
Enabling Service Adaptability with Versatile Anycast

M. Szymaniak
†

, G. Pierre
†

, M. Simons-Nikolova
‡

, M. van Steen
†

Vrije Universiteit Amsterdam
†

, Philips Research Labs Eindhoven
‡

{michal,gpierre,steen}@cs.vu.nl, mariana.nikolova@philips.com

Abstract

We present versatile anycast, which allows a service running on a varying collection of nodes scattered
over a wide-area network to present itself to the clients as one running on a single node. Providing a single
logical address enables the client-side software to preserve the traditional service access model based on single
access points. At the same time, the dynamic composition of anycast groups implemented by versatile anycast
enables the server-side service infrastructure to evolve and adapt to changing network conditions.

We implement versatile anycast using Mobile IPv6, which decouples the logical addresses of mobile nodes
from their physical location. We exploit that decoupling toimplement logical service addresses that are not
bound to any physical nodes, and employ standard MIPv6 mechanisms to dynamically map each such address
onto individual service nodes. Our solution enables a service to transparently hand off clients among the
service nodes at the network level while preserving optimalrouting between the clients and the service nodes.

We demonstrate that the overhead of versatile anycasting isvery low. In particular, the client-perceived
handoff time is shown to be a linear function of the latenciesamong the client and the service nodes partici-
pating in the handoff.

1 Introduction

Grid applications are changing. The Grid was created as a distributed super-computer hosting standalone parallel
computations [1]. Such computations can often be managed bya single “coordinator” node responsible for
submitting node allocation requests to the grid scheduler,distributing the application input to the allocated
nodes, and retrieving the results. The coordinator then becomes the natural entry point to communicate with the
grid application.

However, grid applications increasingly often adopt a different model in which they provideservices to one
or more external components [2]. By means of standard SOAP-based interfaces, grid services can now be used
by other applications running either inside or outside of the grid.

An important property of such services is that they might be instantiated dynamically to provide the required
quality of service. For example, a service might dynamically adapt its capacity to guarantee consistent response
times to its users. This typically involves changes in the number and location of machines running service
instances.

Another reason for a grid service to change its hardware baseis the evolution of service implementation.
For example, a regular Web service might migrate from a single node to a distributed grid infrastructure in
order to benefit from advanced adaptation and capacity planning features. Such a migration is likely to result in
significant design changes in the architecture of the service. However, a coordinator-based service access model
restricts the type of possible architectural changes, as itrelies on fixed coordinators to act as gateways to the
service.

The need for service adaptability often conflicts with the traditional service access model implemented by
clients. To easily integrate a grid service into their own applications, clients typically require that the service
maintains a single stable access point implementing a SOAP interface. On the other hand, the service needs the
ability to change its internal organization at will, preferably transparently to the clients.

To satisfy both these requirements, we propose to decouple the conceptual communication model exploited
by grid clients from the actual service implementation. Theidea is to identify a grid service by a single stable
logical network address. Similar to the addresses of traditional access points, a logical address can always be

1

used to communicate with the service. However, the difference is that logical addresses are not bound to any
physical node. Instead, each such address can be dynamically mapped to any grid node while the service retains
full and timely control of this mapping.

Decoupling the communication model from the service implementation has several advantages. First, it
allows the service architecture to evolve without being constrained by its original design, which improves service
adaptability. Second, as upgrading the service infrastructure does not affect client-side applications, they might
be implemented by multiple vendors independent of the service operator. Such an approach has been followed
by many successful Internet services, including the Web andBitTorrent [3, 4].

Assigning a logical address to a group of physical nodes comes close to anycasting. Anycast was proposed
as a routing and addressing scheme by which traffic sent to an anycast address automatically reaches some node
within the addressed group [5]. This functionality is typically implemented by means of routing algorithms,
which cause Internet routers to redirect anycast traffic according to some network proximity metric.

However, efficient usage of resources available within a grid service depends on many factors other than
network proximity. For example, differences in the utilization of individual grid nodes make it necessary to
route client requests according to additional metrics suchas network bandwidth and cpu load. Also, as the
utilization and availability of service nodes changes dynamically, the routing decisions must have immediate
effects to prevent client requests from being redirected tooverloaded or unavailable nodes. Finally, efficient
anycasting should not introduce significant overhead compared to unicast communication.

The limitations of routing-based anycast resulted in proposing many alternative anycast implementations.
They provide anycast functionality using either front ends, DHTs, DNS-based redirection, or anycast-aware
client-side software. However, as we discuss in a previous study, none of these implementations eliminates all
the limitations entirely [6].

Our solution lies in the design ofversatile anycast, in which each anycast group retains full and timely con-
trol over how the incoming traffic is switched among the individual nodes within that group. At the same time,
our implementation does not incur any significant communication overhead compared to unicast communica-
tion. These two properties enable us to implement the logical addresses of grid services as anycast addresses
provided by versatile anycast.

We implement versatile anycast by exploiting the logical separation of network addresses that Mobile IPv6
assigns to mobile nodes. In principle, each Mobile IPv6 nodehas a permanent “home” address, which identifies
the node, and a temporary “care-of” address, which identifies the node’s current location. Mobile IPv6 ensures
that network traffic sent to home addresses is transparentlyforwarded to their care-of counterparts. To this end,
it relies on clients communicating with mobile nodes to translate between home- and care-of addresses.

This article demonstrates that the very same translation mechanisms can also be used to equip grid services
with logical addresses. In that case, a service as a whole canbe perceived by its clients as some fictitious
mobile node, regardless of the current composition of the service infrastructure. The logical address of the
service is implemented as the home address of the fictitious mobile node, whereas the addresses of individual
nodes within the service infrastructure can be treated as potential care-of addresses of that node. Using traffic-
switching mechanisms provided by Mobile IPv6, a grid service can transparently handoff its clients to individual
nodes at which it is hosted. Note that implementing logical addresses in the network layer allows for leaving
the higher layers of client-side software untouched. This means in particular that with a relatively small number
of server-side modifications, our scheme can be incorporated into any service exploiting the traditional access
model based on single access points, including those that already exist.

A preliminary discussion on the usefulness of versatile anycast has been reported in [6]. However, it only
contains a high-level description of the functionality, and no performance evaluation. The contributions of the
present article are threefold: (i) a full description of versatile anycast implementation; (ii) details on the integra-
tion of versatile anycast with higher-level protocols suchas TCP; and (iii) an in-depth performance evaluation
and discussion on various possible optimizations. None of these contributions have been reported in [6].

The remainder of this article is structured as follows. Section 2 describes the architecture of grid services
equipped with logical addresses, and demonstrates how suchaddresses enable service adaptability. Section 3
presents related work and explains why it is hard to provide logical addresses using current techniques. Section 4
describes how grid services can exploit versatile anycast to implement logical addresses, and how versatile
anycast can be implemented using Mobile IPv6. Finally, Section 5 evaluates the performance of our anycast
implementation, and Section 7 concludes.

2

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Client 1

Client 2

Service Node A

Service Node B

Logical
Address

Grid Service

Figure 1: Accessing grid services via logical addresses

2 System Model

2.1 Overview

Introducing logical addresses enables grid services to decouple the client-side software development from the
service-side infrastructure design. Figure 1 depicts the conceptual service access model. In principle, nothing
changes from the perspective of the service clients, which access the service at its logical address just like they
traditionally communicate with the addresses of physical service gateways.

However, the logical address is not bound to any physical node. It is therefore the responsibility of the
service to ensure that all the traffic heading to that addressis routed to the physical address of one or more
nodes within the service infrastructure. To this end, the service transparently maps the logical address onto the
physical addresses of the service nodes. As long as the mapping mechanism enables the service to dynamically
switch the clients among the service nodes, each of these nodes can join and leave the service infrastructure at
will, allowing for service adaptability.

