
Gossiptron

Efficient Sharing 
on the Grid 

without Central 
Coordination

Jaap Weel



2



Gossiptron



4



Gossiptron
Efficient Sharing on the Grid
Without Central Coordination

Jaap Weel

Thesis for the degree of
MSc in Parallel and Distributed Computer Systems
Supervised by Dr. Guillaume Pierre
Co-supervised by Guido Urdaneta
Department of Computer Science
Faculty of Exact Sciences
Vrije Universiteit Amsterdam



Copyright (c) 2008, Jaap Weel. This work is licensed under the Creative Com-
mons Attribution–No Derivative Works 3.0 Netherlands License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/
nl/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA. This text was typeset in Adobe Utopia and
Bitstream Vera Mono using LATEX by the author. The cover was typeset in Avenir
using OpenOffice.org Writer by the author, and diagrams were produced using
gnuplot.

http://creativecommons.org/licenses/by-nd/3.0/nl/
http://creativecommons.org/licenses/by-nd/3.0/nl/


Abstract

To succeed at increasing the value of computational resources by pooling
them across participants, grid computing needs a way of distinguishing re-
source allocations that increase value from ones that do not. I present an
algorithm called GOSSIPTRON that is a fully decentralized grid resource
allocator and replacement for Oner’s peer-to-peer grid scheduler that re-
duces opportunities for free riding and other abusive patterns of resource
use to acceptable levels without getting in the way of effective scheduling.
To do so, GOSSIPTRON employs gradual escalation in one-on-one barter
relationships, such as in BitTorrent, but extends the concept to transitive
barter. I have implemented a simulation of the algorithm, compared re-
sults among several of its variants, and analyzed the remaining vulnera-
bility to abuse. GOSSIPTRON maintains effective scheduling and reduces
opportunities for abuse to acceptable levels.

7



8



Contents

1 Introduction 11
1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 The rest of this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 A little economics 19
2.1 Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Wealth maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Obstacles to wealth maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Markets and money . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Back to grid resource allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Surplus on the grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Property on the grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Money on the grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.10 Transaction costs on the grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Decentralized resource allocation 27
3.1 Overview of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Specification of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Efficient resource allocation 35
4.1 Resource ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 A reciprocity-enabled algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 A locality-enabled algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 A transitivity-enabled algorithm: GOSSIPTRON . . . . . . . . . . . . . . . . . . . 39

5 Evaluation 45
5.1 Simulation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 The information problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 The trust problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9



Contents

6 Conclusion 55

A The Gossiptron code 57
A.1 Module header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.2 The simulation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.3 Basic data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.4 Specifying the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.5 The worker nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.6 The clock pseudo-node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.7 The user pseudo-node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.8 Primary overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.9 Node schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.10 Agendas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.11 Buckets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.12 Accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.13 Keeping track of chains of credit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.14 Some common parameters used in simulation . . . . . . . . . . . . . . . . . . . . 79
A.15 Run the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.16 Driver code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.17 Interval maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.18 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.19 Data analysis and visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.20 Parsing GWF files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 91

10



Chapter 1

Introduction

According to CERN’s GridCafé web site, “the Grid is a service for sharing computer
power and data storage capacity over the Internet” [1]—but the concept of “sharing”
covers up as much as it evokes.1 As a participant in the grid, a user may be much more
eager to see share the computational resources of others than to share their own. If the
grid is to accommodate a wide variety of participants, each with their own goals and
requirements and resources, then we must make arrangements to keep the grid from
becoming a pool that everyone can draw on but that nobody bothers to contribute to.

1.1 Goals

This thesis describes an attempt to construct and evaluate a resource allocation al-
gorithm for grids that is (1) decentralized and (2) efficient, even when some nodes in
the grid act strategically. In the remainder of this section, we will examine what these
goals mean and why they are necessary conditions for building a grid that is truly a
useful tool for sharing computational resources.

Decentralized allocation

It is one of the goals of this project that the algorithm for allocating grid resources
must be decentralized, or “peer-to-peer.”

A peer-to-peer system is different from a regular distributed system. A regular dis-
tributed system runs on a number of separate communicating machines, but typically
there will still be a small subset of the nodes in the network that has a special coordi-
nating role. For instance, on the Internet, the DNS root servers are a small subset of IP
hosts that have a special role in keeping track of the IP address top-level DNS servers.
Peer-to-peer systems, by contrast, dispense with centralized coordination altogether.

Peer-to-peer systems can be harder to design than traditional distributed systems,
so it is worthwhile to consider precisely why we would want a grid resource allocation
system to be peer-to-peer. There are three major advantages to building it in that way.

1Parts of this chapter have previously been used for a proposal submitted as part of the Research Pro-
posal course at Vrije Universiteit.

11



Chapter 1 Introduction

Table 1.1: Symbols used in this thesis

σ The number of (not necessarily distinct) neighbors each node has
κ The number of those neighbors exchanged upon each gossip transaction
φ Time between neighbor gossip episodes
γ Time between schedule gossip episodes
G Generosity parameter
E Escalation parameter
D Depreciation parameter
T Maximum transitivity
Na Neighbor array (primary overlay) for node a
Va Neighbor set (secondary VORONET overlay) for node a
Aa Initially empty agenda for node a
Sa Initially empty node schedule for node a
Ua [b ] UOI balance of node b with node a
Ia [b ] IOU balance of node b with node a
Ca [b ] Credit rating of node b with node a
La [b ] Credit limit of node b with node a
i j Globally unique job ID for job j
m j Size of required team for job j
d j Time required for job j
t j Time job will start for job j
c j The job’s coordinator node for job j
Tj Team for job j , including cache of team members’ node schedules
V (a ) Voronoi cell corresponding to node address a
h Hash function to translate node addresses to points inR2 for spatial routing
` Hash function to determine additional long-range links for spatial routing
R The set of real numbers
[0, 1) The set of real numbers between 0 and 1, including 0 but not 1.

12



1.1 Goals

The first advantage of a peer-to-peer system is that it eliminates a potential single
point of failure: the resource allocator. Because grids can be very large, having a single
point of failure is not a good idea. By distributing resource allocation, we can build
a fault-tolerant system that will not break down simply because a small number of
nodes break down.

Aside from avoiding a single point of failure, a peer-to-peer system has a second
advantage. It avoids a single bottleneck, or point of congestion. Even if no nodes
ever fail outright, it is still a bad idea to have all the resource allocation computations
involved in resource allocation be done by a single node, simply because resource al-
location computations consume more and more computational resources as the grid
grows, while the single resource allocation node still has a fixed amount of resources
to support that computation. In a peer-to-peer resource allocation system, unlike in
a centralized one, we add more resource allocation capacity automatically as we add
more nodes, and in that way we avoid having a single point of congestion.

Thirdly and finally, in this thesis, we assume that all nodes, including any central
resource allocation node, may act strategically in their own interest, rather than pre-
cisely according to the rules we set. In that situation, a decentralized system becomes
not only a good idea, but indeed crucial. An allocator acting strategically for its own
interest, rather than reliably according to a set algorithm that is designed to serve a
common good, can completely defeat the purpose of having a grid in the first place,
which is to serve the mutual benefit of participants, and not the individual benefit of
an allocator node.

Efficient allocation

The second stated goal of this thesis project is to achieve an efficient allocation of
resources in the presence of strategic nodes. By “efficiency” I mean wealth maximiza-
tion. Wealth maximization is a property of allocations of goods. Specifically, an allo-
cation is wealth maximizing (or Kaldor-Hicks efficient, to use an even less descriptive
term) if there are no more possible reallocation of resources that could increase total
wealth, that is, it would harm those that it harms less than it helps those that it helps,
measured by how much those that it harms are willing to pay to avoid it, and by how
much those that it helps are willing to pay to get it. This may appear cryptic now, but
we will encounter the concept of efficiency in more detail in chapter 2.

Why efficiency is important

I focus on efficiency as a criterion in this thesis because it is the very raison d’être of
a grid. When participants choose to join a grid, they do it because the transaction
creates wealth. If that is case, then the grid will be used, and otherwise, it will not.

