes 
to find groups capable of starting the execution as soon as possible. This algorithm identifies 
groups of nodes based on their scheduled availability only, irrespective of fairness issues.

Each time an improved schedule is found for a given job, the initiator must check if it will be able 
to acquire rights to use the selected nodes. In other terms, it must find a path in the graph of 
neighboring relationships that links it to each of the selected nodes, and where each intermediate 
node is willing to mediate the resource usage. If at least one such path cannot be found, the 
schedule  is  declared invalid.  The initiator  then requests  the  scheduling  algorithm to propose 
another solution, and so on.

A path of neighboring nodes will successfully mediate access to resources under the condition 
that each node would normally accept the job if it was initiated by its direct predecessor in the 
path. For example, a request from node A for a 1-hour long job to be executed by node C will be 
successful using path A → B → C if A has sufficient credit with B, and B has sufficient credit 
with C. If the path is found to be valid, then B will spend 1 hour of its credit with C, and gain 1 
hour of credit with A. One could imagine a variant where node B would charge an additional 
contribution to A in payment for its brokering service.

Fairness  enforcement  within  the  whole  collaborative  grid  is  realized  by  the  conjunction  of 
multiple local neighboring relationships. In the example above, if  A is a free-rider, then after 



exploiting B's initial generosity, A will not be able to use any path A → B → *. After it has 
exhausted the generosity of all its neighbors, A is effectively excluded from the collaboration, 
unless it starts reciprocating again.

One important case in this scheme is the case where A and C behave well in the system, but the 
chosen mediator B is a free-rider. In such case, C will deny the resources to B so the path is 
unusable. A must therefore be able to find an alternative path composed of well-behaving nodes 
that connects it to C.

Finding paths in the overlay

In  the  above described system,  it  is  crucial  to  design the  graph of  neighboring relationships 
carefully. This graph should have the following properties:

1. Nodes should be able to efficiently find paths from each other in the graph.
2. If  one  path  fails,  then  nodes  should  be  able  to  find  an  alternative  path  to  the  same 

destination.
3. Neighboring relationships must be symmetric: if node A considers B as its neighbor, and 

potentially requests B for resources, then B must also consider A as its neighbor and 
regularly request A for resources so that A can balance its credit with B.

The first requirement suggests the use of a DHT overlay between the compute nodes. Each node 
is initially assigned an ID by an external entity. When it joins the DHT, its list of neighbors in the 
fairness system is defined as the list of its fingers in the DHT. Organizing nodes along a DHT 
structure allows nodes to find paths of length O(log n) from each other, where n is the number of 
nodes in the system.

Most existing DHTs also allow to support the second requirement: if one path is considered as 
invalid, then one can easily find alternative paths leading to the same destination. Supporting the 
third requirement is however more difficult:  most DHT systems do not impose that the links 
between their nodes are symmetric. This rules out traditional DHTs like Chord and Pastry.

Figure 5: A Voronoi diagram (Weisstein)



We decided to base our neighboring overlay on Voronoi Diagrams, as is also done in the VoroNet 
overlay  (Beaumont  et  al.,  2007).  In  this  overlay,  each  node  is  assigned  a  2-dimensional 
coordinate randomly by an external entity. A Voronoi diagram associates each node s with a cell 
C(s), consisting of all points closer to s than to any other node. An example Voronoi diagram is 
shown in Figure 5. Each node, represented by a dot, maintains neighborhood relationships with 
the  nodes  responsible  for  contiguous  cells.  A  Voronoi-based  overlay  has  several  interesting 
properties: (i) one can easily route messages by using geographical routing, where a message is 
always forwarded to one's neighbor that is closest to the destination; (ii) geographical routing also 
makes it easy to find alternative paths to a destination, for example by routing a message to one's 
second-closest  neighbor;  (iii)  neighborhood relationships  are  symmetric  by  construction;  (iv) 
Voronoi diagrams guarantee short paths between nodes, and maintain a small node degree, in 
average around 6.

When a node joins the Grid, it is assigned a coordinate by an external entity. It then joins the 
VoroNet  overlay,  by routing a  message to  its  new coordinate  and establishing neighborhood 
relationships with the nodes holding a cell contiguous to its own. On average this neighborhood 
will contain 6 links; the new node is thus forced to establish good reciprocating relationships with 
them in order to benefit from the grid after using the initial altruism that the new neighbors will 
grant.  Neighbors  can easily check that  the new node should indeed be included in  their  list. 
Importantly,  when  new  nodes  join  or  old  nodes  leave  the  system,  the  implied  changes  in 
neighborhood relationships remain local to the coordinates of the joined or departed node, so 
most neighborhood relationships remain unchanged.

