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Abstract

We present versatile anycast, which allows a service rgnaima varying collection of nodes scattered
over a wide-area network to present itself to the clientsresranning on a single node. Providing a single
logical address enables the client-side software to preske traditional service access model based on single
access points. At the same time, the dynamic compositionyafast groups implemented by versatile anycast
enables the server-side service infrastructure to evaldeadapt to changing network conditions.

We implement versatile anycast using Mobile IPv6, whichodgdes the logical addresses of mobile nodes
from their physical location. We exploit that decouplingitiaplement logical service addresses that are not
bound to any physical nodes, and employ standard MIPv6 méstha to dynamically map each such address
onto individual service nodes. Our solution enables a serto transparently hand off clients among the
service nodes at the network level while preserving optimaling between the clients and the service nodes.

We demonstrate that the overhead of versatile anycastingryslow. In particular, the client-perceived
handoff time is shown to be a linear function of the latencig®ng the client and the service nodes partici-
pating in the handoff.

1 Introduction

Grid applications are changing. The Grid was created agrédiged super-computer hosting standalone parallel
computations [1]. Such computations can often be managea $iggle “coordinator” node responsible for
submitting node allocation requests to the grid scheddistributing the application input to the allocated
nodes, and retrieving the results. The coordinator thearbes the natural entry point to communicate with the
grid application.

However, grid applications increasingly often adopt aet#ht model in which they providervicesto one
or more external components [2]. By means of standard SGa#geinterfaces, grid services can now be used
by other applications running either inside or outside efghid.

An important property of such services is that they mightristaintiated dynamically to provide the required
quality of service. For example, a service might dynamycadlapt its capacity to guarantee consistent response
times to its users. This typically involves changes in thenbar and location of machines running service
instances.

Another reason for a grid service to change its hardware isathe evolution of service implementation.
For example, a regular Web service might migrate from a simgide to a distributed grid infrastructure in
order to benefit from advanced adaptation and capacity wligfieatures. Such a migration is likely to result in
significant design changes in the architecture of the sertiowever, a coordinator-based service access model
restricts the type of possible architectural changes, ediés on fixed coordinators to act as gateways to the
service.

The need for service adaptability often conflicts with treaditional service access model implemented by
clients. To easily integrate a grid service into their owplagations, clients typically require that the service
maintains a single stable access pointimplementing a S@tface. On the other hand, the service needs the
ability to change its internal organization at will, predbty transparently to the clients.

To satisfy both these requirements, we propose to decouplednceptual communication model exploited
by grid clients from the actual service implementation. dea is to identify a grid service by a single stable
logical network address. Similar to the addresses of traditionaspoints, a logical address can always be



used to communicate with the service. However, the diffeedn that logical addresses are not bound to any
physical node. Instead, each such address can be dynamiegdped to any grid node while the service retains
full and timely control of this mapping.

Decoupling the communication model from the service immatation has several advantages. First, it
allows the service architecture to evolve without beingatined by its original design, which improves service
adaptability. Second, as upgrading the service infragtracloes not affect client-side applications, they might
be implemented by multiple vendors independent of the sereperator. Such an approach has been followed
by many successful Internet services, including the WebBatidrrent [3, 4].

Assigning a logical address to a group of physical nodes saruse to anycasting. Anycast was proposed
as a routing and addressing scheme by which traffic sent toyaraat address automatically reaches some node
within the addressed group [5]. This functionality is tyglg implemented by means of routing algorithms,
which cause Internet routers to redirect anycast traffioiog to some network proximity metric.

However, efficient usage of resources available within d gervice depends on many factors other than
network proximity. For example, differences in the utitiva of individual grid nodes make it necessary to
route client requests according to additional metrics sagmetwork bandwidth and cpu load. Also, as the
utilization and availability of service nodes changes dyitally, the routing decisions must have immediate
effects to prevent client requests from being redirectedvierloaded or unavailable nodes. Finally, efficient
anycasting should not introduce significant overhead coetb® unicast communication.

The limitations of routing-based anycast resulted in psipg many alternative anycast implementations.
They provide anycast functionality using either front gnidsiTs, DNS-based redirection, or anycast-aware
client-side software. However, as we discuss in a previtudgysnone of these implementations eliminates all
the limitations entirely [6].

Our solution lies in the design eErsatile anycast, in which each anycast group retains full and timely con-
trol over how the incoming traffic is switched among the indial nodes within that group. At the same time,
our implementation does not incur any significant commuiaoeoverhead compared to unicast communica-
tion. These two properties enable us to implement the lbgiddresses of grid services as anycast addresses
provided by versatile anycast.

We implement versatile anycast by exploiting the logicalesation of network addresses that Mobile IPv6
assigns to mobile nodes. In principle, each Mobile IPv6 ruatkea permanent “home” address, which identifies
the node, and a temporary “care-of” address, which ideatifie node’s current location. Mobile IPv6 ensures
that network traffic sent to home addresses is transparemtiiarded to their care-of counterparts. To this end,
it relies on clients communicating with mobile nodes to slate between home- and care-of addresses.

This article demonstrates that the very same translatiarharésms can also be used to equip grid services
with logical addresses. In that case, a service as a wholdeaerceived by its clients as some fictitious
mobile node, regardless of the current composition of theiee infrastructure. The logical address of the
service is implemented as the home address of the fictitimslennode, whereas the addresses of individual
nodes within the service infrastructure can be treated tenfial care-of addresses of that node. Using traffic-
switching mechanisms provided by Mobile IPv6, a grid sexdan transparently handoffits clients to individual
nodes at which it is hosted. Note that implementing logickirasses in the network layer allows for leaving
the higher layers of client-side software untouched. Thesns in particular that with a relatively small number
of server-side modifications, our scheme can be incorpwiate any service exploiting the traditional access
model based on single access points, including those tregtdy exist.

A preliminary discussion on the usefulness of versatilecasiyhas been reported in [6]. However, it only
contains a high-level description of the functionalitydaro performance evaluation. The contributions of the
present article are threefold: (i) a full description ofsattile anycast implementation; (ii) details on the integra
tion of versatile anycast with higher-level protocols sashTCP; and (iii) an in-depth performance evaluation
and discussion on various possible optimizations. Nonbexe contributions have been reported in [6].

The remainder of this article is structured as follows. Bec® describes the architecture of grid services
equipped with logical addresses, and demonstrates howagldriesses enable service adaptability. Section 3
presents related work and explains why it is hard to provadehl addresses using current techniques. Section 4
describes how grid services can exploit versatile any@aghplement logical addresses, and how versatile
anycast can be implemented using Mobile IPv6. Finally, 8add evaluates the performance of our anycast
implementation, and Section 7 concludes.
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Figure 1: Accessing grid services via logical addresses

2 System Model

2.1 Overview

Introducing logical addresses enables grid services tougge the client-side software development from the
service-side infrastructure design. Figure 1 depicts tireeptual service access model. In principle, nothing
changes from the perspective of the service clients, whickss the service at its logical address just like they
traditionally communicate with the addresses of physiealise gateways.