13



Chapter 1 Introduction

Free riding and efficiency

A common source of inefficient allocations is free riding. Free riding is the practice of
drawing on a shared resource without contributing to it. In the grid, free riding is ob-
viously an issue. In most grid arrangements, several sites participate and each site can
both submit tasks to be performed using the common grid resources, and contribute
resources for the execution of tasks submitted by others. If there are sites that con-
sistently submit tasks for others to execute, but do not contribute any local resources
to execute jobs submitted by others, then those sites are trying to take a free ride. In
that case, it is quite possible that prohibiting them from participating until they make
a contribution will portend an improvement (in the sense to be further specified in
chapter 2). That means that the situation where free riding occurs is inefficient.

Free riding in centralized and peer-to-peer systems

In the case of a centralized allocation algorithm, it is possible to prevent free riding
from within the algorithm by enforcing explicit norms of fairness. Each node can
be prevented, for instance, from delegating more jobs to other nodes than it accepts
itself, on average. This can even be accomplished by some mechanism external to
the allocation algorithm itself—a grid accounting service maybe, or simply informal
norms of courtesy haphazardly enforced by system administrators.

In a peer-to-peer system, there is no central allocator. We cannot produce an ef-
ficient outcome simply by calculating an efficient allocation and imposing it on all
participants, but instead we must devise rules of local peer-to-peer interaction that
can lead to efficiency in the aggregate. Fortunately, we know from economics that,
under certain assumptions, such systems, called markets, can exist. For a market-like
grid to work, we need to assume that each node has the option to refuse any request to
contribute its resources, that is, it has right of ownership over its local computational
resources. Once the mechanism of ownership is in place, we also need to provide
policies for each node to decide how to exercise its right of ownership.

1.2 Prior work

Before considering in more detail the approach we will take to decentralized, efficient
allocation, we must examine what relevant work has been done on this topic in the
past. Distributed grid resource allocation and the economics of grid resource alloca-
tion have both been studied, but not in combination. The present project can be seen
as an attempt to tie together the two strands of research, incorporating techniques
inspired both by other (non-grid) peer-to-peer systems and by social science.

14



1.3 Approach

Work on decentralized grid scheduling

We will draw on the work of Caglar Oner on decentralized grid scheduling. [12] Oner
has developed a distributed algorithm for a grid computing system made up of nodes
connected by a network as well as a peer-to-peer overlay constructed using gossip
based peer sampling to resemble a random graph. [15, 11] A job, which must be per-
formed by some given number of nodes simultaneously, is initially scheduled by the
coordinator node for that job, based on local information that each node maintains
about the schedules of its direct neighbors. In our implementation, the coordina-
tor will simply be the node that originates a job, and there will therefore be as many
coordinators as there are nodes originating jobs. Once the initial schedule has been
computed and communicated to all participating nodes, it is then gradually refined
as each proposed participant in the job communicates with its neighbors to find ways
of scheduling it earlier.

Work on grid economics

We will also draw on prior work on the topic of grid economics. Most work in this
field attempts to take into account the price that participants are willing to pay and
the price at which participants are willing to make resources available. Typically, a
centralized resource allocator is used that either uses an auction protocol or tries to
explicitly calculate a market equilibrium using the methods of textbook microeco-
nomics. (See e.g. [16].) Much of this research would meet the goal of ours but for the
presence of the central allocator. Another line of research, sometimes referred to as
the catallactic approach, attempts to remove the central allocator, but it appears to
rely on the presence of a currency with which nodes in the system can trade among
themselves. (See e.g. [8].) Such a system is either not robust against the simple at-
tack of forging the currency, or else relies on a central “bank” (such as GridBank [4])
to execute all monetary transactions.

1.3 Approach

The mechanisms and policies used to accomplish decentralized, efficient research
allocation are the topic of chapters 4–6, but before we lose ourselves in discussing
more background knowledge, let me briefly outline the approach taken in this thesis.

Focus on allocation

We are concerned only with achieving an efficient allocation of resources in the pres-
ence of nodes that strategically try to manipulate the allocation mechanism. We shall
not be concerned with the equally interesting but distinct problem of nodes that play

15



Chapter 1 Introduction

along with the allocation mechanism and then proceed to sabotage the tasks they
have committed to performing, for example by returning the wrong results for a com-
putation. The latter issue is an interesting and important concern, as well, but it is
outside the scope of this thesis, which is about resource allocation, not grid security.

Resource ownership

In order to achieve efficient allocation, we must introduce the notion of ownership of
computational resources. In Oner’s original algorithm, it was assumed that nodes
would only refuse jobs in case of a scheduling conflict. This is unrealistic: nodes
that act strategically may pretend at times that there is a scheduling conflict when
there is none. At the same time it is undesirable, because without the ability to refuse
jobs for reasons other than scheduling conflicts we cannot prevent inefficient trans-
actions from occurring. Instead of making any assumptions about which jobs will be
accepted, I have designed my system on the assumption that any node may or may
not want to reject any job—for its own reasons.

Blind trust

Once the basic mechanism of local ownership of local resources has been thus estab-
lished, we need to look into what particular policy the nodes should employ to exer-
cise their newly found discretion. The very simplest case is for nodes to accept any
and all incoming requests, except in case of a scheduling conflict. This corresponds
exactly to Oner’s original algorithm. It is obviously vulnerable to a single participant
in the grid submitting an enormous amount of work to the grid and not doing any.

Direct reciprocity

We need cleverer policies than that, and the first one of these, which we will encounter
in section 4.2, is for nodes to accept jobs on the basis of direct reciprocity. This is
similar to the Tit-for-Tat approach taken in Axelrod’s classic study of the evolution of
cooperation [2] and in the popular file sharing protocol BitTorrent [7]. Accepting jobs
based on direct reciprocity means that a node A will only do work for a different node
B if in the past, B has done work for A. In other words, requests for resources are eval-
uated by asking of the requesting party, “what have done for me lately?” Obviously,
if this is the only principle we have got, cooperation will never get started. In order
to jump-start cooperation, we need to modify every node’s strategy to grant a small
amount of blind generosity to get the process of escalating reciprocity going. (In Bit-
Torrent, this is called “optimistic unchoking.”) All this is described in section 4.2.

16



1.3 Approach

Local reciprocity

Unfortunately, the simple reciprocity algorithm, if it has to involve offers of blind gen-
erosity to any and all potential collaboration partners, is vulnerable to exploits. As the
grid grows, so does the number of nodes that one can be ripped off by. Direct reci-
procity just does not interact very well with Oner’s scheduling algorithm. The num-
ber of relationships a node must maintain is bounded only by the size of the grid, and
each relationships requires initial, potentially unreciprocated, favors to be bestowed
on a stranger. These favors can quickly add up to a considerable free ride for the
strangers.

In order to solve this free rider problem, a different, more complex approach is pro-
posed in section 4.4. In that chapter, we will constrain the set of nodes that a node can
directly interact with to include only its immediate neighbors. This is similar to the
spatial models used by Axelrod [2], where participants were also placed in a spatial
structure and allowed to trade only with neighbors.

Transitive reciprocity

Imposing spatial structure on the grid pretty much solves the problem of blind gen-
erosity being abused, but it still does not interact well with Oner’s allocation algo-
rithm. In order to find the first available team for a job, the allocation algorithm must
sample the node schedules of a large number of nodes in the network. Very often, this
makes it necessary for nodes to interact even though they do not happen to be neigh-
bors. Restricting communication to neighbors may reduce vulnerability to exploits,
but at the same time it impairs the ability of the resource allocation algorithm to find
good allocations.

There is a way around this. If a node C—not being one of A’s neighbors—needs A
to do something, it may well be the case that A owes a favor to its neighbor B, and B
owes a favor to its neighbor C. What we want to have is a way to discharge simultane-
ously A’s obligation to B and B’s obligation to C by having A do a job for C. This would
considerably extend the number of partners that A can effectively deal with, even if
it only directly deals with its neighbors. That way, we can circumvent the problem
introduced by restricting transactions to neighbors only, without at all increasing the
number of nodes that need to be eligible for exploitable blind generosity.