2.2 Properties

The functionality of logical addresses requires them to have a number of properties. The first fundamental one is
transparency, which means that using logical addresses cannot mandate any changes to the client-side software,
which must be able to communicate with grid services via logical addresses just like via their physical coun-
terparts. The second fundamental property is efficiency, which means that accessing grid services via logical
addresses should not incur significant overhead compared todoing so via physical addresses. In particular, the
clients should be able to communicate efficiently with a gridservice even when service nodes are scattered over
a wide-area network, which is often the case with massively popular network services [7].

Another group of properties is related to the mapping of logical addresses onto physical nodes. For example,
efficient usage of service nodes requires fine-grain controlover which clients are redirected to which nodes.
This means that the logical address implementation must enable the service to redirect each client separately
and according to any set of metrics. For example, classical load-balancing schemes route traffic based on the
current load of each service node, and on the network distance between clients and service nodes [8, 9].

Another characteristic of modern grid services is that theyare running on large collections of nodes that can
dynamically join and leave the service infrastructure [10]. As a consequence, the service infrastructure might
experience frequent changes in its hardware composition. However, such changes should not affect the service
performance, and so the service should be able to quickly adapt to sudden departures of service nodes. This can
be achieved by transparently redirecting clients from the departing nodes to those remaining operational, which
requires that each client can be switched from one service node to another at any moment.

However, while switching traffic is relatively easy when clients communicate with grid services using
connection-less protocols, it becomes far more complex when connection-oriented protocols, such as TCP, are
used for this purpose. This is because these protocols require some state information to be maintained by both
the clients and the service nodes. To guarantee that client connections are not broken upon switching, the logical
address implementation must ensure that traffic switching is coordinated with its corresponding state transfer
between service nodes.

3

3 Related Work

The traditional access model to grid services is described in the Open Grid Service Infrastructure (OGSI) spec-
ification [11]. In essence, OGSI defines mechanisms for communication with grid services, including a set of
conventions ruling the interactions between grid servicesand their clients. According to OGSI, clients com-
municate with grid services via interfaces specified using Web Services Description Language (WSDL). The
interfaces are implemented by service instances running onservice nodes. Each such instance listens to client
requests at its respective port.

OGSI defines a number of mechanisms that enable the clients tolocate their respective service instances.
These mechanisms enable each client to resolve grid servicehandles (GSH) into concrete network addresses
and port numbers at service nodes.

GSHs can be perceived as logical service addresses. However, their implementation is relatively complex,
as it relies on a number of additional components responsible for reliable and fault-tolerant resolution of GSHs.
This forces the client-side software to implement all the resolution protocols on top of those necessary to com-
municate with grid services themselves. Also, it forces thegrid service to deploy and maintain the components
for GSH resolution. On the other hand, we demonstrate that logical addresses can be implemented such that the
clients continue to communicate with a grid service as if it was running on a single node, and without all the
complexity incurred by GSHs.

There exist several techniques that enable service adaptability by means of logical addresses in a less com-
plex manner than OGSI. A number of them achieves that by mandating modifications to the client-side software
such as those organizing clients and service nodes into P2P overlays [12, 13, 14]. However, as one of our main
goals is to keep the client-side software untouched, none ofthese solutions is attractive in our case.

Several techniques implement logical addresses without modifying the client-side software. The classical
one implements a logical address as that of a physical front end, which forwards client traffic to individual
nodes hosting a grid service [15]. Such a solution offers real-time and fine-grain control over the client traffic.
However, when used in wide-area setups, front ends tend to become performance bottlenecks, as they limit
network bandwidth available to the service and introduce additional client access latency [16].

Another common solution is to map clients to service nodes using DNS. In that case, each service is identi-
fied by its DNS name rather than a network address. The mappingof the service DNS name onto the addresses
of service nodes is performed by the DNS server responsible for that name. In the essence, this DNS server
can resolve the service DNS name to the addresses of different service nodes such that the client requests are
ultimately scattered over multiple service nodes [17].

DNS redirection has been successfully employed by many large-scale distributed systems, as it integrates
transparently into the Internet communication model, exploits the scalability of DNS, and provides fairly good
control over client redirection [18]. However, DNS cachingcan severely delay updating the redirection map-
pings, as many DNS servers are configured to ignore short TTL values. This makes DNS unattractive to adapt-
able grid services, which need to tolerate rapid changes in their hardware configuration. Also, since DNS names
are resolved only before the actual communication is initiated, they cannot be used to switch clients between
service nodes while communication is already in progress.

Logical addresses could also be implemented by means of anycasting. Anycast is a network addressing and
routing scheme whereby data sent to an anycast address are routed to one of many nodes within its corresponding
anycast group [5]. The chosen node is typically the “nearest” or “best” to the data sender as viewed by the
network topology. The classical anycast implementation relies on routing algorithms, which cause Internet
routers to redirect anycast traffic according to some network proximity metric.

Grid services could implement logical addresses as anycastaddresses. In that case, all the nodes hosting a
given service would form an anycast group, and the anycast implementation would naturally spread the client
traffic heading to the logical address among these nodes. Anycasting would therefore implement the conceptual
service access model described in Section 2.

Using anycast to implement logical addresses would preserve the traditional service access model based on a
single access points, as each client would communicate witha grid service via the single anycast address of that
service. At the same time, the adaptability of the service infrastructure would be preserved as well, as anycast
groups are by nature supposed to change dynamically. However, our earlier study demonstrated that none of the
current anycast implementations can provide all the properties required of logical addresses, such as efficiency,
timely and fine-grain traffic control, or connection-aware client switching [6].

4

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Client 1

Client 2

Logical
Address

Grid Service

Contact Node

Service Node

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Client 1

Client 2

Logical
Address

Grid Service

Contact Node

Service Node

(a) (b)

Figure 2: Versatile anycast: establishing contact (a), andclient handoff (b)

The anycast-based approach has recently been followed in OASIS, which essentially provides a general-
purpose anycasting functionality to Internet services [19]. OASIS integrates multi-node services into a global
infrastructure in order to perform accurate network measurements, which in turn allows for mapping service
clients to their proximal service nodes. The strength of OASIS lies in its advanced mapping policy. However, as
OASIS relies on standard redirection mechanisms such as DNS, it also inherits their limitations discussed above.
In fact, our anycast implementation proposed in this paper could be used by OASIS as yet another redirection
mechanism.

The following sections discuss in detail how to implementversatile anycast. In contrast to the previous
anycast implementations, versatile anycast provides all the properties required of logical service addresses. We
first discuss the architecture details, and then demonstrate that the overhead of versatile anycasting is very low.

4 Versatile Anycast

Versatile anycast allows grid services to implement the conceptual service access model discussed in Section 2,
in which the client traffic is redirected from the logical address of a grid service to the physical address of some
service node. Versatile anycast achieves that by implementing the logical address as an anycast address, and by
switching the traffic heading to that address among the service nodes forming its corresponding anycast group.

Versatile anycast works in two phases. First, it ensures that the client traffic sent to the anycast address
reaches a designated service node called acontact node (see Figure 2a). This is achieved by assigning the
anycast address to the contact node. However, to preserve service reachability even after the contact node
becomes unavailable, versatile anycast allows the anycastaddress to be re-assigned to any other service node at
any moment, which effectively turns that node into a new contact node.

Of course, the contact node should not service all the clients by itself. Rather, it should distribute the client-
handling effort among other service nodes. This constitutes the second phase of versatile anycasting, in which
the contact node transparently hands off individual clients to other service nodes, potentially causing different
clients to be serviced by different service nodes (see Figure 2b). Note that once a client is handed off to some
service node, the contact node is no longer involved in the communication with that client. Also, each service
node can further handoff its clients to any other service node at any moment. These two features are crucial for
service adaptability, as they enable each service node to share its load with new service nodes when they join
the service infrastructure, and to leave the service infrastructure without disturbing its clients by handing them
off before leaving.

We propose to implement versatile anycast using the address-translation capabilities provided by the Mobile
IPv6 protocol. These capabilities have originally been introduced to enable communication with mobile nodes
while they move among various networks. However, we demonstrate that one can also exploit these capabilities
to implement versatile anycasting.