However, the logical address is not bound to any physicakéndtlis therefore the responsibility of the
service to ensure that all the traffic heading to that addeessuted to the physical address of one or more
nodes within the service infrastructure. To this end, theise transparently maps the logical address onto the
physical addresses of the service nodes. As long as the ntam@ichanism enables the service to dynamically
switch the clients among the service nodes, each of thesesreaah join and leave the service infrastructure at
will, allowing for service adaptability.

2.2 Properties

The functionality of logical addresses requires them teetemumber of properties. The first fundamental one is
transparency, which means that using logical addresse®tarandate any changes to the client-side software,
which must be able to communicate with grid services viadagaddresses just like via their physical coun-
terparts. The second fundamental property is efficiencychvimeans that accessing grid services via logical
addresses should not incur significant overhead compameing so via physical addresses. In particular, the
clients should be able to communicate efficiently with a gedvice even when service nodes are scattered over
a wide-area network, which is often the case with massiveputar network services [7].

Another group of properties is related to the mapping ofdabaddresses onto physical nodes. For example,
efficient usage of service nodes requires fine-grain cootret which clients are redirected to which nodes.
This means that the logical address implementation mudileriae service to redirect each client separately
and according to any set of metrics. For example, classieal-balancing schemes route traffic based on the
current load of each service node, and on the network distetween clients and service nodes [8, 9].

Another characteristic of modern grid services is that #ir@yrunning on large collections of nodes that can
dynamically join and leave the service infrastructure [18% a consequence, the service infrastructure might
experience frequent changes in its hardware compositiomeider, such changes should not affect the service
performance, and so the service should be able to quickiytadaudden departures of service nodes. This can
be achieved by transparently redirecting clients from #ygadlting nodes to those remaining operational, which
requires that each client can be switched from one servide twanother at any moment.

However, while switching traffic is relatively easy whenetlis communicate with grid services using
connection-less protocols, it becomes far more complexwdoanection-oriented protocols, such as TCP, are
used for this purpose. This is because these protocolsreespiine state information to be maintained by both
the clients and the service nodes. To guarantee that cbhemisctions are not broken upon switching, the logical
address implementation must ensure that traffic switchsnmpordinated with its corresponding state transfer
between service nodes.



3 Related Work

The traditional access model to grid services is describdioe Open Grid Service Infrastructure (OGSI) spec-
ification [11]. In essence, OGSI defines mechanisms for coniration with grid services, including a set of
conventions ruling the interactions between grid servares their clients. According to OGS, clients com-
municate with grid services via interfaces specified usireb\8ervices Description Language (WSDL). The
interfaces are implemented by service instances runnirggorce nodes. Each such instance listens to client
requests at its respective port.

OGSI defines a number of mechanisms that enable the clielhtsdte their respective service instances.
These mechanisms enable each client to resolve grid sdraindles (GSH) into concrete network addresses
and port numbers at service nodes.

GSHs can be perceived as logical service addresses. Haqwlesieiimplementation is relatively complex,
as it relies on a number of additional components respanfiblreliable and fault-tolerant resolution of GSHs.
This forces the client-side software to implement all theohation protocols on top of those necessary to com-
municate with grid services themselves. Also, it forcesghie service to deploy and maintain the components
for GSH resolution. On the other hand, we demonstrate tigicdbaddresses can be implemented such that the
clients continue to communicate with a grid service as ifaiswunning on a single node, and without all the
complexity incurred by GSHs.

There exist several techniques that enable service adltythip means of logical addresses in a less com-
plex manner than OGSI. A number of them achieves that by margdaodifications to the client-side software
such as those organizing clients and service nodes into #&faps [12, 13, 14]. However, as one of our main
goals is to keep the client-side software untouched, notigesk solutions is attractive in our case.

Several techniques implement logical addresses withoulifiging the client-side software. The classical
one implements a logical address as that of a physical frodt which forwards client traffic to individual
nodes hosting a grid service [15]. Such a solution offerktieee and fine-grain control over the client traffic.
However, when used in wide-area setups, front ends tenddonbe performance bottlenecks, as they limit
network bandwidth available to the service and introduaBtamhal client access latency [16].

Another common solution is to map clients to service nod@sgu3NS. In that case, each service is identi-
fied by its DNS name rather than a network address. The mappihg service DNS hame onto the addresses
of service nodes is performed by the DNS server respongiblthfit name. In the essence, this DNS server
can resolve the service DNS name to the addresses of diffezerice nodes such that the client requests are
ultimately scattered over multiple service nodes [17].

DNS redirection has been successfully employed by mangdacgle distributed systems, as it integrates
transparently into the Internet communication model, eitpthe scalability of DNS, and provides fairly good
control over client redirection [18]. However, DNS cachitan severely delay updating the redirection map-
pings, as many DNS servers are configured to ignore short Blties. This makes DNS unattractive to adapt-
able grid services, which need to tolerate rapid changd®intardware configuration. Also, since DNS names
are resolved only before the actual communication is it@tiathey cannot be used to switch clients between
service nodes while communication is already in progress.

Logical addresses could also be implemented by means oastilyg. Anycast is a network addressing and
routing scheme whereby data sent to an anycast addressited to one of many nodes within its corresponding
anycast group [5]. The chosen node is typically the “neammstbest” to the data sender as viewed by the
network topology. The classical anycast implementatidieseon routing algorithms, which cause Internet
routers to redirect anycast traffic according to some ndtwowximity metric.

Grid services could implement logical addresses as angdalsesses. In that case, all the nodes hosting a
given service would form an anycast group, and the anycasementation would naturally spread the client
traffic heading to the logical address among these nodescastipg would therefore implement the conceptual
service access model described in Section 2.

Using anycast to implement logical addresses would preskesitraditional service access model based on a
single access points, as each client would communicateagtid service via the single anycast address of that
service. At the same time, the adaptability of the serviéestructure would be preserved as well, as anycast
groups are by nature supposed to change dynamically. Hoymweearlier study demonstrated that none of the
current anycast implementations can provide all the ptaserequired of logical addresses, such as efficiency,
timely and fine-grain traffic control, or connection-awaliertt switching [6].
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Figure 2: Versatile anycast: establishing contact (a),cliedt handoff (b)

The anycast-based approach has recently been followed Bl®)Avhich essentially provides a general-
purpose anycasting functionality to Internet serviced.[T®ASIS integrates multi-node services into a global
infrastructure in order to perform accurate network meas@nts, which in turn allows for mapping service
clients to their proximal service nodes. The strength of (3&s in its advanced mapping policy. However, as
OASIS relies on standard redirection mechanisms such as iDAISo inherits their limitations discussed above.
In fact, our anycast implementation proposed in this papafdcbe used by OASIS as yet another redirection
mechanism.