Money or routing

At this point we should note that the most common real world solution to both the
problem of delayed reciprocity and the problem of transitive reciprocity does not in-
volve finding explicit chains of obligations between neighbors, but rather the use of
money. With money, rather than repaying past favors done to us or done to others

17



Chapter 1 Introduction

who have in turn done favors to us, we simply replace the mutual bestowing of favors
by a series of immediate one-on-one exchanges of labor for money.

As it happens, scarce money, however naturally it comes to humans in nearly all
cultures, is hard to implement in a computer system, where all we have to work with
are bits. Bits are just too easy to copy. There exist approaches to try to approximate
the unique properties of money using complex distributed algorithms, but they are
typically quite complex indeed. In this thesis we shall not seek to implement a mone-
tary system. Instead, we will employ a routing algorithm to explicitly find paths along
which transitive trade is possible.

1.4 The rest of this document

In the remainder of this thesis, we shall first consider, on an informal level, the eco-
nomics of public goods, in chapter 2. Next, we shall consider in chapter 3 Oner’s algo-
rithm for decentralized grid scheduling. That algorithm is not designed with strategic
agents in mind, but it will form the basis for our further explorations. Once we have
acquired a good understanding of the original, naïve version of Oner’s algorithm, we
proceed in section 4.1 to add a notion of resource ownership and in section 4.2 an
exceedingly simple strategy for exercising those rights based on direct reciprocity. We
will modify this strategy in section 4.3 to limit the number of neighbors that each node
needs to grant initial blind generosity to, and we will discover that while solving the
free rider problem, this change also limits the quality of schedules. Finally, we will
attempt to remedy that problem of schedule quality, without bringing back the free
rider problem, by implementing transitive reciprocity through explicit routing in sec-
tion 4.4. Once we understand all these strategies, we will proceed to have a look at
how they perform in simulation in chapter 5. Finally, in chapter 6, we discuss what
significance the results and insights described in this thesis have for resource alloca-
tion on grids, and what further research might be inspired by them.

18



Chapter 2

A little economics

In this chapter, we will encounter an informal summary of some economic concepts
that will illuminate the problem of decentralized, efficient resource allocation, on the
grid and otherwise, and that will inspire the solutions we will encounter in later chap-
ters.

2.1 Exchange

Let us start at the very beginning, with a story about Adam, a customer, and Eve, a
greengrocer. Adam has a coin, but he does not care much for coins. He would much
rather have an apple than a coin. Eve, the greengrocer, is holding an apple, but she
has plenty of other apples, and frankly she would much rather have the coin than the
apple.

Adam gives Eve a coin, and Eve hands Adam an apple. Adam says “thank you,” and
Eve in turn says “thank you.” Adam is holding an object that is more valuable (to him)
than the one he held before—and Eve is holding an object that is more valuable (to
her) than the one that she held before.

In the instant of exchange, a small act of economic creation has occurred. We can-
not escape the conclusion that both Adam and Eve are now wealthier than they were
before, and there is nobody around who has become poorer. Therefore, wealth must
have been created.

This phenomenon is sufficiently miraculous on the surface to warrant closer
scrutiny. After all, nothing physical has come into existence that did not exist before,
and yet we want to claim that something has been created.

From a physical point of view, all that happened was a shuffling around of pre-
existing stuff: one apple, and one coin, to be precise. The reason that wealth has
nonetheless been created is that wealth is in the eye of the beholder. Wealth does not
consist in things, but in the value that persons attach to things. Adam and Eve dis-
agree about the value of the objects. For Adam, the apple was worth more than the
coin, and for Eve, the coin was worth more than the apple. It is precisely that disagree-
ment that made it possible for them to engage in a wealth producing act of voluntary
exchange.

19



Chapter 2 A little economics

Put differently, exchange creates wealth by allocating goods to those who value
them most, as measured by what they are willing to give up to get them. If we put it like
that, we need only two additional pieces of information to estimate how much value
has been created in our economic parable: the most amount of money that Adam
would have been willing to pay for an apple, and the least amount of that money Eve
would have been prepared to sell it for. These amounts of money are called, respec-
tively, Adam’s reservation price and Eve’s reservation price. The difference between
the reservation prices is called surplus, and it measures the amount of wealth created
in the transaction.

2.2 Property

In concluding that the exchange between Adam and Eve was mutually beneficial, we
have so far made one very crucial hidden assumption: the exchange was voluntary.

To illustrate what happens when exchange is not voluntary, consider a variant of the
story where Adam takes the apple from Eve’s tree without asking and drops a coin in
her mailbox as an unsolicited payment. Maybe this is a mutually beneficial exchange
just like the previous one. Maybe it is not. But there is no way of knowing. We know
Adam ostensibly liked the apple better than the coin, but from the mere fact of the
exchange we can draw no conclusions about whether Eve preferred the coin to the
apple.

This brings us to the first important wrinkle on the story we encountered in the pre-
vious section: when we observe a change in allocation, we can only be sure that it
improved wealth if it was a voluntary exchange, that is, an exchange respecting prop-
erty rights.

2.3 Wealth maximization

We have seen that voluntary exchange is necessarily mutually beneficial, or it would
not happen, and therefore any voluntary exchange is wealth increasing. We do not
yet know, though, whether by simply allowing voluntary exchange, we can create a
wealth maximizing allocation.

Actually, before we try to find out more about how to achieve wealth maximization,
let us first examine David Friedman’s definition of this important concept, which he
also sometimes likes to call “Marshall efficiency.”

We consider a change (the abolition of tariffs, a new tax, rent control, ...)
that affects many people, making some worse off and others better off. In
principle we could price all of the gains and losses. We could ask each per-
son who was against the change how much money he would have to be

20



2.4 Obstacles to wealth maximization

given so that on net the money plus the (undesirable) effect of the change
would leave him exactly as well off as before. Similarly we could ask each
gainer what would be the largest amount he would pay to get that gain, if
he had to. We could, assuming everyone was telling us the truth, sum all
of the gains and losses, reduced in this way to a common measure. If the
sum was a net gain, we would say that the change was a Marshall improve-
ment. If we had a situation where no further (Marshall) improvement was
possible, we would describe it as efficient. [9]

There are many criteria of besides wealth maximization that one might use to eval-
uate an allocation, but there is one major reason why wealth maximization is a an
attractive one: it can often be achieved in a decentralized way. This may seem like rea-
soning backwards, but what good is a criterion, for our purposes, if it can be achieved
only by centralized control? Not only is central allocation something we set out explic-
itly not to design, but also it raises the tremendous problem of enforcing the mandates
of the centralized allocator.

It is not generally true of just any property of allocations that we could dream up
that it can be achieved, or even approximated, in a decentralized way. If the criterion
were to count, for instance, benefits to orphans double and veterans triple, but other-
wise maximize wealth, it would be hard to imagine a mechanism to bring this about
reliably that does not involve giving up control of allocation to a central allocator.

The reason that the criterion of wealth maximization is more suitable for distributed
implementation than any other known criterion is that it relies on the values of things
by how much agents are willing to give up to acquire (or avoid) them. Given property
rights as a “boundary condition”, agents have incentives to act precisely as though
they were trying to maximize value in that sense, but there is no readily imaginable
equivalent to property rights that gives people incentives to maximize value in the
“orphans double, veterans triple” sense.

2.4 Obstacles to wealth maximization

We can expect all mutually beneficial exchanges to happen if all involved have full in-
formation about each other’s preferences, and if they face no transaction costs, espe-
cially in cases where beneficial exchange requires coordination among many people.

We do not necessarily get wealth maximization if information is incomplete, be-
cause in that case exchanges can be prevented from happening that would have been
mutually beneficial. If Adam is a devoted connoisseur of antique teapots, and Eve has
an antique teapot she uses but does not particularly care for, then a possible act of
wealth creation could be prevented if Eve did not know of Adam’s love of teapots.