The following section discusses some basic aspects of Mobile IPv6, which is the standard protocol designed
for mobile communication. Then, we show how selected functions of Mobile IPv6 can be employed to imple-
ment versatile anycast.

5

MobileInternet
Node

Home Agent

IPsec

Association
Security

IPsec Data

IPsec Data

Figure 3: Home network in Mobile IPv6

Internet

Care−of Address

Home Address

Remote Network

Correspondent Node

Mobile Node

Home Agent

Home Network

Internet

Care−of Address

Home Address

Remote Network

Correspondent Node

Mobile Node

Home Agent

Home Network

(a) (b)

Figure 4: Communication in MIPv6: tunneling (a), and route optimization (b)

4.1 Mobile IPv6

Mobile IPv6 (MIPv6) consists of a set of extensions to the IPv6 protocol [20]. MIPv6 has been proposed to
enable anyIPv6 mobile node (MN) to be reached by any othercorrespondent node (CN), even if the MN is
temporarily away from its usual location.

MIPv6 assumes that each MN belongs to one home network, whichcontains at least one MIPv6-enabled
router capable of serving as ahome agent (HA). Such an HA acts as a representative for the MN while it is
away.

An HA must authenticate MNs before it can start representingthem [21]. To this end, each MN must
establish anIPsec security association with its HA in its home network (see Figure 3). Such associations are
established using the Internet Key Exchange [22].

To allow one to reach an MN while it is away from home and connected to some visited network, MIPv6
distinguishes between two types of addresses that are assigned to MNs. Thehome address identifies an MN in
its home network and never changes. An MN can always be reached at its home address. An MN can also have
a care-of address, which is obtained from a visited network when the MN moves tothat network. The care-of
address represents the current physical network attachment of the MN and can change as the MN moves among
various networks. The MN reports all its care-of addresses to its HA.

The goal of MIPv6 is to ensure uninterrupted communication with MNs via their home addresses and inde-
pendently of their current network attachment. To this end,MIPv6 provides two mechanisms to communicate
with MNs that are away from home. The first mechanism istunneling, wherein the HA transparently tunnels
the traffic targeting the home address of an MN to the care-of address of that node (see Figure 4a).

The advantage of tunneling is that it is totally transparentto the CNs. Hence, no MIPv6 support is required
from any node other than the MN and its HA. However, tunnelingcan also lead to two problems. First, if many
MNs from the same home network are away, then their shared HA can become a bottleneck. Also, if the distance
between an MN and its home network is large, then tunneling can introduce significant communication latency.
These two problems are addressed by the second MIPv6 communication mechanism, calledroute optimization.
It enables an MN to reveal its care-of address to any CN to allow direct communication (see Figure 4b).

Route optimization is prone to address spoofing. To protect itself, the CN must authenticate the care-of
address using areturn-routability procedure, which is used to verify that the same MN can be reached at the HA
and at the care-of address.

The return-routability procedure is initiated by the MN which simultaneously sends two messages to the

6

Mobile
Node

Home
Agent

Correspondent
Node

HoTI

CoTI

HoT

CoT

BU

BA Binding Management Procedure

Return−Routability Procedure

HoTI

HoT

Figure 5: Route optimization protocol

CN (see Figure 5). The first message, calledHome Test Init (HoTI), is tunneled through the HA, whereas the
second message, calledCare-of Test Init (CoTI), is sent directly. The CN retrieves the MN’s home address and
care-of address from the first- and second message, respectively. The CN responds with two messages,Home
Test (HoT) andCare-of Test (CoT). The HoT message is tunneled to the MN through the HA, whereas the CoT
message is sent directly.

The HoT and CoT messages contain home- and care-of keygen tokens, respectively, which are combined to
create abinding management key (Kbm). The ability of the MN to create the Kbm based on the tokens received
via two different paths is the proof that the MN has passed thereturn-routability procedure and that the home-
and care-of addresses correspond to the same MN.

The MN uses the Kbm to authorize thebinding management procedure. The goal of this procedure is to
create the mapping between home- and care-of address at the CN such that it communicates directly with the
MN. To this end, the MN sends the Kbm to the CN in a message called Binding Update (BU). This message also
contains the home address, the care-of address, the lifetime of the requested home-to-care-of address mapping,
and a sequence number, which orders all the BU messages sent by a given MN to a given CN.

Upon receiving the BU message, the CN verifies that the Kbm found inside that message is valid and matches
the home/care-of address pair. In this way, the CN can now be certain that the MN has passed the return-
routability procedure. It therefore creates abinding cache entry for the MN, which is essentially a mapping
between home- and care-of address. The binding cache entry allows the CN to translate between home- and
care-of address in the incoming and outgoing traffic, which enables the CN to communicate with the MN directly
at its care-of address. This eliminates the latency introduced by tunneling, and offloads the HA.

As the last step of route optimization, the CN confirms creating the binding cache entry by sending aBinding
Acknowledgment (BA) message to the MN. Note that binding cache entries are deleted once their lifetime
expires, and must be therefore periodically refreshed. TheMN can also cause an old binding cache entry to be
deleted immediately by sending a new BU message with the lifetime set to zero. Such a message can be sent
without performing the return-routability procedure.

Route optimization is less transparent than tunneling, as the IP layer at the CN is aware of the current
physical attachment of the MN. However, that information isconfined inside the IP layer. The CN uses it to
translate source and destination addresses in IP packets exchanged with MNs according to the binding cache
entries created during the binding management procedures.

Translating addresses in the IP layer hides care-of addresses from higher-level protocols such as TCP and
UDP. As a consequence, these protocols use only the home address of an MN and the changes in the MN’s
location remain transparent to applications running on CNs.

4.2 Employing Mobile IPv6 for Versatile Anycasting

Our implementation of versatile anycast exploits the fact that Mobile IPv6 decouples home- and care-of ad-
dresses, effectively allowing for the traffic directed to the former to be transparently redirected to the latter. This
comes close to the anycast communication model, in which traffic sent to the anycast address of an anycast
group is routed to the interface of some node within that group. We exploit our implementation of versatile
anycast to transparently redirect the clients of a grid service from its logical (anycast) address to the individual
service nodes.

More specifically, versatile anycast presents a grid service to its clients as a single fictitious MN. The anycast
addressX of that service then becomes the home address of that fictitious MN. The addresses of the service

7

INTERNET

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

MIPv6

APP

TCP

IPv6

MIPv6

APP

TCP

IPv6

I am connected to X

X’s current location is B

X’s current location is A

I am connected to X

Client 2

Client 1

at Anycast Address X
Grid Service

Service Node A

Service Node B

believes
I am X

Client 2

Client 1
believes
I am X

Figure 6: Communication with a grid service

nodes, in turn, act as care-of addresses to which the traffic can be redirected. By disclosing different care-of
addresses to different clients, versatile anycast can convince different clients that the MN has moved to different
locations (see Figure 6). Note that the client’s higher (transport and application) layers retain the illusion that
they communicate with the one and only node holding addressX , as the translation between home- and care-of
addresses is confined in the network layer. This effectivelyenables the service nodes to jointly service their
clients via a single anycast address, which allows for preserving the traditional service access model based on
single access points.

The following sections discuss how we implement the two phases of versatile anycast using Mobile IPv6. We
first demonstrate how to implement the anycast address such that it is always reachable, yet it can also be moved
between subsequent contact nodes. Then, we show how to implement transparent client handoffs between
service nodes. Both these features together allow service nodes to join and leave the service infrastructure at
will, thus enabling service adaptability. Note that the following sections assume that each service client supports
MIPv6. We discuss how a service can handle clients that do notsupport MIPv6 in Section 6.1.

4.2.1 Anycast Address Implementation

To implement the first phase of versatile anycasting, one hasto provide an anycast address and make sure that
the traffic sent to that address ultimately reaches some nodewithin the service infrastructure. A simple solution
could be to choose the address of an arbitrary service node asthe anycast address. In that case, however, the
anycast address would be bound to this selected service node. This would make it impossible to contact the grid
service once that node has left the service infrastructure.

