
EC2 Performance Analysis for Resource
Provisioning of Service-Oriented Applications

Jiang Dejun1,2 Guillaume Pierre1 Chi-Hung Chi2

1VU University Amsterdam 2Tsinghua University Beijing

Abstract. Cloud computing is receiving increasingly attention as it pro-
vides infinite resource capacity and “pay-as-you-go” resource usage pattern
to hosted applications. To maintain its SLA targets, resource provisioning
of service-oriented applications in the cloud requires reliable performance
from the cloud resources. In this paper, we study performance behavior of
small instances in Amazon EC2. We demonstrate that the performance of
virtual instances is relatively stable over time with fluctuations of mean re-
sponse time within at most 8% of the long-term average. Moreover, we also
show that different supposedly identical instances often have very different
performance, up to a ratio 4 from each other. We consider this as an impor-
tant issue that must be addressed, but also as an opportunity as it allows
one to assign each instance with a task that matches its own performance
profile.

1 Introduction

Cloud computing is emerging today as a new paradigm for on-demand resource pro-
visioning for service-oriented applications. Clouds are attractive to service-oriented
application hosting as such applications often observe large fluctuations in their
workload. Clouds allow one to add resources very quickly to a hosted application
when the performance is about to violate certain criteria such as Service Level
Agreements (SLA) or system load. Similarly, clouds offer the opportunity to re-
lease resources when the load decreases. Service Level Agreements typically define
requirements regarding the performance, security, availability and the like from a
user perspective. We focus here on the performance aspects.

Cloud platforms typically do not give access to actual physical machines but rely
heavily on virtualization techniques for reasons of cost effectiveness and technical
flexibility. Virtual machine monitors such as Xen allow fine-grained performance
isolation between multiple virtual instances sharing the same physical resource [1].
The usual wisdom is that CPU performance can be isolated very effectively, while
I/O performance is harder to isolate [2, 3].

This paper addresses the following question: how effective can the virtual ma-
chine based cloud be for SLA-aware resource provisioning of service-oriented appli-
cations? Resource provisioning mechanisms traditionally rely on two fundamental
performance properties of the available resource units [4]:

– Performance stability: the performance of the provisioned resource units should
remain constant over time. In the virtual machine based clouds, the perfor-
mance of the same virtual machine should be stable without being affected by
the activity of other virtual machines on the same hardware.

2

– Performance homogeneity: the performance of different resource units should be
predictable through the profiling of current deployed resource units. It requires
that the performance behavior of resource units are homogeneous. In real-world
applications, cloud providers commonly provide users with a set of different
virtual machine types, each of which has different resource capacities in terms
of CPU capacity, RAM size, disk I/O bandwidth and the like. The performance
of different types of virtual machines are obviously heterogeneous. However, the
performance of multiple virtual machines of the same type should be similar.
Otherwise, it becomes very hard for one to quantify the number of virtual
machines to be provisioned such that the performance of hosted applications
meet its SLA targets.

Although these two properties are typically true for cluster-based systems where
identical physical resources are exclusively dedicated to a single application, the
introduction of virtualization in the cloud requires a re-examination of these prop-
erties. This paper studies the above two performance properties of virtual instances
provided by Amazon EC2 [5]. We then evaluate the possibility of providing SLA-
aware resource provisioning to service-oriented applications in the cloud.

As the workloads of commonly-used applications (such as three-tier web appli-
cations) can be either CPU-intensive at the application server tier or I/O-intensive
at the backend database server tier, we benchmark virtual instances on EC2 using
three synthetic web applications that exhibit different types of workload pattern.
Based on the measured performance data, we find performance of virtual instances
to be relatively stable. The mean response time of a single small instance fluctuates
by at most 8% around its long-term average. On the other hand, multiple instances
of the same type show very heterogeneous performance profiles, up to a ratio 4 in
response time from each other. We also observed that the CPU and I/O perfor-
mances of different “identical” virtual instances are not correlated. We consider
this as a very important issue that must be addressed to allow effective resource
provisioning in the cloud. At the same time, we see this as an opportunity to exploit
these differences and assign each virtual instance with a task that matches its own
performance profile.