Similarly, we do not necessarily get wealth maximization when there exist poten-
tial transactions that have costs associated with them. Such costs, called transac-

21



Chapter 2 A little economics

tion costs, can be anything from sales taxes or the risk of highway robbery to the cost
of coordinating agreements needed for complex transactions among large groups of
people and enforcing those agreements. Take the example of 10,000 town residents
who would have to agree on contributing to construction of a road that all of them—
including the miser who wouldn’t pay—will be able to use once it is built. In that
case, transaction costs may be prohibitive or even infinite, and the wealth-increasing
creation of the road may not happen.1

2.5 Markets and money

Full information seems like a fairly outrageous assumption to make. Not even Adam
and Eve are likely to have full information about each other’s preferences, and the
billions of participants in modern markets definitely have no such knowledge.

But they have money as a common unit of account. Once we reduce all transac-
tions to immediate exchanges of money for goods, suddenly we drastically reduce the
amount of information that participants need to have in order to discover potential
beneficial exchanges. Rather than having to know how every other person values ev-
ery good we have in terms of every good they have, we only need to know how much
money they are willing to give for each good we have. Moreover, we do not need
to know this information for every buyer separately, because in a market situation,
prices will tend toward an equilibrium: once buyers know the going price for a good,
they will typically not buy it for more even if they value it higher than the going price,
just because they do not need to, and it is nicer to be able to pocket the difference.
Similarly, once sellers know the going price for a good, they will typically not sell it for
less even if they value it lower than the going price, just because they do not need to,
and it is nicer for them, too, to be able to pocket the difference.

In the presence of a market, the information that needs to be known in order
for agents to be able to discover all beneficial transactions is reduced to a single
number—the market price—for each good. Finding that one number may still involve
any number of auctions, assessors, inspectors, market researchers, and consumer re-
ports booklets, but the fact that in principle the going price can summarize all that is
worth knowing about the market in a given good goes a long way toward explaining
how it can be that efficiency is ostensibly approached quite closely in the real world.

Unless... there are significant transaction costs. Obviously, even if a market price
is observable, there still may exist potential beneficial transactions that are costly for

1This is one of the reasons why roads are often built by governments (the other being that it enriches
politicians). Governments do not have to operate within the confines of property rights, but can
instead just tax all residents, including the miser who wouldn’t pay, and spend it on a road. Such
mechanisms as government have their uses and their dangers, but both are outside of the scope of
this thesis, since they do not meet the requirement that all mechanisms be decentralized.

22



2.6 Back to grid resource allocation

other reasons. For example, we still have the case of the town of 10,000 where every-
body would be happy to help buy out a polluter if everyone contributed, but somehow
they cannot get their act together. Even if active markets exist in polluting factories
and in environmental cleanliness and it is obvious that there exists a price to be paid
that would make both the factory owner and the town residents better off, the trans-
action costs are still there.

Nonetheless, money can help here, too. One particular source of transaction costs is
the problem of delayed reciprocity. Sometimes, there may be no instantaneous wealth
increasing transactions, but there is a possibility for one agent to perform a service
or donate a good to another agent in the expectation of a reciprocating “gift” later
on. Such transactions can have great potential, but they do require that promises for
future trade be enforceable. This is usually thought of as a transaction cost: promises
for future trade can be made, but enforcing them has a cost. One way to deal with that
is to replace a pair of time-separated gifts with an instantaneous transfer of goods
for money now, and another instantaneous transfer of money for goods later. This
way, money can help reduce transaction costs as well as provide a means of spreading
information.

2.6 Back to grid resource allocation

Now that we are armed with a bit of background economic knowledge about effi-
ciency, markets, information, and transaction costs, we can look at our grid allocation
problem through an economic lens and discover that it breaks apart in two pieces.

2.7 Surplus on the grid

For our grid computing project, we will assume that all participants have some com-
putational resources to share. This should make us wonder why anybody would prefer
to use the grid rather than their own computational resources. If an organization or
an individual needs some amount of computing power, why can’t they just buy the
computers needed to supply it? Sometimes, the answer is that indeed that is what
they do, and they will not use a cooperative grid of the type we are discussing in this
thesis. (That need not prevent them from calling whatever type of computer cluster
they use a “grid,” but for our purposes, a grid is only interesting if it involves several
independent participants sharing resources.)

There are several reasons why individuals and organizations may nonetheless want
to pool computational resources. The most important of these is probably temporary
and irregular demand. Purchasing and maintaining a cluster that can entirely serve
your own needs may be a good idea if you have a steady predictable workload that

23



Chapter 2 A little economics

will last for the next 5 years at least, but in many cases, people need computational
resources for short-term projects, or at irregular intervals, or only during the day, or
only at night.

Take, for instance, two research groups that want to run simulations. One is in Am-
sterdam and the other is in Sidney. For both of them, the demand for computational
resources is higher during the day than at night, that is, the amount they are willing
to pay per CPU-hour is more during the day than at night. It so happens that when
it is day in Amsterdam, it is night in Sidney, and vice versa. This means that there is
surplus to be had: during the Dutch day, the Sidney group has a resource that the Am-
sterdam group values more highly than the Sidney group does; during the Australian
day, the Amsterdam group has a resource that the Sidney group values more highly
than the Amsterdam group does. By exchanging some of their resources, they can
make each other better off. It’s Adam and Eve all over again: the very disagreement
over the value of a CPU-hour of computational power at a particular time of day is
what gives rise to the possibility of mutually beneficial economic interaction. This is
one of the major ways in which a grid can be a wealth producing mechanism.

2.8 Property on the grid

In the real world, a common criticism of market mechanisms is that they are not as
decentralized as they seem, because somebody has to enforce the property rights. On
the grid, we are in luck: computer networks already tend to be set up with security
measures that make it (nearly) impossible for the unauthorized to use any given ma-
chine. This means that we do not need to worry, at least in this document, about
maintaining property rights. All we need to do, and will do in chapter 4, is to let nodes
assert the property rights that in a sense they already had.

2.9 Money on the grid

Given the praise of money that we sung earlier in this chapter, we might expect to be
able to use the concept of money to great effect on the grid. But there are problems.

Money works because it is a common unit of account that everybody can trust to
be valuable. This requires that it is somehow guaranteed to be scarce, and indeed,
we observe most cultures using for money either valuable scarce natural resources
such as precious metals, salt, and shells, or else documents that are guaranteed by
reputable banks, or governments, or others that monopolize and restrict the supply
of such documents. When a natural resource becomes no longer as scarce as it used to
be, or the institution behind an artificially scarce resource ceases to effectively restrict
its supply, the resource quickly becomes worthless.

24



2.10 Transaction costs on the grid

On computer systems, money is exceedingly hard to implement correctly. It can be
done in a centralized way, but to do money in a distributed way leads us straight back
into the issues of trust and reciprocity we were trying to avoid by introducing money.
Unlike with property rights in computational resources, which are readily enforced in
a distributed way, there is no obvious way to enforce in a distributed manner the rule
that money shall not be counterfeited.

Nonetheless, one alternative route not pursued here to reaching our goal might be
to build on top of prior attempts, most notably a project called KARMA, to introduce
a type of scarce resource to peer-to-peer systems that is monitored for counterfeiting
in a distributed way. [14, 10]

2.10 Transaction costs on the grid

Based on our understanding of economics, we can identify two potential obstacles on
the road to efficient distributed resource allocation on the grid. Both of these obsta-
cles can be interpreted as transaction costs, although it may be more customary to
call the first a “transaction cost” and the second an “information cost”.

Trust problem Instantaneous mutually beneficial transactions do not usually exist
on the grid. Rather, what we have is a sort of delayed mutual backscratching,
providing some resources now in the hope of receiving some later on. Such
transactions might be transformed by the use of money into instantaneous
transaction, but we just decided that money in a digital context is hard to imple-
ment, and that we therefore want to try to get along without introducing money.
There is a positive transaction cost associated with enforcing contracts for future
delivery. This is just a complicated way of saying that agents don’t necessarily
keep their promises.