The following sections discuss in detail how to implemeatsatile anycast. In contrast to the previous
anycast implementations, versatile anycast providebalptoperties required of logical service addresses. We
first discuss the architecture details, and then demoegtrat the overhead of versatile anycasting is very low.

4 Versatile Anycast

Versatile anycast allows grid services to implement theceptual service access model discussed in Section 2,
in which the client traffic is redirected from the logical adsss of a grid service to the physical address of some
service node. Versatile anycast achieves that by implenggtite logical address as an anycast address, and by
switching the traffic heading to that address among the senades forming its corresponding anycast group.

Versatile anycast works in two phases. First, it ensuresthi®client traffic sent to the anycast address
reaches a designated service node calledrgact node (see Figure 2a). This is achieved by assigning the
anycast address to the contact node. However, to presemieeseeachability even after the contact node
becomes unavailable, versatile anycast allows the angddsess to be re-assigned to any other service node at
any moment, which effectively turns that node into a new aciode.

Of course, the contact node should not service all the dieyitself. Rather, it should distribute the client-
handling effort among other service nodes. This constttite second phase of versatile anycasting, in which
the contact node transparently hands off individual cti¢ntother service nodes, potentially causing different
clients to be serviced by different service nodes (see Eigb). Note that once a client is handed off to some
service node, the contact node is no longer involved in tmenconication with that client. Also, each service
node can further handoff its clients to any other servicesrettdany moment. These two features are crucial for
service adaptability, as they enable each service nodeare $ts load with new service nodes when they join
the service infrastructure, and to leave the service itrisatire without disturbing its clients by handing them
off before leaving.

We propose to implement versatile anycast using the adthasslation capabilities provided by the Mobile
IPv6 protocol. These capabilities have originally beenddticed to enable communication with mobile nodes
while they move among various networks. However, we dematesthat one can also exploit these capabilities
to implement versatile anycasting.

The following section discusses some basic aspects of RItBi6, which is the standard protocol designed
for mobile communication. Then, we show how selected fumstiof Mobile IPv6 can be employed to imple-
ment versatile anycast.



LI
Home Agent

Yy

Mobile
Node

Internet «

IPsec
Security — ==
Association

Figure 3: Home network in Mobile IPv6

Home Network

1]
Home Address

]
1
[
\

Internet \

Figure 4: Communication in MIPv6: tunneling (a), and roupgimmization (b)

4.1 MobilelPv6

Mobile IPv6 (MIPv6) consists of a set of extensions to the@pvotocol [20]. MIPv6 has been proposed to
enable anytPv6 mobile node (MN) to be reached by any otheorrespondent node (CN), even if the MN is
temporarily away from its usual location.

MIPv6 assumes that each MN belongs to one home network, vductains at least one MIPv6-enabled
router capable of serving asheme agent (HA). Such an HA acts as a representative for the MN while it is
away.

An HA must authenticate MNs before it can start representirggn [21]. To this end, each MN must
establish anPsec security association with its HA in its home network (see Figure 3). Such assouietiare
established using the Internet Key Exchange [22].

To allow one to reach an MN while it is away from home and cotertto some visited network, MIPv6
distinguishes between two types of addresses that aranadsig MNs. Thénome addressidentifies an MN in
its home network and never changes. An MN can always be rdathts home address. An MN can also have
a care-of address, which is obtained from a visited network when the MN movethit network. The care-of
address represents the current physical network attadtofitie MN and can change as the MN moves among
various networks. The MN reports all its care-of addressds tHA.

The goal of MIPV6 is to ensure uninterrupted communicaticth WINs via their home addresses and inde-
pendently of their current network attachment. To this éitRv6 provides two mechanisms to communicate
with MNs that are away from home. The first mechanisruimeling, wherein the HA transparently tunnels
the traffic targeting the home address of an MN to the careldfesss of that node (see Figure 4a).

The advantage of tunneling is that it is totally transpaterthe CNs. Hence, no MIPv6 support is required
from any node other than the MN and its HA. However, tunnetiag also lead to two problems. First, if many
MNs from the same home network are away, then their shareddidecome a bottleneck. Also, if the distance
between an MN and its home network is large, then tunnelingrdaoduce significant communication latency.
These two problems are addressed by the second MIPv6 coroatiom mechanism, calledute optimization.

It enables an MN to reveal its care-of address to any CN tevadioect communication (see Figure 4b).

Route optimization is prone to address spoofing. To protseifj the CN must authenticate the care-of
address using ieturn-routability procedure, which is used to verify that the same MN can be reached at e H
and at the care-of address.

The return-routability procedure is initiated by the MN whisimultaneously sends two messages to the
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CN (see Figure 5). The first message, caltine Test Init (HoTI), is tunneled through the HA, whereas the
second message, call€dre-of Test Init (CoTl), is sent directly. The CN retrieves the MN’s home a$drand
care-of address from the first- and second message, rasggclihe CN responds with two messagesme
Test (HoT) andCare-of Test (CoT). The HoT message is tunneled to the MN through the HAgrehs the CoT
message is sent directly.

The HoT and CoT messages contain home- and care-of keygemstalespectively, which are combined to
create ainding management key (Kbm). The ability of the MN to create the Kbm based on the tekesceived
via two different paths is the proof that the MN has passedd¢hen-routability procedure and that the home-
and care-of addresses correspond to the same MN.

The MN uses the Kbm to authorize thending management procedure. The goal of this procedure is to
create the mapping between home- and care-of address aNtlsei¢d that it communicates directly with the
MN. To this end, the MN sends the Kbm to the CN in a messagedBitaing Update (BU). This message also
contains the home address, the care-of address, the Efetithhe requested home-to-care-of address mapping,
and a sequence number, which orders all the BU messagesysggivien MN to a given CN.

Upon receiving the BU message, the CN verifies that the Kbmdanside that message is valid and matches
the home/care-of address pair. In this way, the CN can nowebio that the MN has passed the return-
routability procedure. It therefore creatediading cache entry for the MN, which is essentially a mapping
between home- and care-of address. The binding cache diatnysahe CN to translate between home- and
care-of address in the incoming and outgoing traffic, whitddes the CN to communicate with the MN directly
at its care-of address. This eliminates the latency inttedby tunneling, and offloads the HA.

As the last step of route optimization, the CN confirms cregtihe binding cache entry by sendinBiading
Acknowledgment (BA) message to the MN. Note that binding cache entries aletate once their lifetime
expires, and must be therefore periodically refreshed.MNecan also cause an old binding cache entry to be
deleted immediately by sending a new BU message with thénfiéeset to zero. Such a message can be sent
without performing the return-routability procedure.

Route optimization is less transparent than tunnelingheslP layer at the CN is aware of the current
physical attachment of the MN. However, that informatioasfined inside the IP layer. The CN uses it to
translate source and destination addresses in IP packetamyed with MNs according to the binding cache
entries created during the binding management procedures.