The remain of this paper is organized as follows: Section 2 introduces research
efforts related to our work. Section 3 presents our methodology to benchmark
virtual instances on Amazon EC2. Section 4 discusses performance analysis results.
Finally, Section 5 concludes our work and proposes future research directions for
resource provisioning in virtualized cloud environments.

2 Related work

A number of recent research works made efforts towards resource provisioning of
virtual machines to multi-tier web applications. For instance, [6] assumes the exis-
tence of a performance model which determines the number of virtual machines at
each tier of the application. It then formalizes the mapping problem of assigning
a set of virtual machines to a pool of physical hosts with the goal of maximizing
resource usage. Similarly, [7] assumes that the most-demanding resource at each
tier of the application has a well-defined capacity in terms of CPU, I/O and net-
work. The paper then presents a general performance model for multi-tier web

3

applications. The model determines the capacity of virtual machines provisioned
to each tier with the goal of optimizing certain utility functions, such as revenues
of provisioned resource. Although these works propose resource provisioning solu-
tions that rely on virtual machines, they do not investigate the actual performance
behavior of virtual machines. On the other hand, this paper focuses specifically
on the performance of virtual machines in a real-world environment and aims at
proposing practicable solutions for virtual machine provisioning.

To our best knowledge, few works focus on performance analysis of the virtual
machines provided by clouds. For example, [8] analyzes the performance of Ama-
zon EC2 using micro-benchmarks, kernels, and e-Science workloads. This analysis
targets the evaluation of usefulness of EC2 as a scientific computing platform. In
this paper we also take Amazon EC2 as our experimental cloud platform, how-
ever we focus on the challenges and opportunities of providing SLA-aware resource
provisioning to service-oriented applications in the cloud.

Finally a number of works analyze the performance impact caused by the inher-
ent virtualization mechanisms used in commercial clouds. [9] analyzes the impact
of different choices of CPU schedulers and the parameters on application perfor-
mance in Xen-based virtualized environments. [3] presents a system-wide statistical
profiling toolkit called Xenoprof, which is implemented for the Xen virtual machine
environment. Xenoprof is then used to quantify Xen’s performance overheads for
network I/O processing. Similarly, [10] characterizes network I/O performance in
a Xen virtualized environment. [2] uses Xen Virtual Machine Monitors to measure
CPU overheads when processing a set of disk I/O and network I/O intensive work-
loads. [11] compares the scalability of four virtual machine technologies in terms of
CPU, memory, disk and network. These works help us to understand the perfor-
mance behaviors of virtual machines. However, our work differs from these as we
profile virtual machines at a macroscopic level with the premise of taking virtual
machines as black boxes, and we finally aim to provision resources based on them.

3 Methodology

In this section we introduce our experimental environment on Amazon EC2 and
present the detail of our experimental setup.

Amazon EC2 provides 5 types of virtual instances, each of which has differ-
ent capacities in terms of CPU capacity, RAM size and I/O bandwidth. Table 1
shows the announced capacity details of virtual instances on EC2. To provide fault-
tolerance, EC2 provides its virtual instances across multiple data centers organized
in so-called availability zones1. Two virtual instances running in different avail-
ability zones are guaranteed to be executed in different data centers. Of the six
availability zones, four are located in the U.S. and the other two are in Europe.

In this paper, we examine the performance of small instances on EC2 as they are
the most widely used. To demonstrate that the same performance features appear
on different types of virtual instances as well, we also partially benchmark medium
instances with high CPU2.
1 There are four zones located in the United States (US-EAST-1A, US-EAST-1B, US-

EAST-1C and US-EAST-1D) and two zones in Europe (EU-WEST-1A and EU-WEST-
1B).

2 We leave the experiments on other types of instances for future work.

4

Table 1. Capacity detail of virtual instances on EC2

Instance type Compute units RAM I/O performance

Small 1 1.7GB Moderate

Medium - high CPU 5 1.7GB Moderate

Large 4 7.5GB High

Extra large 8 15GB High

Extra large - high CPU 20 7GB High

In practice, service-oriented applications are commonly deployed in different
data centers for fault tolerance and to deliver good quality of service to users in
different locations. To match this common case we examine the performance of
small instances in all six availability zones. This also allows us to make sure that
the experimental instances do not interfere with each other.