To circumvent this problem, a completely new address must beissued that is then used as the anycast
address. Dynamically creating an address is not difficult, as any IPv6 node can produce addresses belonging
to its own network. The service node which created the new address can then make the address reachable by
attaching it to its network interface, and advertise it as the service address. Later on, if the service node decides
to leave the service infrastructure, all that needs to be done ismove the anycast address to any other service node
that remains in the service infrastructure. We refer to the service node that holds the anycast address at a given
moment as acontact node.

To enable the service to move its anycast address at will, thecontact node performs a two-step procedure
immediately after having created the anycast address. First, it establishes anIPsec security association for that
address with its home agent. Recall that such an associationis used by MIPv6 to authenticate mobile nodes
to their home agents. It then forwards the association data and the HA’s address to one or morebackup nodes
within the service infrastructure. Given that any node holding the association data is considered by the home
agent to be the contact node, any backup node can now impersonate the contact node when communicating with
the home agent. Note that throughout the entire service lifetime, the service appears to that home agent as a
regular mobile node. The home agent therefore does not need to run any specialized software in addition to
MIPv6.

The contact node and all its backup nodes form a fault-tolerant group, whose goal is to keep the anycast
address persistent. This is achieved by enabling any backupnode to take over the anycast address should the
contact node leave the service infrastructure. Note that the contact node must trust its backup nodes that the

8

INTERNET

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

IPsec Data

IPsec Data

IPsec Data

Backup Node

Home Agent

Contact Node
(already gone)Tunnel all traffic to me.

I am mobile node X.

Figure 7: Taking over the anycast address

address takeover does not take place as long as the contact node remains within the service infrastructure.
To take over the contact address, one of the backup nodes convinces the home agent that it is actually the

contact node that has moved to another network. To this end, that backup node authenticates itself to the home
agent using the IPsec data obtained from the contact node, and reports its address as the new care-of address
of the contact node (see Figure 7). This results in tunnelingthe traffic targeting the anycast address to the
backup node through the home agent, which effectively turnsthe backup node into a new contact node. Doing
so preserves the reachability of the anycast address as all the traffic addressed to the service keeps on reaching
one of the service nodes. Note that some other backup node must take over the anycast address should the new
contact node leave the service infrastructure.

Although the anycast address is now stable, service access performance might still turn out to be poor
because extensive tunneling to the new contact node can overload the home agent and introduce communication
latency. These limitations are addressed by route optimization wherein the care-of address of an MN is revealed
to a CN. Given the care-of address, the MIPv6 layer of the CN transparently translates between home- and
care-of addresses of the mobile node.

Since a grid service appears to its clients and home agents asa regular mobile node, it can also use route
optimization. As a consequence, clients can communicate directly with the new contact node using its actual
address. This is likely to result in better service access performance.

The remaining question is how to enable multiple service nodes to use the same anycast address simulta-
neously. So far, we have discussed how all the clients can directly communicate with only one service node,
namely the contact node. The next section describes how the anycast address is effectively shared by enabling
the contact node to transparently handoff its clients to other service nodes, which constitutes the second phase
of versatile anycasting.

4.2.2 MIPv6 Handoff

The implementation of the anycast address ensures that eachclient request reaches the contact node. However,
this node should not process all the incoming requests by itself. It therefore needs a mechanism that enables it
to transparently hand off each request to another service nodes, which later may themselves transparently hand
it off again. We refer to the service node that hands off a client as adonor, and to the service node that takes
over the client as anacceptor.

An important observation is that while handoffs must be transparent to the client application, they need not
be transparent to the underlying layers of the client-side protocol stack. For example, the MIPv6 layer running at
CNs hides the movements of MNs from the upper layers by translating home addresses into care-of addresses,
and vice versa. We propose to exploit this address translation to implement client handoffs between service
nodes.

Recall that the address translation in MIPv6 is performed according to bindings created during MIPv6 route
optimization. As we discussed in the previous section, a grid service already exploits this mechanism to es-
tablish direct communication between the contact node and the clients. However, since route optimizations are
performed separately for each client, the service can also use them to hand off individual clients between any
pair of service nodes.

The goal of an MIPv6 handoff is to cause the client traffic sentto the anycast address to be redirected to
the acceptor’s address. This requires convincing the client that the service has just changed its care-of address

9

INTERNET

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Client

Home Agent

Contact Node

DonorAcceptor

INIT

INTERNET

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Acceptor

Client

Home Agent

Contact Node

Donor

HOTI
COTI

HOTIHOTI

(a) (b)

INTERNET

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Acceptor

Client

Home Agent

Contact Node

Donor

HOT

COT

HOTHOT

INTERNET

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Acceptor

Client

Home Agent

Contact Node

Donor

BU

BA

(c) (d)

Figure 8: MIPv6 handoff

to that of the acceptor, as only then will the client update its translation bindings accordingly. To this end, the
service carefully mimics the signaling of a mobile node performing route optimization.

The MIPv6 handoff signaling is coordinated by the acceptor,but initiated by the donor, which sends a special
Init message to the acceptor. That message contains the client address and the sequence number used during the
previous route optimization (see Figure 8a).

Having received theInit message, the acceptor starts acting as an MN running MIPv6 route optimization. It
first sends the HoTI and CoTI messages (see Figure 8b). Note that the acceptor must tunnel the HoTI message
to the contact node, which then tunnels it to the client through the HA.

The HoTI and CoTI messages cause their corresponding HoT andCoT messages to be sent by the client,
which acts as an MIPv6 correspondent node during the MIPv6 handoff (see Figure 8c). The HoT message is
also tunneled twice, by the HA and by the contact node. This requires that the contact node maintains a list of
pending MIPv6 handoffs.

Having received the HoT and CoT messages, the acceptor sendsa BU message to the client, which updates
its binding cache entries and acknowledges the update with the BA message (see Figure 8d). From that moment
on, the communication between the client and the service proceeds between the client and the acceptor.

The MIPv6 handoff enables the acceptor to communicate with the client on behalf of the service on the net-
work level. However, grid services commonly communicate with their clients by means of stateful connection-
oriented protocols such as TCP. In that case, handing off a client at the network level alone is not enough as it
would break the transport-level connections. The next sections discuss how to preserve such connections during
a handoff.

4.3 Transport-Level Handoff

Many grid services use the SOAP protocol for client-server communication. Messages in this protocol are typi-
cally transmitted using either HTTP or SMTP, both of which exploit TCP connections. In that case, redirecting
the client’s IP packets from the donor to the acceptor is not sufficient to enable the acceptor to communicate
with that client. This is because maintaining a TCP connection requires that the client and the server maintain
some connection state.

Preserving handoff transparency requires that apart from switching the client’s IP traffic, this server-side
connection state is also transferred from the donor to the acceptor. Transferring the TCP connection state from
one node to another is commonly referred to asTCP handoff. Note that TCP handoff does not affect client-side
state.

10

TCP TCP

AcceptorDonor

Socket State
SERVER

CODE
SERVER

CODE

KERNELKERNEL

Figure 9: Socket migration

Performing a TCP handoff together with an MIPv6 handoff results in transparent switching of the complete
TCP connection from the donor to the acceptor. As a result, the client and the acceptor communicate directly
with each other, which eliminates the need for shared front ends often employed by clusters. This makes TCP
handoffs implemented by anadaptable grid service fundamentally different from those implemented by their
cluster-based counterparts.

This section describes how TCP handoffs are supported in an adaptable grid service. We first describe some
basic properties of the TCP protocol, and then propose a procedure to hand off TCP connections on top of
MIPv6 handoff.

4.3.1 TCP Properties

TCP is a reliable communication protocol based on IP. Reliability of communication is ensured by means of
acknowledgments and retransmissions. In TCP, each transmitted packet is numbered and must be acknowledged
by the receiver. Should that not happen within some period oftime, then the packet is assumed to be lost and
therefore periodically retransmitted until its acknowledgment arrives, or a timeout occurs.