Translating addresses in the IP layer hides care-of adefdasm higher-level protocols such as TCP and
UDP. As a consequence, these protocols use only the homesadafran MN and the changes in the MN’s
location remain transparent to applications running on.CNs

4.2 Employing Mobile I Pv6 for Versatile Anycasting

Our implementation of versatile anycast exploits the faet tMobile IPv6 decouples home- and care-of ad-
dresses, effectively allowing for the traffic directed te tbrmer to be transparently redirected to the latter. This
comes close to the anycast communication model, in whidfictigent to the anycast address of an anycast
group is routed to the interface of some node within that growe exploit our implementation of versatile
anycast to transparently redirect the clients of a gridiserfrom its logical (anycast) address to the individual
service nodes.

More specifically, versatile anycast presents a grid sendts clients as a single fictitious MN. The anycast
addressX of that service then becomes the home address of that fittititiN. The addresses of the service
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nodes, in turn, act as care-of addresses to which the traffide redirected. By disclosing different care-of

addresses to different clients, versatile anycast canicoadifferent clients that the MN has moved to different

locations (see Figure 6). Note that the client's highem@port and application) layers retain the illusion that

they communicate with the one and only node holding addkesss the translation between home- and care-of
addresses is confined in the network layer. This effectieslgbles the service nodes to jointly service their
clients via a single anycast address, which allows for pvésg the traditional service access model based on
single access points.

The following sections discuss how we implement the two pha$versatile anycast using Mobile IPv6. We
first demonstrate how to implement the anycast address kath ts always reachable, yet it can also be moved
between subsequent contact nodes. Then, we show how tonmaptaransparent client handoffs between
service nodes. Both these features together allow seradesto join and leave the service infrastructure at
will, thus enabling service adaptability. Note that thddwling sections assume that each service client supports
MIPv6. We discuss how a service can handle clients that dsuygort MIPv6 in Section 6.1.

4.2.1 Anycast Address|Implementation

To implement the first phase of versatile anycasting, ongdpsovide an anycast address and make sure that
the traffic sent to that address ultimately reaches somewithlia the service infrastructure. A simple solution
could be to choose the address of an arbitrary service notteeamnycast address. In that case, however, the
anycast address would be bound to this selected service Mbidawould make it impossible to contact the grid
service once that node has left the service infrastructure.

To circumvent this problem, a completely new address mussfiged that is then used as the anycast
address. Dynamically creating an address is not difficsliamy IPv6 node can produce addresses belonging
to its own network. The service node which created the neweaddcan then make the address reachable by
attaching it to its network interface, and advertise it &sd@rvice address. Later on, if the service node decides
to leave the service infrastructure, all that needs to be tkmove the anycast address to any other service node
that remains in the service infrastructure. We refer to #heise node that holds the anycast address at a given
moment as @ontact node.

To enable the service to move its anycast address at willcahéact node performs a two-step procedure
immediately after having created the anycast addresg, Fiestablishes atPsec security association for that
address with its home agent. Recall that such an associatissed by MIPv6 to authenticate mobile nodes
to their home agents. It then forwards the association datalee HA's address to one or mdvackup nodes
within the service infrastructure. Given that any node mgdhe association data is considered by the home
agent to be the contact node, any backup node can now impdestie contact node when communicating with
the home agent. Note that throughout the entire servictntiés the service appears to that home agent as a
regular mobile node. The home agent therefore does not weeohtany specialized software in addition to
MIPV6.

The contact node and all its backup nodes form a fault-totegeoup, whose goal is to keep the anycast
address persistent. This is achieved by enabling any baoide to take over the anycast address should the
contact node leave the service infrastructure. Note tlettdntact node must trust its backup nodes that the
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address takeover does not take place as long as the conticternains within the service infrastructure.

To take over the contact address, one of the backup nodescesvthe home agent that it is actually the
contact node that has moved to another network. To this Batibackup node authenticates itself to the home
agent using the IPsec data obtained from the contact nodeageports its address as the new care-of address
of the contact node (see Figure 7). This results in tunndliegtraffic targeting the anycast address to the
backup node through the home agent, which effectively ttiradackup node into a new contact node. Doing
so preserves the reachability of the anycast address dmaliffic addressed to the service keeps on reaching
one of the service nodes. Note that some other backup noddakaesover the anycast address should the new
contact node leave the service infrastructure.

Although the anycast address is now stable, service acerfsripance might still turn out to be poor
because extensive tunneling to the new contact node caloaddhe home agent and introduce communication
latency. These limitations are addressed by route optiinizavherein the care-of address of an MN is revealed
to a CN. Given the care-of address, the MIPv6 layer of the GNgparently translates between home- and
care-of addresses of the mobile node.

Since a grid service appears to its clients and home agertsexgular mobile node, it can also use route
optimization. As a consequence, clients can communicagetti with the new contact node using its actual
address. This is likely to result in better service accesfopmaance.

The remaining question is how to enable multiple serviceesdd use the same anycast address simulta-
neously. So far, we have discussed how all the clients catttiircommunicate with only one service node,
namely the contact node. The next section describes hownfeast address is effectively shared by enabling
the contact node to transparently handoff its clients teiosiervice nodes, which constitutes the second phase
of versatile anycasting.

4.2.2 MIPv6 Handoff

The implementation of the anycast address ensures thatkachrequest reaches the contact node. However,
this node should not process all the incoming requests bl.itis therefore needs a mechanism that enables it
to transparently hand off each request to another servidesyavhich later may themselves transparently hand
it off again. We refer to the service node that hands off entlés adonor, and to the service node that takes
over the client as aacceptor.

An important observation is that while handoffs must begpament to the client application, they need not
be transparent to the underlying layers of the client-sidéqeol stack. For example, the MIPv6 layer running at
CNs hides the movements of MNs from the upper layers by tatingl home addresses into care-of addresses,
and vice versa. We propose to exploit this address traasléd implement client handoffs between service
nodes.

Recall that the address translation in MIPv6 is performeating to bindings created during MIPv6 route
optimization. As we discussed in the previous section, d gervice already exploits this mechanism to es-
tablish direct communication between the contact node lamdlients. However, since route optimizations are
performed separately for each client, the service can aledhem to hand off individual clients between any
pair of service nodes.

The goal of an MIPv6 handoff is to cause the client traffic derthe anycast address to be redirected to
the acceptor’s address. This requires convincing thetdieat the service has just changed its care-of address
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Figure 8: MIPv6 handoff

to that of the acceptor, as only then will the client updatdrianslation bindings accordingly. To this end, the
service carefully mimics the signaling of a mobile node parfing route optimization.

The MIPv6 handoff signaling is coordinated by the acceitotjnitiated by the donor, which sends a special
Init message to the acceptor. That message contains the clitrsadnd the sequence number used during the
previous route optimization (see Figure 8a).