In order to provision virtual machines for service-oriented applications, it is
important for one to predict its future performance if given one more or one less
resource. This performance predictability in turn requires that performance of the
same virtual machine remains constant over time. In addition, it requires that the
performance of newly allocated virtual instances is similar to that of currently-
deployed instances. We therefore carry out three groups of experiments to bench-
mark small instances on EC2.

Performance stability: The first group of experiments studies the performance
stability of small instances under the constant workload intensity. As workloads of
service-oriented applications can be CPU-intensive and database I/O intensive, we
develop the following three synthetic web applications to simulate different types
of workload patterns:

– T1: a CPU-intensive web application. This application consists of a servlet
processing XML transformation based on client inputs. It issues no disk I/O
(except for reading configuration file when starting up) and very little network
I/O (each request returns one html page of size around 1,600 bytes). The re-
quest inter-arrival times are derived from a Poisson distribution. The average
workload intensity is 4 requests per second.

– T2: a database read-intensive web application. This application consists of a
servlet and a database hosted on two separate virtual instances. The database
has 2 tables: “CUSTOMER” and “ITEM.” The “CUSTOMER” table holds
14,400,000 records while the “ITEM” table holds 50,000,000 records. The size of
data set is 6.5 GB, which is nearly 4 times the RAM size of small instances. The
servlet merely issues SQL queries to the backend database. It first gets customer
order history based on customer identification, and then fetches items related
to those ones in customer’s historical orders. Here as well, the request inter-
arrival times are derived from a Poisson distribution. The average workload
intensity is 2 requests per second.

– T3: a database write-intensive web application. This application consists of a
servlet and a database hosted on two separate virtual instances. The servlet
issues UDI (Update, Delete and Insert) queries to execute write operations on 2
tables: “CUSTOMER” and “ITEM.” The servlet first inserts 1,440,000 records

5

Table 2. Software environment in all experiments

Application server Database server JDK Operating system Kernel

Tomcat 6.0.20 MySQL 5.1.23 JDK 6 update 14 Ubuntu 8.10 Linux 2.6.21

into “CUSTOMER” table and then inserts 1,000,000 records into “ITEM”
table. After populating the two tables, the servlet sends queries to sequentially
update each record. Finally, the servlet sends queries to delete the two tables.

In this group of experiments, we randomly select one small instance in each
availability zone and run T1, T2 and T3 on each instance separately. Each run of the
tested application lasts for 24 hours in order to examine the potential interference
of other virtual instances on the tested application performance. We compare the
statistical values of mean response time of each hour within the whole experiment
period to evaluate the performance stability of small instances.

Performance homogeneity: The second group of experiments evaluates the per-
formance homogeneity of different small instances. We randomly select one small
instance in each availability zone and run T1 and T2 on each instance separately.
Each run of the tested application lasts 6 hours such that database caches can fully
warm up and the observed performance becomes stable. We repeat this process
5 times at a few hours interval such that we acquire different instances on the
same availability zone3. We compare the mean response times of tested application
among all tested instances in order to evaluate the performance homogeneity of
different instances.

CPU and I/O performance correlation: The third group of experiments studies
the correlation between the CPU and I/O performance of small instances. The
experiment process is similar to the second group. Instead of running T1 and T2
separately, we run them sequentially on the same instance, each one for 6 hours. We
finally correlate the CPU performance and I/O performance in all tested instances
to observe their relationships.

In all above experiments the clients run on a separate virtual instance in the
same availability zone as the virtual instances hosting application servers and
database servers. Table 2 shows the software environment used in all experiments.