Information problem As on all markets, the problem of collecting information about
potential beneficial transactions is a real one for market agents. On the grid, in
the absence of any centralized facility to keep track of market prices, we will have
to pay attention to spreading information about supply and demand around in
an efficient manner.

We will refer back to these two problems repeatedly when we try to solve them in
chapter 4. First, though, let us have a look at how to do decentralized grid allocation
in the comparatively simple situation where all nodes are assumed to be cooperative,
and not strategic.

25



26



Chapter 3

Decentralized resource allocation

In this chapter, I will describe Oner’s decentralized resource allocation algorithm,
which was first described in Caglar Oner’s masters thesis. [12] It provides an elegant
solution to the problem of decentralized resource allocation in the absence of strate-
gic behavior, and it will make for a good basis for further exploration of the same
problem when strategic behavior gets introduced in chapter 4.

Oner’s algorithm runs on a set of nodes called a grid. Each node can demand that a
job be run continuously for some number t of time units on some number m of nodes
simultaneously. Each node can also execute such jobs, one at a time.

The goal of the algorithm is to assign each job to a set of machines in such a way
that it can start as soon as possible, but of course without conflicts, and without the
need for any one node to have complete knowledge of the global schedule. In Oner’s
algorithm, there is no one node that functions as the scheduler—rather, each job is
scheduled through a sequence of localized interactions between individual nodes.

3.1 Overview of the algorithm

We use a gossip algorithm to maintain an overlay among the nodes. [15, 11] The over-
lay is a graph “overlaid” on the graph of the underlying communication network. In
the overlay graph, each node is responsible for keeping track of the set of nodes it
is connected to, called the neighbor set. In the gossip algorithm, each node peri-
odically initiates a transaction known as “gossip” with one neighbor in its neighbor
set. In a gossip transaction, the two participating nodes swap parts of their neighbor
sets. The transactions in the gossip algorithm serve to preserve the connectedness of
the overlay graph. Without the periodical exchange of parts of the neighbor sets, the
graph structure could easily become partitioned into several mutually unconnected
subgraphs.

Now that we understand how the overlay is maintained, let us examine the algo-
rithm used to allocate resources to a job. Each node maintains a node schedule that
records what job it is to execute at each future time period.

When a node originates a job that needs to be run on m machines for t minutes,
it acts as the scheduler, or coordinator, of its own job. The coordinator picks a ran-

27



Chapter 3 Decentralized resource allocation

dom initial team of m nodes from its own neighbor set. (If its own neighbor set is not
big enough, the coordinator can initiate a recursive search for more nodes through
its neighbor set.) When the initial team has been selected, the coordinator asks each
team member for its own node schedule. With these node schedules in hand, the co-
ordinator can now find the earliest possible time at which all the initial nodes can run
the job. When that time has been found, a tentative job schedule can be constructed
which consists of the node schedules of all the nodes involved in the new job, each
updated to include the new job. The job schedule is then communicated to all nodes
in the initial team, which update their respective node schedules to reflect it.

The algorithm as described so far is a fully functional scheduler. Each job that is
submitted to it will get scheduled and—eventually—executed. It is simply allocated
to a set of nodes that happen to be close to the coordinator in the overlay, and it will be
executed at those nodes’ earliest common convenience. This is not, however, a very
good algorithm.

The most remarkable feature of Oner’s algorithm, and the feature that makes it a
good algorithm after all, is schedule gossip. This is a mechanism by which the ini-
tial schedule can be improved. To perform schedule gossip, each node sends its node
schedule to a randomly selected neighbor. When such a node schedule arrives, the
recipient will attempt to use it to improve the job schedules of all the jobs that it co-
ordinates. For each such job, it will run through all team members, and check if the
job can be expedited by firing that team member and hiring the node whose node
schedule just arrived. If this is the case, the job schedule in the coordinator’s agenda
is updated, and all team members are notified of the changes.

Locking and simultaneous updates

Something has been left out of the description of the algorithm so far. If many jobs are
initiated at around the same time, there is a chance that two coordinators will request
the node schedules of a node, notice that it is free at a given time, and each schedule a
job in the free time slot. To avoid this double booking, we will have to use two-phase
commit.

In particular, what we will do is to split the process of entering a new job into the
node schedules of team members in two phases. First, each node in the prospective
team is asked to pencil the job into its schedule, and it reports back whether it was
indeed able to do so. If any one node reports that it was unable to pencil in the job,
presumably because of a scheduling conflict, then a second message goes out to each
of the team members asking to erase the job from its node schedule.

When an update to an existing node schedule occurs, a similar procedure is fol-
lowed. First, each node affected by the change, that is, all members of the old team as
well as all members of the new team, is asked to pencil in the new schedule, but not
to discard the old schedule yet. It reports back whether it succeeded. If every node

28



3.2 Specification of the algorithm

Table 3.1: Parameters for Oner’s algorithm

σ The number of (not necessarily distinct) neighbors each node has
κ The number of those neighbors exchanged upon each gossip transaction
φ Time between neighbor gossip episodes
γ Time between schedule gossip episodes

succeeded, then a second message goes out to all nodes to ask them to discard the
old job schedule from their node schedules. If any one node did not succeed, then
a second message goes out to all nodes to ask them to discard the new job schedule
and keep the old. The implementation does, of course, have to take account of the
possibility of the old and the new schedule overlapping.

A note on the role of the coordinator

In Oner’s original algorithm, the coordinator is not identified with the node that orig-
inates a job. In fact, the demand need not originate with one of the nodes at all,
but could very well come from a client machine that does not itself participate in the
grid. When a job demand arises, the role of coordinator is assigned to a random node
within the grid.

This is a feasible strategy in the case where Oner’s algorithm is used as a drop-in
replacement for an existing, centralized scheduling algorithm, but it does not make
sense in the case of a fully decentralized grid based on reciprocity rather than on blind
execution of all submitted jobs.

3.2 Specification of the algorithm

The description of Oner’s algorithm so far has been written to be comparatively easy
to understand on first reading, but it omits many of the details involved in implement-
ing the algorithm. In this section, we will go through the algorithm again, but this time
in more detail. The casual reader will want to skim this section, but those who want
to implement Oner’s algorithm themselves are advised to pay close attention.

Oner’s algorithm is parameterized by the parameters described in table 3.1. It runs
on a set of nodes, each of which has an address a and maintains a state consisting of
three parts:

1. A neighbor array Na , which is an array ofσ node addresses that records what the
node’s neighbors are. The initial neighbor arrays represent the initial topology of

29



Chapter 3 Decentralized resource allocation

Table 3.2: A job schedule for job j used by Oner’s algorithm is a record consisting of
7 fields, the last of which is itself a complex data structure that in turn con-
tains job schedules

Field Meaning

i j Globally unique job ID
m j Size of required team
d j Time required
t j Time job will start
c j The job’s coordinator node
Tj The team, as a finite mapping from node addresses to node schedules

(which are themselves mappings from times to job schedules.)

Table 3.3: Node state for the Oner’s algo-
rithm

Na Neighbor array (primary overlay)
Aa Initially empty agenda
Sa Initially empty node schedule

the overlay, and effectively forms another parameter to the algorithm.

2. An initially empty agenda Aa , which is a finite mapping from job IDs to job
schedules that records what jobs the node coordinates.1 Job schedules are
records described in table 3.2 that record information about a job.

3. An initially empty node schedule Sa , which is a map from times to job schedules
that records what jobs the node will run in at each time in the future.2

There are three ways in which activity can be initiated:

1A finite mapping can be implemented, for instance, as a hash table or a balanced tree. Some of the
algorithms are easier to implement if we choose a functional finite map, that is, a finite map that can
be non-destructively updated, such as a splay tree.

2In practice, because each job will run for a contiguous period, it is possible and useful to implement Sa

more compactly, but the algorithm is easier to explain if we assume Sa simply has an entry for each
unit time period, where units could for instance be seconds or minutes measured from the UNIX
epoch.