Evaluation

We evaluate the performance of the fairness enforcement algorithm on a simulated 100-node grid. 
Every time unit, we submit 20 jobs requesting 5 machines for a duration of 5 time units each. 
Jobs are created during the first 5 time units, then no more job is submitted until the grid becomes 
idle again. Jobs are issued at randomly selected nodes. Each experiment lasts 100 time units: a 
job that has not started executing after this delay is considered as having failed.

(a) No fairness (b) Direct reciprocity (c) Transitive reciprocity
Figure 6: Impact of the fairness algorithms on scheduling performance

Figure 6 shows the impact of the fairness algorithm on the scheduling algorithm, when no free-
rider is present. When no fairness algorithm is present, most jobs start executing within 6 time 



units  after  they  are  submitted.  No  job  fails.  When  using  direct  reciprocity,  nodes  exchange 
resources only with their direct neighbors, without actually building paths to nodes further away 
in the overlay. The scheduling quality drops considerably: the waiting time before a job starts 
increases greatly, and 8 jobs fail. When using transitive reciprocity, nodes are authorized to build 
paths of any length to each other through the overlay, and trade resources along these paths. The 
quality of scheduling is nearly as good as the first case, with most jobs starting to execute within 
10 time units after being submitted. We however note that 6 jobs fail, meaning that a number of 
paths are considered invalid. Although in this  experiment no node is  actively free-riding, not 
every node has the opportunity to execute enough jobs for its peers before it needs resources from 
its neighbors.

(a) No fairness (b) Direct reciprocity (c) Transitive reciprocity
Figure 7: Performance in the presence of 10% free-riding nodes

Figure 7 shows the impact of the presence of 10% free-riding-nodes in the system. When no 
reciprocity is present, jobs get scheduled similarly to the first case, albeit with slightly greater 
delays. In other terms, free-riders can exploit the resources of the well-behaving nodes. Direct 
reciprocity enforces fairness, but at an unacceptably high cost: 58 jobs fail, most of which were 
issued by well-behaving nodes. When using transitive reciprocity, we enforce fairness at a much 
more acceptable cost. The delay before jobs can execute is higher than with no reciprocity, due to 
the higher number of failing paths passing through a free-rider. However, only 7 jobs fail: most of 
these jobs are the ones issued by free-riders after their neighbor's initial generosity has expired.

CONCLUSION

Many  large-scale  distributed  applications  rely  on  collaboration,  where  unrelated  users  or 
organizations share their resources for everyone's benefit. However, in such environments any 
node  may  attempt  to  maximize  its  own  benefit  by  exploiting  other's  resources  without 
contributing back. Collaborative systems must therefore deploy strategies to fight free-riders, and 
enforce collaborative behavior.

Tit-for-tat mechanisms have been deployed successfully in systems such as BitTorrent. However, 
tit-for-tat requires that collaboration is local in time. We studied two examples of asynchronous 
collaborative systems, where collaboration cannot be local in time. In such systems, applying 
instantaneous tit-for-tat mechanisms is not sufficient because one node must help the other before 
the second can reciprocate. Nodes therefore need to maintain a memory of past interactions, and 



determine their collaborative behavior according to this past experience. This requires that each 
node, including the well-behaving ones, is restricted to a limited number of other nodes to interact 
with. In the case of collaborative content distribution networks this is relatively easy to achieve, 
as in principle any node may help any other when the need arises. We can thus build efficient 
pairwise fairness enforcement mechanisms. In the case of a collaborative grid, the application 
performance depends on the ability to use any peer in the system to execute jobs. Direct pairwise 
reciprocity mechanisms severely hamper the performance of the system itself. Instead, we have 
shown  that  using  simple  transitive  economic  incentives,  one  can  enforce  collaboration  with 
reduced impact on the overall system performance.

Incentive mechanisms discussed in this chapter have the property that they rely only on local 
decisions: each node decides autonomously on what is fair or not,  without the need to report 
selfish behavior to a higher authority. Yet, the ability of free-riders to disrupt the collaboration is 
restricted to the initial generosity of their direct neighbors. We believe that this property is key to 
building truly large-scale  collaborative  systems,  where  unrelated nodes  gracefully  collaborate 
with each other, whether they like it or not.
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