4 Evaluation

This section first presents the results of CPU and disk I/O performance stability on
small instances in each availability zone. We then show the performance behavior
of different small and medium instances. Finally, we discuss the implications of the
(lack of) correlation between CPU performance and disk I/O performance of small
instances for resource provisioning. We measure the response time at the server
side in all experiments in order to avoid the latency error caused by the network
between servers.
3 If one requested a virtual instance very quickly after another one is released, Amazon

EC2 might recycle the virtual instances and return the previous one.

6

Table 3. Statistical values of mean response time of T1 on small instances

US-EAST
1A

US-EAST
1B

US-EAST
1C

US-EAST
1D

EU-WEST
1A

EU-WEST
1B

Mean value (mean) 684.8ms 575.5ms 178ms 185.2ms 522.9ms 509.9ms

Standard deviation
(std)

46.7ms 31.3ms 4.99ms 3.5ms 20.6ms 18.9ms

std/mean 6.8% 5.4% 2.8% 1.9% 3.9% 3.7%

Table 4. Statistical values of mean response time of T2 on small instances

US-EAST
1A

US-EAST
1B

US-EAST
1C

US-EAST
1D

EU-WEST
1A

EU-WEST
1B

Mean value (mean) 75.9ms 76.3ms 79.9ms 71.8ms 83.8ms 71.6ms

Standard deviation
(std)

1.28ms 2.05ms 6.36ms 1.14ms 2.1ms 2.34ms

std/mean 1.7% 2.7% 8.0% 1.6% 2.5% 3.3%

4.1 Performance stability evaluation

To study the performance stability of small instances, we measure the response time
of each request and calculate the mean response time at a one hour granularity.
We then compute the standard deviation of the 24 mean response times (each for
1 hour in the whole 24-hours experiment period). Table 3 shows the mean value
and the standard deviation of the 24 mean response times for T1 in all zones.

From the perspective of long-running time periods the CPU performance is
quite stable. As shown in Table 3, the standard deviation of mean response times
of each hour is between 2% and 7% of the mean value, which may be acceptable in
real-world hosting environments.

However, we also observed that the CPU performance could be temporarily
affected by the underlying resource sharing mechanism. Figure 1 shows the response
times of T1 in hours 5, 6, 7 and 8 in the US-EAST-1A zone. We observe short
periods during which the response time significantly increase. Figure 2 magnifies
the peak of response time from minutes 280 to 290 of Figure 1(a). The duration of
such peaks is relatively short (on average 1 to 2 minutes). We attribute these peaks
to external factors such as the creation of a new virtual instance in the same physical
machine. (the duration of such peaks is similar to the observed delay for creating
a new virtual instance). Apart from these short peaks, the CPU-capacity sharing
has little impact on the performance stability of CPU-intensive web applications
when considering performance behavior in long-running periods.

Meanwhile, we also observed that the performance behavior of multiple small
instances vary wildly from each other, from 185ms to 684ms of average response
time. We further compare the performance of different small instances in section 4.2.

Similarly, we measure the response time of application T2 and compute the
mean response times of each hour. Table 4 shows the mean value and the standard
deviation of mean response times of each hour within the 24-hours experiment
period. The database read performance of small instances is also very stable from
the perspective of long-running time periods. For all tested instances, the mean
response time of each hour deviates between 1.6% and 8% from the mean value.

7

Table 5. Statistical values of mean response time for INSERT operation of T3 on small
instances

US-EAST
1A

US-EAST
1B

US-EAST
1C

US-EAST
1D

EU-WEST
1A

EU-WEST
1B

Mean value (mean) 0.33ms 0.33ms 0.33ms 0.53ms 0.47ms 0.46ms

Standard deviation
(std)

0.0012ms 0.0006ms 0.0022ms 0.0021ms 0.0019ms 0.0044ms

std/mean 0.4% 0.2% 0.7% 0.4% 0.4% 0.9%

Table 6. Statistical values of mean response time for UPDATE operation of T3 on small
instances

US-EAST
1A

US-EAST
1B

US-EAST
1C

US-EAST
1D

EU-WEST
1A

EU-WEST
1B

Mean value (mean) 3.84ms 3.5ms 2.67ms 3.09ms 3.72ms 3.91ms

Standard deviation
(std)

0.026ms 0.035ms 0.061ms 0.03ms 0.005ms 0.026ms

std/mean 0.7% 1% 2.3% 1.0% 0.1% 0.6%

Similarly to CPU performance, the database read performance is affected by short
interferences with the underlying I/O virtualization mechanism. Figure 3 shows the
response times of T2 in 4 successive hours during the experiment period. Figure 4
magnifies its peak of response time from minutes 250 to 260 of Figure 3(c). The
disturbances are also short, in the order of 2 minutes.