Having received thénit message, the acceptor starts acting as an MN running MIRM6 optimization. It
first sends the HoTl and CoTl messages (see Figure 8b). Nait¢htlh acceptor must tunnel the HoTl message
to the contact node, which then tunnels it to the client tjfothe HA.

The HoTl and CoTl messages cause their corresponding HoTCadnessages to be sent by the client,
which acts as an MIPv6 correspondent node during the MIPw@ldfa (see Figure 8c). The HoT message is
also tunneled twice, by the HA and by the contact node. Thijaires that the contact node maintains a list of
pending MIPv6 handoffs.

Having received the HoT and CoT messages, the acceptor adldsnessage to the client, which updates
its binding cache entries and acknowledges the update indtBA message (see Figure 8d). From that moment
on, the communication between the client and the servicegeas between the client and the acceptor.

The MIPv6 handoff enables the acceptor to communicate Wwétclient on behalf of the service on the net-
work level. However, grid services commonly communicatthhieir clients by means of stateful connection-
oriented protocols such as TCP. In that case, handing oféatat the network level alone is not enough as it
would break the transport-level connections. The nexiaestiscuss how to preserve such connections during
a handoff.

4.3 Transport-Level Handoff

Many grid services use the SOAP protocol for client-sereanmunication. Messages in this protocol are typi-
cally transmitted using either HTTP or SMTP, both of whiclpleit TCP connections. In that case, redirecting
the client’s IP packets from the donor to the acceptor is nfftcgent to enable the acceptor to communicate
with that client. This is because maintaining a TCP conoeatéquires that the client and the server maintain
some connection state.

Preserving handoff transparency requires that apart freitclsing the client’s IP traffic, this server-side
connection state is also transferred from the donor to theor. Transferring the TCP connection state from
one node to another is commonly referred td&@® handoff. Note that TCP handoff does not affect client-side
state.
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Performing a TCP handoff together with an MIPv6 handoff lssa transparent switching of the complete
TCP connection from the donor to the acceptor. As a resudtclient and the acceptor communicate directly
with each other, which eliminates the need for shared frodseften employed by clusters. This makes TCP
handoffs implemented by aadaptable grid service fundamentally different from those implensshby their
cluster-based counterparts.

This section describes how TCP handoffs are supported idaptable grid service. We first describe some
basic properties of the TCP protocol, and then propose aedwe to hand off TCP connections on top of
MIPv6 handoff.

4.3.1 TCP Properties

TCP is a reliable communication protocol based on IP. Riilialof communication is ensured by means of
acknowledgments and retransmissions. In TCP, each trétesipiacket is numbered and must be acknowledged
by the receiver. Should that not happen within some peridihtd, then the packet is assumed to be lost and
therefore periodically retransmitted until its acknowgetent arrives, or a timeout occurs.

TCP requires the communicating parties to maintain sonte.sfehis state mainly consists of identifiers
used for recent acknowledgments and (re)transmissiaorsg alith buffers containing the data that have not yet
been sent or acknowledged. The total size of a TCP connesti@@ depends on the buffer sizes, and varies
from 90 bytes to around 90 kB.

The control states maintained by both ends of a TCP conmegticst remain consistent for the protocol to
function properly. If one party receives a message proviagthe other end is not in a legal control state, then
it resets the connection.

Each end of a TCP connection is attached to a TCP socket. Saleean abstraction of various communi-
cation mechanisms provided by the operating system. Gligplications and service implementations use TCP
sockets to send and receive data over TCP connections. tiygesgstems, in turn, use TCP sockets to store the
state of these connections.

4.3.2 TCP Handoff

Transferring the state of a TCP connection effectively nsehat the server-side TCP socket is migrated from
the donor to the acceptor. To this end, the donor must extractocket state from the operating system’s kernel
and send it to the acceptor. The acceptor, in turn, re-csehgesocket in its own kernel based on the received
state (see Figure 9).

We support TCP socket migration by means of the open-sol€&CP package [23]. It consists of a user-
level library and a patch for the Linux kernel. TCPCP enalleg donor application to extract an open TCP
socket from the kernel in a serialized form. Given that $eed form, TCPCP re-creates the TCP socket in the
acceptor application, possibly running on another node [Phlevel traffic associated with the TCP socket is
assumed to be switched by some other mechanism.

The problem here is that while the socket is being migrateslctient may send data or acknowledgments
to the server. We must therefore ensure that packets isgutitt kzlient during the migration can never reach
a node that does not hold the corresponding TCP socket. Wiesrthe receiving member node would issue
TCP control messages back reporting a missing socket, wincihd cause the connection to be reset. TCPCP
solves this problem by maintaining two separate instantésecserver-side socket during the period when it
is unclear whether client-issued packets will reach theodonthe acceptor. In this way, the client traffic sent
during the handoff always reaches some socket instancesgmglewer trigger the connection reset.

11
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Maintaining two server-side socket instances forces TC®G&ep their states consistent with each other,
and with the connection state held by the client. TCPCP aekithat by simply disallowing the TCP connection
state to change during the migration. To this end, it freghessocket right before extracting it from the
kernel. A frozen socket does not send any data nor acknowledts, and it silently drops all the incoming
data or acknowledgments without processing them. Notethiratiropped data and acknowledgments will be
retransmitted by the client. The socket is unfrozen aftedkrlevel traffic has been switched.

The TCP handoff procedure is depicted in Figure 10. The déirstrfreezes and extracts the TCP socket
from the kernel. The socket is then sent in thad message (also used for MIPv6 handoff in Figure 8) to the
acceptor, which re-creates the socket in its own kernelfieig0a). Having re-created the socket, the acceptor
conveys the MIPv6 handoff to switch the client traffic frone thonor to the acceptor (Figure 10b). Note that the
two server-side socket instances are kept frozen durinyitRe6 handoff. Once the MIPv6 handoff has been
completed, the acceptor unfreezes its socket, which caretffately be used to communicate with the client.
The acceptor also natifies the donor about the handoff cdioplevith aDone message, so that the donor can
safely remove its frozen socket instance (Figure 10c).

Combining the TCP and MIPv6 handoffs allows a grid servicentgrate server-side TCP sockets among
nodes within its infrastructure without breaking the asstea TCP connections. To maintain the handoff trans-
parency, however, the service must also ensure that thesdataver this connection by the acceptor are con-
sistent at the application level with those sent by the dbwedore the handoff. We discuss this issue next.

4.4 Application-Level Handoff

Migrating the server-side TCP socket enables the accept®mtd service data to the client over the same TCP
connection that was used by the donor before the migratisra éonsequence, each socket migration logically
divides the service response data sent to the client int@asts, depending on which service node actually sent
the data.

Preserving the handoff transparency requires that thisabdivision remains invisible to the client, which
expects all the response data to be sent by a single seruvige ibe part sent after the handoff must therefore
seamlessly match the part sent before the handoff, andeafiahts together must form a response that is valid
in terms of the service protocol.