30



3.2 Specification of the algorithm

Neighbor gossip Every φ time units, each node a will initiate a gossip transaction
with another node b = Na [x ], where x is selected at random from {1, . . . ,σ}. It
sends a message GOSSIP(〈k1, . . . , kκ〉, 〈Na [k1], . . . , Na [kκ]〉) to b , where the k i are
drawn independently at random from {1, . . . ,σ}. Upon receipt of this GOSSIP
message, b returns to a a message PISSOG(〈k1, . . . , kκ〉, 〈Nb [l 1], . . . , Nb [lκ]〉), where
the l i are drawn independently at random from {1, . . . ,σ}, and only then it per-
forms its updates Nb [l 1] := Na [k1], . . . , Nb [lκ] := Na [kκ]. Upon receipt of the PIS-
SOG message, a performs its own updates Na [k1] :=Nb [l 1], . . . , Na [kκ] :=Nb [lκ].3

New job At undetermined times, a node a may initiate a new job with a globally
unique job ID i for which it requires the use of m nodes for d time units. First,
it must assemble an initial team T = n 1, . . . , n m by picking m distinct random
neighbors from Na , and send them each an ASK(i )message. Upon receipt of an
ASK message, each node responds with an ANSWER(i ,Sb ), where Sb is b ’s node
schedule.4 Upon receipt of an ANSWER, a checks whether all the ANSWERs for
a given job are in, it finds the earliest time t at which all nodes in T are avail-
able for d subsequent time units, and it constructs an initial job schedule j such
that i j = i , m j = m , d j = d , c j = a , t j = t , and Tj = T . It then sends a message
ENTER(•, j ) to each b ∈ T , where • is a dummy job schedule for which t (•) = 0
and d (•) = 0. 5 Note that the nodes must have synchronized clocks in order to
actually execute a given job all at the same time, so that the various nodes par-
ticipating in the job can communicate with each other. The details of actually
executing the jobs are outside the scope of this thesis.

Schedule gossip Every γ time units, each node a will send a message SUGGEST(Sa )
containing its node schedule to another node b = Na [x ], where x is selected at
random from {1, . . . ,σ}. Upon receipt of a SUGGEST message, b will examine
each of the jobs schedules j in its agenda for which it is the coordinator, and
for each job j it will consider each of the nodes n in its team Tj , and find out

3Note that the value of 〈k i , . . . , kκ〉 does not need to be kept track of by a because it is passed back and
forth in the messages. The specification is ambiguous as to what happens when there are duplicates
among the k i , l i . In my implementation, the updates are made in order of ascending i . It may be
tempting to require that the indexes be distinct, but not much is gained by this in practice because
the elements of the neighbor arrays need not be distinct. Lastly, we observe that it is possible for a
single node to be involved in multiple gossip transactions, and it is admittedly not specified in which
order the updates are to be intertwined, but any order will do as long as each set of updates Nb [l 1] :=
Na [k1], . . . , Nb [lκ] := Na [kκ] and each set of updates Na [k1] := Nb [l 1], . . . , Na [kκ] := Nb [lκ] is performed
atomically.

4The job ID is sent back and forth in this message once again for no other reason than to maintain state
at the coordinator between the receipt of two messages.

5In Oner’s initial description, it was possible to have jobs that require more than σ nodes. For the
purpose of researching efficient distributed allocation, this is not relevant, so it will be left out for
clarity.

31



Chapter 3 Decentralized resource allocation

whether T ′j = Tj − {n} ∪ {a } can execute the job j earlier than Tj can.6 When an
improvement is found, a new job schedule k is constructed with the new team
and starting time, and a message ENTER(j , k ) is sent to all members of Tj ∪T ′j .

Once the ENTER messages have been sent to the nodes n 1, . . . , n z , the two-phase
commit process for a new job and the two-phase commit process for an improvement
are identical, so we will describe the two together.

Upon receipt of an ENTER(j , k ) message, a node n will attempt to enter the job k
into its node schedule. First, it removes all entries Sn [t j ], . . . ,Sn [t j +d k − 1]. Then, if k
conflicts with an already scheduled job (other than j , which has just been removed),7

it adds the old job j back in, Sn [t j ] := j , . . . ,Sn [t j + d k − 1] := j and returns a message
ENTERED(F, j , k ), where F means “false,” because the attempt to enter the job was
unsuccessful. If there is no such conflict, it returns a message ENTERED(T, j , k ), it
adds the old job j back in, Sn [t j ] := j , . . . ,Sn [t j + d k − 1] := j , and then it also adds k ,
Sn [tk ] := k , . . . ,Sn [tk +d k −1] := k . If j and k overlap, this means that part of the entries
for j will be overwritten, but the old job must go back in the schedule in order to keep
its slots occupied until the two-phase commit is finished.

Upon receipt of the last of the messages ENTERED(β1, j , k ), . . . ,ENTERED(βz , j , k )
for a given job, a will send a second round of messages COMMIT(β , j , k ) to n 1, . . . , n z

where β =β1 ∧ · · · ∧ βz .
Upon receipt of a commit request COMMIT(T, j , k ), a node n removes

Sn [t j ], . . . ,Sn [t j + d j − 1] and only then it sets Sn [tk ] := k , . . . ,Sn [tk + d k − 1] := k and
returns an commit acknowledgment COMMITTED(T, j , k ). When a node n receives
an abort request COMMIT(F, j , k ), on the other hand, it removes Sn [tk ], . . . ,Sn [tk+d k−1]
and then it sets Sn [·] = k from Sn and it sets Sn [t j ] := j , . . . ,Sn [t j + d − 1] := j , and it
returns an abort acknowledgment COMMITTED(F, j , k ). Also, for each job j in Sn , n
sends a message UPDATE(i j ,Sn ) to c j .

Upon receipt of an UPDATE(i ,Sn ) message, a coordinator node a updates
T (Aa [i ])[n ] :=Sn to reflect it.

Upon receipt of the last of the COMMITTED messages for a given job, a checks if all
these messages have contained T . If so, it can update its agenda such that Aa [i k ] := k
and report that the job has been successfully scheduled, or improved, as the case may
be. If any one of them reports F , it must report that the job has not been successfully
scheduled (or improved, as the case may be.)

To summarize, all the types of messages that nodes may send are listed in table 3.4.

6This nested loop is computationally intensive, and profiling has shown that it is worth optimizing both
this loop and the data structure used to store node schedules, which it uses intensively.

7This is where jobs are refused because of scheduling conflicts. Later on, we will use this to refuse jobs
for other reasons!

32



3.2 Specification of the algorithm

Message name Signature

GOSSIP list<index> × list<address>
PISSOG list<index> × list<address>
SUGGEST map<time, job_schedule>
ASK job_id
ANSWER job_id ×map<time, job_schedule>
UPDATE job_id ×map<time, job_schedule>
ENTER job_schedule × job_schedule
ENTERED bool × job_schedule × job_schedule
COMMIT bool × job_schedule × job_schedule
COMMITTED bool × job_schedule × job_schedule

Table 3.4: Messages used by Oner’s algorithm with their
signatures, where list<...> is a polymorphic
vector, and map<...,...> is a polymorphic finite
mapping.

33



34



Chapter 4

Efficient resource allocation

In this chapter, we will begin by making some very simple changes to Oner’s scheduler
in order to turn it into a resource allocator that can deal with the presence of strategic
nodes. In the process, we will see that the algorithm’s ability to come up with good
schedules is reduced, and that the mechanism presented is still vulnerable to certain
strategic manipulations. This will set the stage for a series of improvements that rem-
edy these problems.

4.1 Resource ownership

In Oner’s algorithm, nodes are never asked whether they want to participate in execut-
ing a job. They are simply drafted into the team by the coordinator. The first step we
will take in ensuring reciprocity is to give each node ownership of its own resources,
which means it must have the option of refusing to participate in executing a job. As
it happens, the solution to the scheduling conflict problem discussed in the previous
chapter already provides the facility needed for nodes to refuse jobs. Nodes can refuse
jobs for strategic reasons in the same way that they might refuse a job on account of a
scheduling conflict. Therefore, adding resource ownership to the algorithm does not
actually require any modifications.