The database read performance of different small instances (such as in differ-
ent zones) are also different from each other. We further examine database read
performance homogeneity in section 4.2.

We finally evaluate the performance stability of database write-intensive work-
loads. Tables 5 to 7 show response time statistics for database UDI operations.
As shown in Tables 5 and 6, the performance of database INSERT and UPDATE
operations is very stable. We observed that the standard deviation of those mean
response times is small, between 0.2% and 2.3%.

However, Table 7 shows that the performance of database DELETE operation
varies a lot. The cause of this performance behavior of database DELETE oper-
ations remains to be found. Similarly to CPU and database read operations, the
performance of database UDI operations on different small instances are different
from each other.

To demonstrate that other types of virtual instances on EC2 exhibit similar
performance features, we partially benchmark medium instance with high CPU on
EC2. We run T1 to profile CPU performance of medium instances after adjust-
ing the request rate to match the capacity of medium instances. Table 8 shows
the statistical values of mean response times of each hour on medium instances
across the four US availability zones. Similar to the performance behavior of small
instances, CPU performance is also relatively stable. The standard deviation of
mean response time of each hour is between 2% and 10%. The CPU performance
of different medium instances also varies a lot. One would however need more sam-
ples to fully explore the performance behavior of medium and large instances.

8

Table 7. Statistical values of mean response time for DELETE operation of T3 on small
instances

US-EAST
1A

US-EAST
1B

US-EAST
1C

US-EAST
1D

EU-WEST
1A

EU-WEST
1B

Mean value (mean) 30.1ms 21.7ms 30.3ms 17.8ms 15.9ms 21.7ms

Standard deviation
(std)

21.4ms 0.52ms 20.2ms 4.6ms 0.33ms 0.71ms

std/mean 71.1% 2.4% 66.7% 25.8% 2.1% 3.3%

 0

 5000

 10000

 15000

 20000

 25000

 240 250 260 270 280 290 300

R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Time(min)

Response times of T1 in hour5 on US-EAST-1A

(a) Hour 5

 0

 5000

 10000

 15000

 20000

 25000

 30000

 300 310 320 330 340 350 360
R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Time(min)

Response times of T1 in hour 6 on US-EAST-1A

(b) Hour 6

 0

 5000

 10000

 15000

 20000

 25000

 360 370 380 390 400 410 420

R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Time(min)

Response times of T1 in hour 7 on US-EAST-1A

(c) Hour 7

 0

 5000

 10000

 15000

 20000

 25000

 420 430 440 450 460 470 480

R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Time(min)

Response times of T1 in hour 8 on US-EAST-1A

(d) Hour 8

Fig. 1. Response time samples of T1 of small instances on US-EAST-1A

 0

 5000

 10000

 15000

 20000

 25000

 280 282 284 286 288 290

R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Time(min)

Response times of T1 in 10min on US-EAST-1A

Fig. 2. Response time of T1 over a period of 10min

9

Table 8. Statistical values of mean response time of T1 on medium instances (high CPU)

US-EAST
1A

US-EAST
1B

US-EAST
1C

US-EAST
1D

Mean value (mean) 307.7ms 791.5ms 197.3ms 199.8ms

Standard deviation
(std)

27.4ms 26.1ms 3.6ms 5.8ms

std/mean 9.6% 3.3% 1.8% 2.9%

 0

 2000

 4000

 6000

 8000

 10000

 120 130 140 150 160 170 180

R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Time(min)

Response times of T2 in hour 3 on US-EAST-1C

(a) Hour 3

 0

 2000

 4000

 6000

 8000

 10000

 180 190 200 210 220 230 240
R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Time(min)