Generating subsequent response parts without violategehvice protocol requires that the donor passes
the application-level state of the connection to the aame@iven that state, the acceptor generates and sends
its response part as if it had generated all the previousrsspparts as well.

Passing the application-level state requires it to belssth The serialization method is typically application-
specific. INHTTP, for example, a response is generatedrafteiving an HTTP request, and consists of a header
and the actual requested content. In that case, the sedajplication-level state consists of the HTTP request
being serviced, an indicator saying whether the HTTP helagealready been sent, and the description of the
content part that has been sent so far. If the content isia d@tument, then such a description can simply be
the document name and the offset at which the previous copéehends.

The donor sends the serialized application-level stateg@tceptor together with thieit message depicted
in Figures 8 and 10. Recall that this message also contditiseatiata necessary to perform handoffs at the
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transport and network layers. Constructing such a messagefore requires that the donor concatenates the
sequence number from the local MIPv6 implementation, thB $Gcket state, and the application-level state.

To relieve the service implementation from dealing with dafifs at different levels, the constructionloiit
messages can be implemented in a separate library. We slieusyntax of the library calls in C, but the library
itself can also be implemented in Java or in any other langu@lge core function of that library is:

cl i ent _handof f (client _socket fd, acceptor_|IP, app-state)

which constructs thinit message, sends it to the acceptor, and waits fdDtme message that signals the hand-
off completion. The donor would call this function to migeat given client socket along with the application-
level state to the acceptor. Once the call returns, the ddaoses the client socket using the standardse()
call.

All that is needed at the acceptor’s side is to create a dpsmi&et bound to a well-known port, which is
used to receivénit messages from donors. Whenever a message arrives at tket,se acceptor can call
another library function to accept an incoming handoff:

client recei ve(speci al socket fd, &client_socket fd, &app.state)

This function reads thinit message from the special socket, performs the MIPv6 and BBBdff, and sends
the Done message to the donor once these handoffs are completeyFHinalfunctionreturns the client socket
re-created by the TCP handoff and the application-levééstahe service instance running on the acceptor
simply needs to unserialize the received applicationtistage and determine what data should be sent to the
client next. Once this is done, these data are transmittedtbe re-created client socket just as over any other
client socket created using traditional methods. Howeherre-created socket must be closed using a special
library functioncl i ent _cl ose(cl i ent _socket _f d) , which ensures that the MIPv6 binding cache entry
on the client side is deleted.

45 Summary

Versatile anycast provides grid services with logical addes, and enables each such service to redirect client
traffic from its logical addresses to the physical addres$#ise service nodes for load balancing. The service
nodes can also handoff individual each client among therasgWhich enables service nodes to join and leave
the service infrastructure as necessary. The resultinguiing between the logical service address and the
service infrastructure contributes to the improved seradaptability and comes at the expense of upgrading
the service nodes such that they support versatile anyoastidns.

However, as versatile anycast is just a routing mechantstannot make a grid service adaptable by itself.
To this end, the service needs to implement a number of additfunctions such as membership management
and load balancing. These functions enable the serviceatt te the changes in the composition of its in-
frastructure, and to select service nodes to which cligmisilsl be redirected or handed off. Both membership
management and load balancing can be implemented usindpsthiechniques [24, 25].

5 Evaluation

We evaluate the performance of versatile anycast using@lsitestbed (see Figure 11). The core of that testbed
is a NISTnet router, which connects the client machine toraice infrastructure [26]. The infrastructure
consists of two service nodes located in different networtsch are connected to the NISTnet core via their
home agents.

We use the NISTnet router to emulate wide-area latencieaeMer, since NISTnet is not IPv6-enabled, we
established three IP6-in-1P4 tunneBSto control packet transmission between the member nodd<€; Snand
C22 to control packet transmission between these member nodeba client.

The NISTnet router runs Linux 2.4.20. All the remaining miaels run Linux 2.6.8.1 and MIPL-2.0-RC1,
which is an open-source MIPv6 implementation for Linux [2&]l the machines are equipped with PIII pro-
cessors, with clocks varying from 450 to 700 MHz.
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5.1 Server AccessLatency

The anycast address implementation based on tunnelingdeby MIPv6 causes the client packets to be
routed through the home agent, which then tunnels them wothi&act node. The service access latency therefore
consists of two parts: the latency between the client antidinge agent, and the latency between the home agent
and the contact node.

To verify this claim, we developed a simple UDP-echo appilica A UDP-echo client sends a 128-byte
UDP packet to the service, which sends that packet back. lidr@ measures the round-trip time as the delay
between sending and receiving the packet.

We used two different configurations of the UDP-echo senBmh configurations use the anycast addresses
created by Node 1. However, whereas Node 1 belongs to theeémthe first configuration, it does not in the
second one. In that case, the packets are tunneled betweea Mgent 1 and Node 2.

For each service configuration, we have configured NISTn#t sa@veral combinations of latency values.
Packets transmitted through the SS tunnel were delayedrimuedatencied atss. Packets transmitted through
the CS1 tunnel, in turn, were delayed by various latenEigg; s1. For each pair of latencies, we iteratively ran
the UDP-echo client 100 times and calculated the averagdloeeeported round-trip times.

The results were very consistent. The average reportedirtiiptime wa2 x Latog1 + X for configuration
1,and2 x Latcs1 + 2 % Latgs + Y for configuration 2, where X and Y are small additional delgrsaverage
2.13 ms and 3.61 ms, respectively). We attribute the X andlayddo the latency of Ethernet links and the time
of local processing at all the machines visited by the UDFetsc

Recall that the grid service can use route optimization ebéndirect communication between its clients
and the contact node. However, since route optimizatioastglface in parallel to the application-level com-
munication, we do not consider it in this experiment, andya®ait only when evaluating the handoff times
below.

5.2 Handoff Time Decomposition

Versatile anycast enables the service nodes to hand ofeatcliCP connection among each other. In this
experiment, we investigate how much time is necessary td béfra TCP connection, and what operations
consume most of that time.

Handoffs are performed by a simple service that delivers 1 dfiBontent upon request. The client first
opens a TCP connection to Node 1 acting as the contact nod#e Novansfers 500 kB of data, and hands off
the connection to Node 2 immediately after the lBshd() call returns. Node 2 sends another 500 kB of data
and closes the connection.

The total handoff time can be divided into seven phases @eke ). The phases are delimited by the event
of sending or receiving some specific packets, which we staeap to mark the boundary between subsequent
phases. To detect events, we monitor all the packets exeldanghe testbed usirtgpdump listening on all the
network interfaces of the NISTnet router.