TCP requires the communicating parties to maintain some state. This state mainly consists of identifiers
used for recent acknowledgments and (re)transmissions, along with buffers containing the data that have not yet
been sent or acknowledged. The total size of a TCP connectionstate depends on the buffer sizes, and varies
from 90 bytes to around 90 kB.

The control states maintained by both ends of a TCP connection must remain consistent for the protocol to
function properly. If one party receives a message proving that the other end is not in a legal control state, then
it resets the connection.

Each end of a TCP connection is attached to a TCP socket. Sockets are an abstraction of various communi-
cation mechanisms provided by the operating system. Clientapplications and service implementations use TCP
sockets to send and receive data over TCP connections. Operating systems, in turn, use TCP sockets to store the
state of these connections.

4.3.2 TCP Handoff

Transferring the state of a TCP connection effectively means that the server-side TCP socket is migrated from
the donor to the acceptor. To this end, the donor must extractthe socket state from the operating system’s kernel
and send it to the acceptor. The acceptor, in turn, re-creates the socket in its own kernel based on the received
state (see Figure 9).

We support TCP socket migration by means of the open-source TCPCP package [23]. It consists of a user-
level library and a patch for the Linux kernel. TCPCP enablesany donor application to extract an open TCP
socket from the kernel in a serialized form. Given that serialized form, TCPCP re-creates the TCP socket in the
acceptor application, possibly running on another node. The IP-level traffic associated with the TCP socket is
assumed to be switched by some other mechanism.

The problem here is that while the socket is being migrated, the client may send data or acknowledgments
to the server. We must therefore ensure that packets issued by the client during the migration can never reach
a node that does not hold the corresponding TCP socket. Otherwise, the receiving member node would issue
TCP control messages back reporting a missing socket, whichwould cause the connection to be reset. TCPCP
solves this problem by maintaining two separate instances of the server-side socket during the period when it
is unclear whether client-issued packets will reach the donor or the acceptor. In this way, the client traffic sent
during the handoff always reaches some socket instance and can never trigger the connection reset.

11

INTERNET

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

TCP

Acceptor

Client

Donor

TCP Connection

Frozen TCP socket
to handoff

INIT

INTERNET

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

TCP

TCP

Client

Acceptor

Donor

Frozen TCP sockets

Starting MIPv6 Handoff

INTERNET

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

TCP

Client

Acceptor

Donor

Frozen TCP socket
to remove

DONE

(a) (b) (c)

Figure 10: TCP handoff

Maintaining two server-side socket instances forces TCPCPto keep their states consistent with each other,
and with the connection state held by the client. TCPCP achieves that by simply disallowing the TCP connection
state to change during the migration. To this end, it freezesthe socket right before extracting it from the
kernel. A frozen socket does not send any data nor acknowledgments, and it silently drops all the incoming
data or acknowledgments without processing them. Note thatthe dropped data and acknowledgments will be
retransmitted by the client. The socket is unfrozen after the IP-level traffic has been switched.

The TCP handoff procedure is depicted in Figure 10. The donorfirst freezes and extracts the TCP socket
from the kernel. The socket is then sent in theInit message (also used for MIPv6 handoff in Figure 8) to the
acceptor, which re-creates the socket in its own kernel (Figure 10a). Having re-created the socket, the acceptor
conveys the MIPv6 handoff to switch the client traffic from the donor to the acceptor (Figure 10b). Note that the
two server-side socket instances are kept frozen during theMIPv6 handoff. Once the MIPv6 handoff has been
completed, the acceptor unfreezes its socket, which can immediately be used to communicate with the client.
The acceptor also notifies the donor about the handoff completion with aDone message, so that the donor can
safely remove its frozen socket instance (Figure 10c).

Combining the TCP and MIPv6 handoffs allows a grid service tomigrate server-side TCP sockets among
nodes within its infrastructure without breaking the associated TCP connections. To maintain the handoff trans-
parency, however, the service must also ensure that the datasent over this connection by the acceptor are con-
sistent at the application level with those sent by the donorbefore the handoff. We discuss this issue next.

4.4 Application-Level Handoff

Migrating the server-side TCP socket enables the acceptor to send service data to the client over the same TCP
connection that was used by the donor before the migration. As a consequence, each socket migration logically
divides the service response data sent to the client into twoparts, depending on which service node actually sent
the data.

Preserving the handoff transparency requires that this logical division remains invisible to the client, which
expects all the response data to be sent by a single service node. The part sent after the handoff must therefore
seamlessly match the part sent before the handoff, and all the parts together must form a response that is valid
in terms of the service protocol.

Generating subsequent response parts without violating the service protocol requires that the donor passes
the application-level state of the connection to the acceptor. Given that state, the acceptor generates and sends
its response part as if it had generated all the previous response parts as well.

Passing the application-level state requires it to be serialized. The serialization method is typically application-
specific. In HTTP, for example, a response is generated afterreceiving an HTTP request, and consists of a header
and the actual requested content. In that case, the serialized application-level state consists of the HTTP request
being serviced, an indicator saying whether the HTTP headerhas already been sent, and the description of the
content part that has been sent so far. If the content is a static document, then such a description can simply be
the document name and the offset at which the previous content part ends.

The donor sends the serialized application-level state to the acceptor together with theInit message depicted
in Figures 8 and 10. Recall that this message also contains all the data necessary to perform handoffs at the

12

transport and network layers. Constructing such a message therefore requires that the donor concatenates the
sequence number from the local MIPv6 implementation, the TCP socket state, and the application-level state.

To relieve the service implementation from dealing with handoffs at different levels, the construction ofInit
messages can be implemented in a separate library. We discuss the syntax of the library calls in C, but the library
itself can also be implemented in Java or in any other language. The core function of that library is:

client handoff(client socket fd, acceptor IP, app state)

which constructs theInit message, sends it to the acceptor, and waits for theDone message that signals the hand-
off completion. The donor would call this function to migrate a given client socket along with the application-
level state to the acceptor. Once the call returns, the donorcloses the client socket using the standardclose()
call.

All that is needed at the acceptor’s side is to create a special socket bound to a well-known port, which is
used to receiveInit messages from donors. Whenever a message arrives at this socket, the acceptor can call
another library function to accept an incoming handoff:

client receive(special socket fd, &client socket fd, &app state)

This function reads theInit message from the special socket, performs the MIPv6 and TCP handoff, and sends
theDone message to the donor once these handoffs are complete. Finally, the functionreturns the client socket
re-created by the TCP handoff and the application-level state. The service instance running on the acceptor
simply needs to unserialize the received application-level state and determine what data should be sent to the
client next. Once this is done, these data are transmitted over the re-created client socket just as over any other
client socket created using traditional methods. However,the re-created socket must be closed using a special
library functionclient close(client socket fd), which ensures that the MIPv6 binding cache entry
on the client side is deleted.

4.5 Summary

Versatile anycast provides grid services with logical addresses, and enables each such service to redirect client
traffic from its logical addresses to the physical addressesof the service nodes for load balancing. The service
nodes can also handoff individual each client among themselves, which enables service nodes to join and leave
the service infrastructure as necessary. The resulting decoupling between the logical service address and the
service infrastructure contributes to the improved service adaptability and comes at the expense of upgrading
the service nodes such that they support versatile anycast functions.

However, as versatile anycast is just a routing mechanism, it cannot make a grid service adaptable by itself.
To this end, the service needs to implement a number of additional functions such as membership management
and load balancing. These functions enable the service to react to the changes in the composition of its in-
frastructure, and to select service nodes to which clients should be redirected or handed off. Both membership
management and load balancing can be implemented using standard techniques [24, 25].

5 Evaluation

We evaluate the performance of versatile anycast using a simple testbed (see Figure 11). The core of that testbed
is a NISTnet router, which connects the client machine to a service infrastructure [26]. The infrastructure
consists of two service nodes located in different networks, which are connected to the NISTnet core via their
home agents.

We use the NISTnet router to emulate wide-area latencies. However, since NISTnet is not IPv6-enabled, we
established three IP6-in-IP4 tunnels:SS to control packet transmission between the member nodes, and CS1 and
CS2 to control packet transmission between these member nodes and the client.