Response times of T2 in hour 4 on US-EAST-1C

(b) Hour 4

 0

 2000

 4000

 6000

 8000

 10000

 240 250 260 270 280 290 300

R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Time(min)

Response times of T2 in hour 5 on US-EAST-1C

(c) Hour 5

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 300 310 320 330 340 350 360

R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Time(min)

Response times of T2 in hour 6 on US-EAST-1C

(d) Hour 6

Fig. 3. Response time samples of T2 of small instances on US-EAST-1C

4.2 Performance homogeneity evaluation

So far we observed that the CPU performance and disk I/O performance of the
same small instance are relatively stable from the perspective of long-running time
periods (except for database DELETE operation). However, typical resource pro-
visioning algorithms also expect that different small instances have homogeneous
performance behavior such that the performance of future small instances is pre-
dictable based on current performance profiles. Thus, we evaluate the performance
homogeneity of different small instances through the second group of experiment.

Figure 5(a) shows the mean response times of T1 for 30 different small instances
across all zones (5 instances for each zone). Different instances clearly exhibit very
different CPU performance when serving the exact same workload. Response times
of different virtual instances vary up to a ratio 4. The same pattern appears both
inside each zone and between different zones. Figure 5(b) shows similar hetero-
geneous performance behavior of different small instances for disk I/O operations,

10

 0

 1000

 2000

 3000

 4000

 5000

 250 252 254 256 258 260

R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Time(min)

Response times of T2 in 10min on US-EAST-1C

Fig. 4. Response time of T2 over a period of 10min

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

US-EAST
-1A

US-EAST
-1B

US-EAST
-1C

US-EAST
-1D

EU-WEST
-1A

EU-WEST
-1B

R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Instance location

Performance homogeneity of T1 on different small instances across 6 zones

US-EAST-1A
US-EAST-1B
US-EAST-1C
US-EAST-1D
EU-WEST-1A
EU-WEST-1B

(a) CPU performance homogeneity

 0

 30

 60

 90

 120

 150

US-EAST
-1A

US-EAST
-1B

US-EAST
-1C

US-EAST
-1D

EU-WEST
-1A

EU-WEST
-1B

R
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Instance location

Performance homogeneity of T2 on different small instances across 6 zones

US-EAST-1A
US-EAST-1B
US-EAST-1C
US-EAST-1D
EU-WEST-1A
EU-WEST-1B

(b) Disk I/O performance homogeneity

Fig. 5. Performance homogeneity of different small instances across all zones

even though the variations are less important than for CPU. Thus, when provision-
ing small instances to host service-oriented applications, it will be very hard for one
to predict the performance of the newly-allocated virtual instances based on the
observed performance profiles of currently deployed ones. This property challenges
traditional resource provisioning approaches which assume that the underlying in-
frastructure provides homogeneous resources.

4.3 Implications for resource provisioning

As we observed that different small instances behave differently when serving CPU-
intensive and disk I/O intensive workloads, we further explore this phenomenon and
run the third group of experiment to check if the CPU and disk I/O performances
are correlated on supposedly identical small instances.

Figure 6 shows 30 samples of the correlation of CPU performance and disk I/O
performance on identical small instances across all availability zones. Each point
depicts the CPU and I/O performances of a single virtual instance. We do not
observe any obvious correlation between the respective CPU and I/O performances

11

 0

 30

 60

 90

 120

 150

 0 200 400 600 800 1000

D
i
s
k

I
/
O

p
e
r
f
o
r
m
a
n
c
e

(
m
s
)

CPU performance (ms)

Correlation between CPU and I/O performance
 on different virtual instances across all zones

US-EAST-1A
US-EAST-1B
US-EAST-1C
US-EAST-1D
EU-WEST-1A
EU-WEST-1B

Fig. 6. Correlation between CPU and I/O performance of small instances

of single instances. On the other hand, small instances can clearly be classified into
three or four clusters with similar performance. Often (but not always) instances
from the same availability zone are clustered together.