Table 1 reports the delays averaged over 100 download sessige have emulated various speeds of the
upstream DSL connections by shaping the traffic sent fromhtmae agents to the NISTnet router using the
standardatbg queuing discipline available in the Linux kernel. The rés@ibr unshaped 100 Mbps Ethernet are
included for completion.
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Table 1: Handoff time decomposition (without NISTnet delay

No. | Operation Name Inter-node Bandwidth

100 Mbps| 2 Mbps | 1.5 Mbps| 1 Mbps

1 Socket Extraction 0.8 ms 5.8 ms 6.9ms| 11.8ms
2 State Transfer 6.5ms| 319.1 ms| 434.1 ms| 648.2 ms
3 Socket Re-creation 2.2ms 2.1ms 2.1ms 2.2ms
4 | Return-Routability Procedure 2.5ms 3.7ms 4.9 ms 8.9 ms
5 BU-Message Construction 2.7ms 2.7ms 2.7ms 2.7ms
6 | Binding-Management Procedulle 2.6 ms 2.6 ms 2.6 ms 2.6 ms
7 Socket Activation 1.1ms 1.1ms 1.1ms 1.1ms
Total Time: 18.4ms| 337.1 ms| 454.4ms| 677.5ms

As can be observed, extracting the socket at the donor aphatakes between 0.8 and 11.8 ms depending
on the network bandwidth (Phase 1). However, since thisatigeris entirely local, it should not depend on
the bandwidth at all. We have therefore verified these refyltmeasuring the actual time spent in the socket-
extracting call, which turned out to be 0.8 ms on average. We\e that the higher values obtained using
packet monitoring result from transmission delays inticetuby bandwidth shaping.

Most of the total handoff time is spent on transferring thekst state (Phase 2). The duration of this phase
is proportional to the network bandwidth, as each time theoddransfers the 90 kB of the socket state to the
acceptor. This time accounts for up to 95% of the total haftitoé when emulating 1 Mbps DSL lines.

Local phases such as re-creating the socket, construbénBWl message, and activating the socket corre-
spond turn out to be relatively fast and independent of tinellvédth (Phases 3, 5, and 7). The return-routability
procedure, in turn, demonstrated some dependency on tlivisih (Phase 4). However, since the packets
transmitted during this phase are very small, we believe ttia dependency is artificial, and results from
delaying packets by the shaping mechanism previously ebddor Phase 1.

Interestingly, the artificial delays introduced by traffiaping cannot be observed for the binding manage-
ment procedure, where the BU and BA messages are exchanwezkbeahe acceptor and the client (Phase 6).
This is probably because the low network activity during$tisa3-5 causes the state of the shaping mechanism
to be reset by the time Phase 6 starts, which enables the tketsao be transmitted without any delay.

We also performed the same experiment for various combinatfLss, Losi, andLgogs latencies emu-
lated by NISTnet (we uselcs1 = Lege). The results are similar to those presented in Table 1 pxbat the
time spent in some phases varies proportionally to the NéSTEtencies. In particular, phase 2 varieslhys,
phase 4 varies by x Lgss + 2 * Lcg1, and phase 6 varies @ Logo. The additional delays correspond to the
latencies of network paths followed by the messages ex@thigring the respective phases. Note that should
any of the MIPv6 packets be lost, it will be automaticallyragismitted; in that case, the overall handoff time
will obviously be extended by the MIPv6 retransmission tiueof 1 second.

5.3 State Transfer Optimization

The previous experiment shows that most of the handoff tengpent transferring the socket state from the
donor to the acceptor. The reason why that transfer takemgad that in this experiment the donor extracts the
socket immediately after the lasend() call returns. This means that the socket buffers are nealilyhich
results in the socket size taking about 90 kB.

One way of reducing this size is to simply wait for some timehesdonor gradually sends the data stored
in the socket buffers and removes the data acknowledgedebglitnt from the buffers. This would allow the
client to receive and acknowledge at least some of the d&iahvin turn would reduce the socket state. In this
experiment, we investigate how such waiting affects thedbérime.

We modified our server so that it would wait for a given peridtime between passing the last data to the
socket and starting the actual handoff procedure. We alstifimd the client such that it measures its perceived
handoff time. We define the client-perceived handoff tim¢hesdelay between receiving the last packet from
the donor and the first packet from the acceptor.
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Figure 12: Client-perceived handoff times for various vt node connection bandwidths
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Figure 13: Optimizing wide-area latencies

Given the modified application, we repeatedly ran 100 doathkessions for 1 MB of content and waiting
times varying from O to 1000 ms with a step of 25 ms. Similarte previous experiments, we emulated
three different DSL connection bandwidths and various doatins of wide-area latencies. The results are
presented in Figure 12.

Increasing the donor’s waiting time causes the client-giget] handoff time to decrease to some minimum
value. Having reached that value, the client-perceivedibfirtiime starts increasing. We verified that the
minimum value corresponds to the situation when the soclest extracted right after receiving the last ac-
knowledgment from the client, which removes the last pafiosh the socket buffers. As a consequence, the
socket state has only 90 bytes, which can be transferrectitirtte of the one-way latency between the donor
and the acceptor. This eliminates the delay resulting framsferring a large socket state over a low-bandwidth
connection. We conclude that the donor should always engptwitput TCP buffers before freezing the socket
and starting the handoff.

5.4 Handoff Time Optimization

Now that the socket state is reduced to sending a single p&cke the donor to the acceptor, and given that
the local processing times are negligible, the actual hfirilee depends only on the latencies of the paths
followed by the messages exchanged during the handoff.idreperiment, we investigate whether this time
can be reduced even further.

Recall that the client-perceived handoff time is the delageen receiving the last packet from the donor
and the first packet from the acceptor. The beginning of fleaeperceived handoff time corresponds to sending
the last acknowledgment to the donor (message 1 in Figua}13¢pon receiving that acknowledgment, the
donor sends th&nit message to the acceptor, which then runs the complete Mi&w@dff. Once the MIPv6
handoff is complete, the acceptor sends the first packeatong the application data to the client. The client-
perceived handoff time ends once that packet is receivetédyglient.

In fact, all these steps do not need to be performed seqligniigparticular, the acceptor can run the return-
routability procedure in advance while the donor is stibpwith transferring data to the client, as no data other
than the client address is needed for that. Performing tlen-@outability procedure in advance eliminates its
time from the client-perceived handoff time, and allows domor to send the BU message immediately after
thelnit message arrives (see Figure 13(b)).
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Figure 14: The impact of performing return-routability pealures in advance

To allow the acceptor to run the return-routability procexim advance, the donor must notify the acceptor
about the upcoming handoff by sendin§iepare message containing the client address. This message is sent
when the donor has passed all its data to the socket and i$ &bstart waiting for the last acknowledgment
from the client. Having received therepare message, the acceptor conveys the return-routabilityephae
and keeps the resulting Kbm so that it can be sent in the BUagesance thénit message arrives.

To investigate the impact of performing the return-routgbprocedure in advance, we modified our test
application once again. In the new version, the donor sdmelBrepare message immediately after returning
from the lastsend() call, and then waits for the socket to become empty. The aocpprforms the return-
routability procedure upon receiving tReepare message, and waits for thait message before sending the BU
message to the client.