The NISTnet router runs Linux 2.4.20. All the remaining machines run Linux 2.6.8.1 and MIPL-2.0-RC1,
which is an open-source MIPv6 implementation for Linux [27]. All the machines are equipped with PIII pro-
cessors, with clocks varying from 450 to 700 MHz.

13

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

IPv6 LANs

Node 1

Node 2

Home Agent 1

Home Agent 2

SS
CS1

CS2

Client

Router
NISTnet

Figure 11: Testbed topology

5.1 Server Access Latency

The anycast address implementation based on tunneling provided by MIPv6 causes the client packets to be
routed through the home agent, which then tunnels them to thecontact node. The service access latency therefore
consists of two parts: the latency between the client and thehome agent, and the latency between the home agent
and the contact node.

To verify this claim, we developed a simple UDP-echo application. A UDP-echo client sends a 128-byte
UDP packet to the service, which sends that packet back. The client measures the round-trip time as the delay
between sending and receiving the packet.

We used two different configurations of the UDP-echo service. Both configurations use the anycast addresses
created by Node 1. However, whereas Node 1 belongs to the service in the first configuration, it does not in the
second one. In that case, the packets are tunneled between Home Agent 1 and Node 2.

For each service configuration, we have configured NISTnet with several combinations of latency values.
Packets transmitted through the SS tunnel were delayed by various latenciesLatSS . Packets transmitted through
the CS1 tunnel, in turn, were delayed by various latenciesLatCS1. For each pair of latencies, we iteratively ran
the UDP-echo client 100 times and calculated the average over the reported round-trip times.

The results were very consistent. The average reported round-trip time was2∗LatCS1+X for configuration
1, and2 ∗LatCS1 + 2 ∗LatSS + Y for configuration 2, where X and Y are small additional delays(on average
2.13 ms and 3.61 ms, respectively). We attribute the X and Y delays to the latency of Ethernet links and the time
of local processing at all the machines visited by the UDP packets.

Recall that the grid service can use route optimization to enable direct communication between its clients
and the contact node. However, since route optimization takes place in parallel to the application-level com-
munication, we do not consider it in this experiment, and analyze it only when evaluating the handoff times
below.

5.2 Handoff Time Decomposition

Versatile anycast enables the service nodes to hand off a client TCP connection among each other. In this
experiment, we investigate how much time is necessary to hand off a TCP connection, and what operations
consume most of that time.

Handoffs are performed by a simple service that delivers 1 MBof content upon request. The client first
opens a TCP connection to Node 1 acting as the contact node. Node 1 transfers 500 kB of data, and hands off
the connection to Node 2 immediately after the lastsend() call returns. Node 2 sends another 500 kB of data
and closes the connection.

The total handoff time can be divided into seven phases (see Table 1). The phases are delimited by the event
of sending or receiving some specific packets, which we time-stamp to mark the boundary between subsequent
phases. To detect events, we monitor all the packets exchanged in the testbed usingtcpdump listening on all the
network interfaces of the NISTnet router.

Table 1 reports the delays averaged over 100 download sessions. We have emulated various speeds of the
upstream DSL connections by shaping the traffic sent from thehome agents to the NISTnet router using the
standardcbq queuing discipline available in the Linux kernel. The results for unshaped 100 Mbps Ethernet are
included for completion.

14

Table 1: Handoff time decomposition (without NISTnet delays)

No. Operation Name
Inter-node Bandwidth

100 Mbps 2 Mbps 1.5 Mbps 1 Mbps

1 Socket Extraction 0.8 ms 5.8 ms 6.9 ms 11.8 ms
2 State Transfer 6.5 ms 319.1 ms 434.1 ms 648.2 ms
3 Socket Re-creation 2.2 ms 2.1 ms 2.1 ms 2.2 ms
4 Return-Routability Procedure 2.5 ms 3.7 ms 4.9 ms 8.9 ms
5 BU-Message Construction 2.7 ms 2.7 ms 2.7 ms 2.7 ms
6 Binding-Management Procedure 2.6 ms 2.6 ms 2.6 ms 2.6 ms
7 Socket Activation 1.1 ms 1.1 ms 1.1 ms 1.1 ms

Total Time: 18.4 ms 337.1 ms 454.4 ms 677.5 ms

As can be observed, extracting the socket at the donor apparently takes between 0.8 and 11.8 ms depending
on the network bandwidth (Phase 1). However, since this operation is entirely local, it should not depend on
the bandwidth at all. We have therefore verified these results by measuring the actual time spent in the socket-
extracting call, which turned out to be 0.8 ms on average. We believe that the higher values obtained using
packet monitoring result from transmission delays introduced by bandwidth shaping.

Most of the total handoff time is spent on transferring the socket state (Phase 2). The duration of this phase
is proportional to the network bandwidth, as each time the donor transfers the 90 kB of the socket state to the
acceptor. This time accounts for up to 95% of the total handoff time when emulating 1 Mbps DSL lines.

Local phases such as re-creating the socket, constructing the BU message, and activating the socket corre-
spond turn out to be relatively fast and independent of the bandwidth (Phases 3, 5, and 7). The return-routability
procedure, in turn, demonstrated some dependency on the bandwidth (Phase 4). However, since the packets
transmitted during this phase are very small, we believe that this dependency is artificial, and results from
delaying packets by the shaping mechanism previously observed for Phase 1.

Interestingly, the artificial delays introduced by traffic shaping cannot be observed for the binding manage-
ment procedure, where the BU and BA messages are exchanged between the acceptor and the client (Phase 6).
This is probably because the low network activity during Phases 3-5 causes the state of the shaping mechanism
to be reset by the time Phase 6 starts, which enables the two packets to be transmitted without any delay.

We also performed the same experiment for various combinations ofLSS, LCS1, andLCS2 latencies emu-
lated by NISTnet (we usedLCS1 = LCS2). The results are similar to those presented in Table 1, except that the
time spent in some phases varies proportionally to the NISTnet latencies. In particular, phase 2 varies byLSS,
phase 4 varies by2 ∗LSS + 2 ∗LCS1, and phase 6 varies by2 ∗LCS2. The additional delays correspond to the
latencies of network paths followed by the messages exchanged during the respective phases. Note that should
any of the MIPv6 packets be lost, it will be automatically retransmitted; in that case, the overall handoff time
will obviously be extended by the MIPv6 retransmission timeout of 1 second.

5.3 State Transfer Optimization

The previous experiment shows that most of the handoff time is spent transferring the socket state from the
donor to the acceptor. The reason why that transfer takes so long is that in this experiment the donor extracts the
socket immediately after the lastsend() call returns. This means that the socket buffers are nearly full, which
results in the socket size taking about 90 kB.

One way of reducing this size is to simply wait for some time asthe donor gradually sends the data stored
in the socket buffers and removes the data acknowledged by the client from the buffers. This would allow the
client to receive and acknowledge at least some of the data, which in turn would reduce the socket state. In this
experiment, we investigate how such waiting affects the handoff time.

We modified our server so that it would wait for a given period of time between passing the last data to the
socket and starting the actual handoff procedure. We also modified the client such that it measures its perceived
handoff time. We define the client-perceived handoff time asthe delay between receiving the last packet from
the donor and the first packet from the acceptor.