These results suggest that different small instances on Amazon EC2 may be
suitable to process different types of workload. Within commonly-used multi-tier
service-oriented applications, different tiers have different workload patterns. For
example, an application server tier is commonly CPU-intensive while a database
server tier is rather I/O intensive. Thus, one may consider employing well-suited
small instances to provision resources to hosted applications such that each instance
runs a task that matches its own performance profile. A virtual instance with
fast CPU could be given an application server to run, while an instance with
fast I/O would run a database server and a virtual instance with slow CPU and
I/O may carry a modest task such as load balancing. We name this performance
feature of small instances on EC2 as workload affinity. Although adapting resource
provisioning algorithm will be a challenge, we believe that exploiting such workload
affinity properties could result in improvement of the overall resource usage, even
compared with a fully homogeneous case.

5 Conclusion

Cloud computing platforms such as Amazon EC2 are increasingly attracting atten-
tion in the service-oriented application hosting community. Clouds provide near-
infinite capacity and a “pay-as-you-go” business model. Good usage of cloud fa-
cilities may help application providers to reduce their IT investments as well as
operational costs.

However, fluctuating workloads and the necessity to maintain SLAs require
clouds to provide SLA-aware resource provisioning to hosted applications. To dy-
namically provision virtual machines to hosted applications with guaranteed perfor-
mance, it is necessary to understand the performance behavior of virtual instances
provided by clouds. In this paper, we took the popular commercial cloud Amazon

12

EC2 as an example, and evaluated the performance stability and homogeneity of
small instances on EC2. We demonstrated that the CPU and disk I/O performance
of small instances are relatively stable from the perspective of a long-running pe-
riods. However, the performance behavior of multiple “identical” small instances
is very heterogeneous. We claim that this property challenges the effectiveness of
current resource provisioning approaches if employed in the virtual machine based
cloud as these approaches assume homogeneous sets of underlying resources. We
consider this as an important issue that must be addressed by the resource pro-
visioning community. At the same time, we believe that this variety of workload
affinity provides opportunities for future algorithms to make more effective use of
the resources offered by the cloud.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the
nineteenth ACM symposium on Operating systems principles. (2003) 164–177

2. Cherkasova, L., Gardner, R.: Measuring CPU overhead for I/O processing in the
Xen virtual machine monitor. In: Proceedings of the annual conference on USENIX
Annual Technical Conference. (2005) 24–24

3. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Diagnosing
performance overheads in the Xen virtual machine environment. In: Proceedings of
the 1st ACM/USENIX international conference on Virtual execution environments.
(2005) 13–23

4. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic provisioning of multi-
tier internet applications. In: Proceedings of the 2nd International Conference on
Autonomic Computing. (2005) 217–228

5. Amazon.com: Amazon EC2 Amazon Elastic Compute Cloud http://aws.amazon.

com/ec2/.
6. Campegiani, P., Presti, F.L.: A general model for virtual machines resources allocation

in multi-tier distributed systems. In: Proceedings of International Conference on
Autonomic and Autonomous Systems. (2009) 162–167

7. Wang, X., Du, Z., Chen, Y., Li, S.: Virtualization-based autonomic resource man-
agement for multi-tier web applications in shared data center. Jounal of Systems and
Software 81(9) (2008) 1591–1608

8. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: An
early performance analysis of cloud computing services for scientific computing. Tech-
nical Report PDS-2008-006, Delft University of Technology (December 2008)

9. Cherkasova, L., Gupta, D., Vahdat, A.: When virtual is harder than real: Resource
allocation challenges in virtual machine based it environments. Technical Report
HPL-2007-25, Enterprise Systems and Software Laboratory HP Laboratories Palo
Alto (February 2007)

10. Apparao, P., Makineni, S., Newell, D.: Characterization of network processing over-
heads in Xen. In: Proceedings of the 2nd International Workshop on Virtualization
Technology in Distributed Computing. (2006)

11. Quetier, B., Neri, V., Cappello, F.: Scalability comparison of four host virtualization
tools. Journal of Grid Computing 5(1) (March 2007) 83–98