4.2 A reciprocity-enabled algorithm

Now that nodes can refuse jobs for reasons other than scheduling conflicts, the next
question is when they should do so. In Oner’s original algorithm, the answer was:
“never.” But Oner’s nodes did not have to deal with strategic competitors. Ours do, so
they must be cleverer.

We are now moving from the realm of rules into the realm of strategy (in the lan-
guage of game theory), or from mechanism into policy (in the jargon of computer
systems design). We could easily imagine a variety of nodes with a variety of strate-
gies coexisting and evolving, as is the case in practice with the BitTorrent protocol. [13]
Just as Cohen did for BitTorrent, though, we will also come up with a default refusal

35



Chapter 4 Efficient resource allocation

policy, and the first one we try will in fact be analogous to Cohen’s “unchoking” policy
for BitTorrent. [7]

In particular, I propose that a node n should maintain two numbers about every
node m it interacts with. The first I will call the IOU (“I owe you”) account In [m ], the
second, admittedly ungrammatically, the UOI (“you owe I”) account Un [m ]. When-
ever a worker w performs a job for a coordinator c , the worker w will add an amount
corresponding to the duration of the job to the UOI account it keeps for c (Uw [c ]) and
c will add the same amount to the IOU account it keeps for w (Ic [w ]). Whenever a
node gets removed from a team, the credits need to be reversed.

With this basic bookkeeping in place, the nodes have some information to base the
decision on of whether to accept a given job. A simple policy would be for w to accept
a job request from c whenever Iw [c ] >Uw [c ]. That way, at all times w ensures that it
has gotten more out of its relationship with c than it has put in.

Obviously, this policy is too conservative. The nature of exchange in the grid, in
the absence of money payments, is that each individual transaction is a one-sided
transfer from one node to another, offset by some transfer in the other direction in
the past or the future. It is this delayed nature of grid exchange that makes it impos-
sible to maintain efficiency on a transaction-by-transaction basis. There has to be a
mechanism by which nodes may come to trust each other enough to become willing
to render services in exchange for the expectation of reciprocation later on.

We can implement this idea by insisting not that all accounts clear all the time, but
rather that there can be some credit as long as it is below a certain limit. That is,
instead of requiring that Iw [c ] > Uw [c ], we require only that Iw [c ] > Uw [c ]−Lw [c ],
whereLw [c ] is the credit limit. Obviously, there is a lot of leeway we have in choosing
an expression forLw [c ].

We must start out the credit limit Lw [c ] that w extends to c at a certain level so
that interaction can get started. We will call that level the “generosity” parameter G .
Furthermore, in order to increase the potential gains from trade, we may want to in-
crease the credit limit over time as trust builds up—but we should be careful that a
high credit limit once built up does not last forever, lest a node that suddenly turns
from cooperative to exploitative be able to continue its exploits forever. Therefore, we
increase the credit limit in proportion to contributions c has made to w , but we let the
influence of those contributions decay exponentially with time. In summary, we set

Lw [c ] =G +E ×







∑

k∈Cw [c ]

vk (1−D)t−tk






,

where G is the “generosity” parameter, E is the “escalation” parameter, D is the “de-
preciation” parameter, and the vk and tk are the values and ages respectively of past
contributions k ∈Cw [c ] that c has made to w .

36



4.2 A reciprocity-enabled algorithm

Table 4.1: Parameters for reci-
procity algorithm

G Generosity parameter
E Escalation parameter
D Depreciation parameter

Table 4.2: Node state for the reciprocity-
enabled algorithm

Na Neighbor array (primary overlay)
Aa Initially empty agenda
Sa Initially empty node schedule
Ua UOI accounts
Ia IOU accounts
Ca Credit scores

This approach, contrary to appearance, does not actually require keeping track of
the set Cw [c ] of all prior contributions by c to w . We need only keep track of a credit
score Cw [c ] that is initialized to 0, multiplied by 1−D at each time period, and incre-
mented whenever Iw [c ] is incremented. Once we have that, we observe that

Lw [c ] =G +E ×Cw [c ].

This is precisely how bank savings accounts work: the bank does not compute com-
pound interest separately for each past contribution to the account, but instead per-
forms the entirely equivalent operation of paying interest over a running balance.

The generosity parameter allows for trust to be initially established, and the esca-
lation parameter allows for trust to increase between long established partners. The
depreciation parameter limits the process of escalation, so that when trust is broken,
it does not linger forever.

We will see in chapter 5 how direct reciprocity performs. For now, we will just rely on
intuition and say what are likely to be the obvious problems with the direct reciprocity
scheme:

The initial trust problem Each node stands to lose G×n CPU-ticks of computational
resources in entirely unreciprocated gifts to strangers, where n is the number of
other nodes interacted with.

37



Chapter 4 Efficient resource allocation

The trust escalation problem Each node stands to lose additional CPU ticks to part-
ners that have reciprocated, somewhat, but will in the future fail to reciprocate
as much as they ought to. The dual mechanisms of the escalation parameter
and the depreciation parameter present a crude TIT-FOR-TAT like way of deal-
ing with this: the amount of credit we are willing to extend to a long-term part-
ner is proportional to how much they have done for us lately, in a specified sense
of “lately”: the weight of contributions decays exponentially with age.

The information problem By reducing the number of transactions that will actually
happen as compared to Oner’s original algorithm, the reciprocity-enabled al-
gorithm reduces the ability of the resource allocator to make effective use of
dispersed information about supply and demand in the network.

And a scalability problem... Scalability relates more to the first goal of this thesis,
which is that the system should be decentralized. The reciprocity-enabled algo-
rithm requires each node to keep track of a potentially very large set of accounts;
in fact, the total amount of account information kept in the grid scales quadrat-
ically with the number of nodes in the grid. This means that a grid running the
reciprocity-enabled algorithm is not a scalable distributed system.

4.3 A locality-enabled algorithm

Of the problems we have met, we will first address the initial trust problem, in the
process solving the newly created scalability problem, but making the information
problem even worse. The way in which we limit the potential problematic conse-
quences of generosity is by not extending it to all nodes, but only to those in a local
neighborhood. Although we already have a structure—the primary overlay—in which
nodes have neighbors, it is not suitable for this purpose, because that overlay is de-
signed on purpose to be very fluid and change all the time, which would defeat the
entire purpose of trying to restrict the number of nodes that can receive unrecipro-
cated gifts. What we need is a new, secondary overlay, independent of the primary,
that is rather static. Any graph with a bounded average out-degree will do, and there
are several peer-to-peer protocols that can be used to maintain such a graph.

In the next section we will encounter the very important requirement that the graph
must have certain particular routing properties, and design our overlay graph with
that requirement in mind. Therefore, let us delay the discussion of the particular kind
of graph to be used to establish locality, and describe the pros and cons of locality:

The initial trust problem In a static graph with a maximum average out-degree of
d , the maximum average loss per node to unreciprocated initial generosity is
G × d . Since G and d are both fixed, and typically small, constant parameters,

38



4.4 A transitivity-enabled algorithm: GOSSIPTRON

Table 4.3: Node state for the locality-
enabled algorithm

Na Neighbor array (primary overlay)
Aa Initially empty agenda
Sa Initially empty node schedule
Ua UOI accounts
Ia IOU accounts
Ca Credit scores
Va Neighbor set (secondary overlay)

this is a rather acceptable result. We are unlikely to ever do much better on
the initial trust problem, except possibly if we can transform all time-separated
interaction into instantaneous monetary transactions, so we may as well declare
the initial trust problem solved for now.

The credit escalation problem The trust escalation problem is also reduced, by re-
ducing the number of nodes that a given node interacts with. While it is still
possible to escalate a credit limit and then have your trust betrayed, there are
fewer opportunities to suffer such a loss. There is some anecdotal evidence,
from Axelrod’s work for instance, and from Bittorrent, that a gradual trust es-
calation scheme as described here works well in practice, but it is very hard to
come up with hard and fast theoretical results about it. The reason for this is
simply that the number of possible strategies that other nodes may be following
to mislead us into falsely trusting them is unbounded, and it is hard to general-
ize across all of them.