15

C
lie

nt
−

pe
rc

ei
ve

d
H

an
do

ff
T

im
e

(m
s)

 0 200 400 600 800 1000

Lcs=0 Lss=0
Lcs=20 Lss=10

Lcs=40 Lss=20

 900
 800
 700
 600
 500
 400
 300

 100
 200

 1000

 0

Donor Waiting Time (ms)

 1000
 900
 800
 700
 600
 500
 400
 300
 200
 100

 0
 0

Lcs=20 Lss=10
Lcs=0 Lss=0

Lcs=40 Lss=20

H
an

do
ff

tim
e

(m
s)

C
lie

nt
−

pe
rc

ei
ve

d

 200 400 600 800 1000
Donor Waiting Time (ms)

 0

 200

 400

 600

 800

 1000

 1200

 0
 200 400 600 800 1000

Lsc=40 Lss=20

Lsc=0 Lss=0
Lsc=20 Lss=10

H
an

do
ff

T
im

e
(m

s)
C

lie
nt

−
pe

rc
ei

ve
d

Donor Waiting Time (ms)

(a) 1 Mbps (b) 1.5 Mbps (c) 2 Mbps

Figure 12: Client-perceived handoff times for various upstream node connection bandwidths

Client

ACK BA

BU DATA

3 4 5 6 7

HoT
CoT

HoTI
CoTI

1

2

INIT

AcceptorDonor

Client

ACK

3 4 51

2

INIT

AcceptorDonor

BU

BA

DATA

(a) (b)

Figure 13: Optimizing wide-area latencies

Given the modified application, we repeatedly ran 100 download sessions for 1 MB of content and waiting
times varying from 0 to 1000 ms with a step of 25 ms. Similar to the previous experiments, we emulated
three different DSL connection bandwidths and various combinations of wide-area latencies. The results are
presented in Figure 12.

Increasing the donor’s waiting time causes the client-perceived handoff time to decrease to some minimum
value. Having reached that value, the client-perceived handoff time starts increasing. We verified that the
minimum value corresponds to the situation when the socket was extracted right after receiving the last ac-
knowledgment from the client, which removes the last packetfrom the socket buffers. As a consequence, the
socket state has only 90 bytes, which can be transferred in the time of the one-way latency between the donor
and the acceptor. This eliminates the delay resulting from transferring a large socket state over a low-bandwidth
connection. We conclude that the donor should always empty its output TCP buffers before freezing the socket
and starting the handoff.

5.4 Handoff Time Optimization

Now that the socket state is reduced to sending a single packet from the donor to the acceptor, and given that
the local processing times are negligible, the actual handoff time depends only on the latencies of the paths
followed by the messages exchanged during the handoff. In this experiment, we investigate whether this time
can be reduced even further.

Recall that the client-perceived handoff time is the delay between receiving the last packet from the donor
and the first packet from the acceptor. The beginning of the client-perceived handoff time corresponds to sending
the last acknowledgment to the donor (message 1 in Figure 13(a)). Upon receiving that acknowledgment, the
donor sends theInit message to the acceptor, which then runs the complete MIPv6 handoff. Once the MIPv6
handoff is complete, the acceptor sends the first packet containing the application data to the client. The client-
perceived handoff time ends once that packet is received by the client.

In fact, all these steps do not need to be performed sequentially. In particular, the acceptor can run the return-
routability procedure in advance while the donor is still busy with transferring data to the client, as no data other
than the client address is needed for that. Performing the return-routability procedure in advance eliminates its
time from the client-perceived handoff time, and allows thedonor to send the BU message immediately after
theInit message arrives (see Figure 13(b)).

16

 10 20 30 40 50 60 70
 0

 100

 200

 300

 400

 500

 600

C
lie

nt
−

P
er

ce
iv

ed
H

an
do

ff
T

im
e

(m
s)

One−way Client Latency (Lsc) (ms)

Full Handoff

Optimized Handoff

 80
One−way Server Latency (Lss) (ms)

 600

 500

 400

 300

 200

 100

 0
 10 20

Optimized Handoff

Full Handoff

H
an

do
ff

T
im

e
(m

s)
C

lie
nt

−
pe

rc
ei

ve
d

 80 70 60 50 40 30

(a) (b)

Figure 14: The impact of performing return-routability procedures in advance

To allow the acceptor to run the return-routability procedure in advance, the donor must notify the acceptor
about the upcoming handoff by sending aPrepare message containing the client address. This message is sent
when the donor has passed all its data to the socket and is about to start waiting for the last acknowledgment
from the client. Having received thePrepare message, the acceptor conveys the return-routability procedure
and keeps the resulting Kbm so that it can be sent in the BU message once theInit message arrives.

To investigate the impact of performing the return-routability procedure in advance, we modified our test
application once again. In the new version, the donor sends thePrepare message immediately after returning
from the lastsend() call, and then waits for the socket to become empty. The acceptor performs the return-
routability procedure upon receiving thePrepare message, and waits for theInit message before sending the BU
message to the client.

Similar to the previous experiment, we measured the averageclient-observed handoff times for 100 down-
load sessions with the network bandwidth shaped to 2 Mbps andvarious combinations ofLCS andLSS laten-
cies. Figure 14(a) shows the results obtained forLSS fixed to 20 ms andLCS varying from 10 to 80 ms, whereas
Figure 14(b) shows the results obtained forLCS fixed to 40 ms andLSS varying from 10 to 80 ms.

As can be observed, performing return-routability procedures in advance results in the reduction of client-
observed handoff times. The reduction is proportional bothto the latency between the client and the server
and to the latency between the member nodes. This is because our optimization effectively reduces the client-
observed handoff time from approximately6 ∗LCS + 3 ∗ LSS to approximately4 ∗ LCS + LSS since the time
of tunneling the HoT/HoTI messages between the acceptor andthe contact node is aboutLSS. Note that the
gain is lower if the donor’s waiting time is too short to allowthe acceptor to complete the return-routability
procedure before theInit message is sent. This can sometimes be observed for largeLSS values, which results
in an increased slope in Figure 14(b) forLSS equal or greater than 60 ms.

6 Discussion

6.1 Client-side MIPv6 Support

Our proposed mechanisms assume that client-side operatingsystems support the functionality of an MIPv6
correspondent node. This is already true for many popular operating systems, including Linux and Win-
dows [27, 28]. Besides, we expect that grid machines runningclient applications can be configured to implement
MIPv6 [29]. However, it might still happen that some potential service clients do not support MIPv6.

A grid service running versatile anycast can support a smallnumber of MIPv6-disabled clients. Recall
that the client-side MIPv6 support is necessary to hand off clients among member nodes using route optimiza-
tion, but it is not required to access the contact node. MIPv6-disabled clients can therefore be supported by
tunneling all their traffic through the contact node. However, the number of MIPv6-disabled clients that are
serviced simultaneously by the contact node should not be too large to prevent the contact node from becoming
a bottleneck.

17

6.2 Multiple Contact Addresses

Although grid services running versatile anycast normallyhave a single contact node, they can also create
multiple contact nodes so that the effort of forwarding requests and handling non-MIPv6 clients is spread over
several service nodes. In that case, each contact node has its own anycast address, which is advertised along
with the other anycast addresses. Similar to what happens inthe single-address scenario, each contact node in
the multiple-address scenario must have a number of backup nodes. To keep the number of trusted nodes in the
server low, each contact node may decide to select the remaining contact nodes as backup nodes. As a result, all
the contact nodes form a fault-tolerant group wherein all the nodes can impersonate each other as necessary.

The multiple contact addresses must somehow be advertised to the clients. To this end, a grid service may
register them in the DNS. Note that this solution is significantly different from simple DNS redirection, as the
DNS entries referring to logical addresses remain extremely stable even though the composition of the service
infrastructure changes dynamically. Also, registering logical addresses in the DNS enables the grid service to
occassionaly update the set of contact nodes so that it can stop using the home agents of former contact nodes
soon after their provided addresses have been removed from the DNS.

6.3 Multiple Client Connections

Certain services might allow a client to simultaneously open multiple TCP connections to the same service,
for example, to retrieve different parts of the service response in parallel. However, opening multiple TCP
connections to a grid service running versatile anycast viaa single anycast address can lead to problems when
the server decides to hand off any of these connections. Recall that the MIPv6 handoff updates the translation
bindings maintained by the client’s MIPv6 layer. However, since MIPv6 translation affectsall the traffic between
the client and the anycast address, either all the connections of a given client must be handed off simultaneously
to the same acceptor, or none at all.

This limitation can be alleviated if the service has multiple anycast addresses. As each translation binding is
associated with only one anycast address, it does not affectthe traffic sent to other addresses. Provided that the
client-side application opens simultaneous connections to different anycast addresses, the service can hand off
each of them just like non-parallel connections. Note that handing off parallel connections to different service
nodes effectively implements a parallel download from a distributed group of nodes, which has been shown to
dramatically improve the client experience [30].