Similar to the previous experiment, we measured the averlig-observed handoff times for 100 down-
load sessions with the network bandwidth shaped to 2 Mbpsanodus combinations of o5 and Lsg laten-
cies. Figure 14(a) shows the results obtainedfgs fixed to 20 ms and.¢ s varying from 10 to 80 ms, whereas
Figure 14(b) shows the results obtained fefs fixed to 40 ms and.sg varying from 10 to 80 ms.

As can be observed, performing return-routability progedin advance results in the reduction of client-
observed handoff times. The reduction is proportional lotthe latency between the client and the server
and to the latency between the member nodes. This is becausgtimization effectively reduces the client-
observed handoff time from approximatély Los + 3 * Lgsg to approximately « Los + Lgg since the time
of tunneling the HOT/HOTI messages between the acceptottandontact node is aboiltss. Note that the
gain is lower if the donor’s waiting time is too short to alldte acceptor to complete the return-routability
procedure before thimit message is sent. This can sometimes be observed forllargealues, which results
in an increased slope in Figure 14(b) fogs equal or greater than 60 ms.

6 Discussion
6.1 Client-side MIPv6 Support

Our proposed mechanisms assume that client-side opemtsigms support the functionality of an MIPv6
correspondent node. This is already true for many popularaiing systems, including Linux and Win-
dows [27, 28]. Besides, we expect that grid machines runcliagt applications can be configured to implement
MIPv6 [29]. However, it might still happen that some potahsiervice clients do not support MIPv6.

A grid service running versatile anycast can support a smathber of MIPv6-disabled clients. Recall
that the client-side MIPv6 support is necessary to handli@iits among member nodes using route optimiza-
tion, but it is not required to access the contact node. Mi@gébled clients can therefore be supported by
tunneling all their traffic through the contact node. Howevlee number of MIPv6-disabled clients that are
serviced simultaneously by the contact node should notdkatge to prevent the contact node from becoming
a bottleneck.
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6.2 Multiple Contact Addresses

Although grid services running versatile anycast normbbiye a single contact node, they can also create
multiple contact nodes so that the effort of forwarding resta and handling non-MIPv6 clients is spread over
several service nodes. In that case, each contact nodeshasritanycast address, which is advertised along
with the other anycast addresses. Similar to what happethg isingle-address scenario, each contact node in
the multiple-address scenario must have a number of baabdgsn To keep the number of trusted nodes in the
server low, each contact node may decide to select the ramgaiantact nodes as backup nodes. As a result, all
the contact nodes form a fault-tolerant group wherein &lrtbdes can impersonate each other as necessary.

The multiple contact addresses must somehow be advertighd tlients. To this end, a grid service may
register them in the DNS. Note that this solution is signifibadifferent from simple DNS redirection, as the
DNS entries referring to logical addresses remain extrgistable even though the composition of the service
infrastructure changes dynamically. Also, registeringjdal addresses in the DNS enables the grid service to
occassionaly update the set of contact nodes so that it cprusing the home agents of former contact nodes
soon after their provided addresses have been removed li@BNS.

6.3 Multiple Client Connections

Certain services might allow a client to simultaneouslyropaultiple TCP connections to the same service,
for example, to retrieve different parts of the service case in parallel. However, opening multiple TCP
connections to a grid service running versatile anycash\dagle anycast address can lead to problems when
the server decides to hand off any of these connections.lIReaathe MIPv6 handoff updates the translation
bindings maintained by the client's MIPv6 layer. Howevérce MIPV6 translation affect| the traffic between

the client and the anycast address, either all the conmeadica given client must be handed off simultaneously
to the same acceptor, or none at all.

This limitation can be alleviated if the service has mu#tiphycast addresses. As each translation binding is
associated with only one anycast address, it does not dffettaffic sent to other addresses. Provided that the
client-side application opens simultaneous connectiomsfferent anycast addresses, the service can hand off
each of them just like non-parallel connections. Note tlzaiding off parallel connections to different service
nodes effectively implements a parallel download from aritisted group of nodes, which has been shown to
dramatically improve the client experience [30].

6.4 Ungraceful Node Departures

In a large-scale service deployment, any node can leaveetives infrastructure ungracefully, for example,
because of a hardware failure. In that case, it is too lateatwster the application- and transport-level state
of client connections serviced by that node to some otheenéddthough MIPv6 enables another node in the
server to intercept the client traffic related to these cotioes, they can no longer be serviced without the state
information, and the service is forced to close them. Sudxpected connection closing may result in the
service appearing to be unreliable.

This problem can be alleviated by instructing each servaxerto replicate the state of all its connections
across a small number of other service nodes. Should a sameide leave ungracefully, the service can try
to recover the connections based on the replicated statte tNat the service’s ability to continue servicing
a given connection greatly depends on the state of that ctione For example, it might be impossible to
recover the data that have been received and acknowledgée ksgrvice node’s TCP layer after the replicated
connection state was updated for the last time. This is lsectie service cannot force the client to retransmit
the already-acknowledged data. Also, recovering from acgfiul departures tends to be application-specific,
as applications themselves might provide some degree iliEneg to sudden service outages. We investigate
various aspects of recovering client TCP connections aftgraceful departures in our present research.

7 Conclusion

We have presented versatile anycast, which allows a semwgeng on a varying collection of nodes scattered
over a wide-area network to present itself to the clientsresranning on a single node. Providing a single
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logical address enables the client-side software to presbe traditional service access model based on single
access points. At the same time, the dynamic compositionyfast groups implemented by versatile anycast
enables the service infrastructure to evolve and adaptaogihg network conditions.

We propose to implement logical addresses using versatijleast, which presents a grid service to its
clients as a mobile node. This enables the service to deedgpbgical address from the addresses of the nodes
forming the service infrastructure. Such a decouplingnaithe service to dynamically map its logical address
to any service node while preserving the service reaclmbilihanging the mapping on a per-client basis, in
turn, enables the service to transparently hand off cliantsng the service nodes at the network level while
preserving optimal routing between the clients and theisemodes.

We have demonstrated that the overhead of contacting aceevia its anycast address can be estimated
as the latency between the contact node and the home agpahséde for the contact address. The client-
perceived handoff time has also been shown to be a lineatifunef the latencies among the client and the
service nodes participating in the handoff.

As a routing mechanism, versatile cannot make grid senfidsadaptable by itself. To this end, a grid
service must combine versatile anycast with some techsiffenembership management and load balancing.
These techniques enable the service to decide when to usekthe functions provided by versatile anycast.

We believe that decoupling the development of the cliedé-sbftware from the evolution of the server-side
service infrastructure is crucial for the successful dgmplent of large-scale grid services. Our implementation
of logical addresses will enable a great variety of servioesvolve and adapt to the increasing client demand
without requiring any modifications to the client-side satte.
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