6.4 Ungraceful Node Departures

In a large-scale service deployment, any node can leave the service infrastructure ungracefully, for example,
because of a hardware failure. In that case, it is too late to transfer the application- and transport-level state
of client connections serviced by that node to some other node. Although MIPv6 enables another node in the
server to intercept the client traffic related to these connections, they can no longer be serviced without the state
information, and the service is forced to close them. Such unexpected connection closing may result in the
service appearing to be unreliable.

This problem can be alleviated by instructing each service node to replicate the state of all its connections
across a small number of other service nodes. Should a service node leave ungracefully, the service can try
to recover the connections based on the replicated state. Note that the service’s ability to continue servicing
a given connection greatly depends on the state of that connection. For example, it might be impossible to
recover the data that have been received and acknowledged bythe service node’s TCP layer after the replicated
connection state was updated for the last time. This is because the service cannot force the client to retransmit
the already-acknowledged data. Also, recovering from ungraceful departures tends to be application-specific,
as applications themselves might provide some degree of resilience to sudden service outages. We investigate
various aspects of recovering client TCP connections afterungraceful departures in our present research.

7 Conclusion

We have presented versatile anycast, which allows a servicerunning on a varying collection of nodes scattered
over a wide-area network to present itself to the clients as one running on a single node. Providing a single

18

logical address enables the client-side software to preserve the traditional service access model based on single
access points. At the same time, the dynamic composition of anycast groups implemented by versatile anycast
enables the service infrastructure to evolve and adapt to changing network conditions.

We propose to implement logical addresses using versatile anycast, which presents a grid service to its
clients as a mobile node. This enables the service to decouple its logical address from the addresses of the nodes
forming the service infrastructure. Such a decoupling allows the service to dynamically map its logical address
to any service node while preserving the service reachability. Changing the mapping on a per-client basis, in
turn, enables the service to transparently hand off clientsamong the service nodes at the network level while
preserving optimal routing between the clients and the service nodes.

We have demonstrated that the overhead of contacting a service via its anycast address can be estimated
as the latency between the contact node and the home agent responsible for the contact address. The client-
perceived handoff time has also been shown to be a linear function of the latencies among the client and the
service nodes participating in the handoff.

As a routing mechanism, versatile cannot make grid servicesfully adaptable by itself. To this end, a grid
service must combine versatile anycast with some techniques for membership management and load balancing.
These techniques enable the service to decide when to use each of the functions provided by versatile anycast.

We believe that decoupling the development of the client-side software from the evolution of the server-side
service infrastructure is crucial for the successful deployment of large-scale grid services. Our implementation
of logical addresses will enable a great variety of servicesto evolve and adapt to the increasing client demand
without requiring any modifications to the client-side software.

References
[1] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid, Enabling Scalable Virtual Organizations,”Inter-

national Journal on High Performance Computing Applications, vol. 15, no. 3, pp. 200–222, 2001.

[2] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration,” inOpen Grid Service Infrastructure WG, Global Grid Forum, June 2002.

[3] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van Steen, “Replication for Web Hosting Systems,”ACM
Computing Surveys, vol. 36, no. 3, pp. 291–334, 2004.

[4] “BitTorrent, Inc.,” http://www.bittorrent.com/.

[5] C. Partridge, T. Medez, and W. Milliken, “Host Anycasting Service,” RFC 1546, Nov. 1993.

[6] M. Szymaniak, G. Pierre, and M. van Steen, “Versatile Anycasting with Mobile IPv6,” inSubmitted for publication,
May 2006.

[7] L. A. Barroso, J. Dean, and U. Holzle, “Web Search for a Planet: The Google Cluster Architecture,”IEEE Micro, vol.
23, no. 2, pp. 22–28, 2003.

[8] M. Rabinovich and A. Aggarwal, “RaDaR: A Scalable Architecture for a Global Web Hosting Service,”Computer
Networks, vol. 31, no. 11–16, pp. 1545–1561, 1999.

[9] V. Cardellini, M. Colajanni, and P. S. Yu, “Request Redirection Algorithms for Distributed Web Systems,”IEEE
Transactions on Parallel and Distributed Systems, vol. 14, no. 4, pp. 355–368, Apr. 2003.

[10] I. Foster and A. Iamnitchi, “On Death, Taxes, and the Convergence of Peer-to-Peer and Grid Computing,” in2nd
International Workshop on Peer-to-Peer Systems, Feb. 2003.

[11] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,C. Kesselman, T. Maguire, T. Sandholm, P. Vanderbilt, and
D. Snelling, “Open Grid Services Infrastructure (OGSI) Version 1.0,” Global Grid Forum Draft Recommendation, July
2003.

[12] A. Ganguly, A. Agrawal, P. Boykin, and R. Figueiredo, “WOW: Self-organizing Wide Area Overlay Networks of
Virtual Workstations,” inInternational Symposium on High Performance Distributed Computing, June 2006.

[13] B. Chun, P. Wu, H. Weatherspoon, and J. Kubiatowicz, “ChunkCast: An Anycast Service for Large Content Distribu-
tion,” in 5th International Workshop on Peer-to-Peer Systems, Feb. 2006.

[14] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “Scalable Application-Level Anycast for Highly Dynamic
Groups,” inInternational Workshop on Networked Group Communication, Sept. 2003.

[15] V. Cardellini, E. Casalicchio, M. Colajanni, and P.S. Yu, “The State of the Art in Locally Distributed Web-Server
Systems,”ACM Computing Surveys, vol. 34, no. 2, pp. 263–311, June 2002.

19

[16] E. Brewer, “Lessons from Giant-Scale Services,”IEEE Internet Computing, vol. 5, no. 4, pp. 46–55, 2001.

[17] T. Brisco, “DNS Support for Load Balancing,” RFC1794, Apr. 1995.

[18] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman,and B. Weihl, “Globally Distributed Content Delivery,”IEEE
Internet Computing, vol. 6, no. 5, pp. 50–58, Sept. 2002.

[19] M. J. Freedman, K. Lakshminarayanan, and D. Mazieres, “OASIS: Anycast for Any Service,” in3rd Symposium on
Networked Systems Design and Implementation, May 2006.

[20] D. Johnson, C. Perkins, and J. Arkko, “Mobility Supportin IPv6,” RFC 3775, June 2004.

[21] J. Arkko, V. Devarapalli, and F. Dupont, “Using IPsec toProtect Mobile IPv6 Signaling Between Mobile Nodes and
Home Agents,” RFC 3776, June 2004.

[22] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” RFC 2409, Nov. 1998.

[23] W. Almesberger, “TCP Connection Passing,” inOttawa Linux Symposium, July 2004.

[24] S. Voulgaris, D. Gavidia, and M. van Steen, “CYCLON: Inexpensive Membership Management for Unstructured P2P
Overlays,”Journal of Network and Systems Management, vol. 13, no. 2, pp. 197–217, June 2005.

[25] V. Cardellini, M. Colajanni, and P.S. Yu, “RedirectionAlgorithms for Load Sharing in Distributed Web-Server Sys-
tems,” in19th International Conference on Distributed Computing Systems, June 1999.

[26] “The NIST Net Network Emulator,”http://www-x.antd.nist.gov/nistnet/.

[27] “MIPL – Mobile IPv6 for Linux,” http://www.mobile-ipv6.org/.

[28] “Mobile IPv6 Systems Research Lab,”http://www.mobileipv6.net/.

[29] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jegou,S. Lanteri, N. Melab, R. Namyst, P. Primet, O. Richard,
E. Caron, J. Leduc, and G. Mornet, “Grid’5000: A Large Scale,Reconfigurable, Controlable and Monitorable Grid
Platform,” in6th International Workshop on Grid Computing, Nov. 2005.

[30] P. Rodriguez, A. Kirpal, and E. Biersack, “Parallel-Access for Mirror Sites in the Internet,” in19th INFOCOM
Conference, Mar. 2000.

20