The information problem By severely reducing the set of nodes with which ex-
change can be engaged in, the spread of dispersed information about supply
and demand is severely hampered. The locality-enabled algorithm will find it
impossible to schedule any job on more than one machine unless all members
of the initial team happen to be immediate neighbors in the secondary overlay
of the coordinator node.

4.4 A transitivity-enabled algorithm: GOSSIPTRON

A chain of credit is a sequence of nodes such that each would normally accept a job if
it were submitted by the previous one. If such a chain of credit exists between a worker

39



Chapter 4 Efficient resource allocation

node and a coordinator, the job should be able to go through, because intermediate
node in the chain can simply enter it into its accounts as one job performed for it by
the next node, and one job that it performs for the previous node.

When a worker node gets a request from a coordinator, and it cannot grant that re-
quest directly because the coordinator is not a neighbor or it has insufficient IOUs,
the worker node will have to find such a chain. It may try to do so by sending out a
message to some of its neighbors in the secondary overlay. If one of these neighbors
happens to owe something to the coordinator, and the worker owes something to that
neighbor, then a two-hop chain has been established, and the intermediary informs
the worker of the existence of the chain. In order to activate the chain, a two-phase
commit can be used, and the balances adjusted as though the intermediary were do-
ing a job for the coordinator and the worker were doing a job for the intermediary.

We now want to extend this mechanism to provide for chains of credit with more
than two hops. If we are to find such multi-hop chains of credit effectively, we can-
not rely on simply flooding messages out from the worker in all directions until they
reach the coordinator. We need some kind of routing mechanism that will efficiently
find the shortest multi-hop chain from one node to another. Moreover, the routing
mechanism needs to be such that if a particular hop between two nodes turns out to
be unusable, it is possible to find a second-best alternative route, and a third-best if
that one fails, and so on.

A well known routing mechanism that makes it particularly easy to find not only
some short route from one node to another, but also to find second-best routes if the
shortest route turns out to be unavailable, is spatial routing. With spatial routing,
each node is assigned a point in a space in some deterministic way, and connections
are made (mostly) between nodes that are spatially adjacent according to the metric
of the space. That way, we can easily route a message to a target by sending it at each
step toward a node that is closer—in terms of the space in which the nodes are now
embedded—to the target, and hence is separated from the target by fewer hops. This
type of routing is not only able to find routes, but it can also find alternative routes
if a particular hop is blocked for lack of credit, simply by passing a message from the
node that it got to before the blockage occurred not to the neighbor that is closest to
the target, but to the neighbor that is second-closest. When all possible directions
have been exhausted in this way, it is even possible to backtrack one hop and do the
same thing: excluding the neighbor that turned out to be a dead end, find the second
nearest neighbor to the target.

Spatial routing in more detail

The spatial routing protocol that we will use employs a Delaunay triangulation as its
overlay (which we shall call the secondary overlay to distinguish it from the primary
overlay that is used for gossip.) Each node n in the set of nodes N ⊂ N is assigned a

40



4.4 A transitivity-enabled algorithm: GOSSIPTRON

Table 4.4: Node state for the locality-enabled algo-
rithm

Na Neighbor array (primary overlay)
Aa Initially empty agenda
Sa Initially empty node schedule
Ua UOI accounts
Ia IOU accounts
Ca Credit limits
Va Neighbor set (secondary VORONET overlay)

point h(n ) in the Euclidean plane R2 using a hash function h :N → [0, 1)× [0, 1). Given
the resulting set of points {h(n )|n ∈N }, we divide the Euclidean plane into a Voronoi
tessellation of cells V (n ), one for each node n ∈N , such that the cell V (n ) that belongs
to node n consists of all points that are closer to n than to any other n ′ ∈N , that is,

V (n ) = {x ∈R2 | ∀n ′ ∈N . d (x , h(n ))≤ d (x , h(n ′))},

where d : R2 ×R2 → R is the Euclidean distance d ((x , y ), (x ′, y ′)) =
p

(x ′−x )2+(y ′− y )2.
Using this Voronoi tessellation, we then define a Delaunay triangulation, which is an
undirected graph with the nodes n ∈ N for its vertices, and which has an edge be-
tween two nodes whenever their Voronoi cells are adjacent, that is, the set of neigh-
bors in the Delaunay triangulation of a node n is

Dn = {n ′ ∈N | V (n )∩V (n ′) 6= ;}.

To improve the routing properties of the Delaunay triangulation overlay, we will find
it useful to add to it a few long range connections {n↔ n ′ | n ′ = `(n )∨n = `(n ′)} defined
by some hash function ` : N →N , and thus the neighbors of n in the entire overlay
graph are

Vn = {n ′ ∈N | V (n )∩V (n ′) 6= ; ∨ n ′ = `(n ) ∨ n = `(n ′) }.

As it turns out, a peer-to-peer algorithm called VORONET exists to create and main-
tain an overlay graph very much like this graph V , with the additional complica-
tion of choosing long-range neighbors in a more sophisticated way, and adding a
third kind of neighbors on top of the Delaunay and long range neighbors. These
complications are needed in VORONET to maintain some desirable routing proper-
ties in cases that are exceedingly unlikely when coordinates are generated by a good
hash function, as they are in GOSSIPTRON. [5] In the simulations in chapter 5, we
will take the existence of the distributed VORONET algorithm on faith and rather

41



Chapter 4 Efficient resource allocation

just compute the Delaunay triangulations centrally using the popular qhull program
whenever nodes enter or leave the network. [3] This program computes the Delau-
nay triangulation of a set of points P ⊂ R2 by first computing the convex hull of
{(x , y , z )∈R3|(x , y )∈ P ∧ z = x 2+ y 2} and projecting that down onto the x y plane.

GOSSIPTRON in more detail

Once we have the secondary overlay in place, we can assume that each node n has a
set of secondary neighbors Vn and that it is able to provide a good estimate of which
one of these provides the shortest route through the secondary overlay to a given tar-
get. Now we can start worrying about using the secondary overlay to establish chains
of credit.

The part of Oner’s algorithm that we are going to modify is, again, the first phase
of the two-phase commit process, where a request reaches a worker node asking it
either to enter a new job into the node schedule, or to change the scheduling for a job
that already is in the node schedule. At this point, the worker node can reject the job,
or it can accept the job, at least preliminarily, and “pencil it into” the node schedule.

This is the point in the algorithm where Oner’s algorithm checks for scheduling
conflicts, and it is the point where the reciprocity-enabled algorithm checks the sta-
tus of the reciprocity accounts, and it is also the point in the algorithm where the
transitivity-enabled algorithm will attempt to establish a chain of credit.

More precisely, whenever a node n receives an ENTER request to enter a job into
its node schedule, it then sends itself a BROKER request. When it receives a BROKER
request, whether from itself or elsewhere, it checks whether it is the coordinator for
that job, and if so, it adjusts the accounts, enters the job, and report success. If it is not
itself the coordinator, it will select from its secondary overlay neighbors Vn the one
that is nearest to the coordinator, adjust the accounts, and send a BROKER request
onward to that node, where the process repeats (but carefully avoiding any circular
chains), until the coordinator is reached, or the length of the chain exceeds the maxi-
mum chain length parameter T . When adjusting the accounts is impossible, because
the credit limit is reached (and here we use the exact same conditions as were used
in the reciprocity-enabled algorithm), failure is reported to the previous node, which
will then try again with the next-nearest neighbor. If all possibilities are exhausted in
this way, without ever yielding a suitable chain of credit, the whole enterprise is finally
abandoned and the job rejected, just as it would be rejected in the case of a scheduling
conflict in Oner’s algorithm.

For more detail on the precise way in which backtracking is performed, and the way
in which chains of credits are recorded to be later torn down if a node is removed from
a team because a job schedule is improved, the extremely interested reader should
refer to the appendix, in which extensively commented source code for the simulation
is available. Everybody else will want to skip on to the next chapter, because these

42



4.4 A transitivity-enabled algorithm: GOSSIPTRON

details as uninteresting as they are crucial for correct implementation.

43



44



Chapter 5

Evaluation

In order to compare various approaches to grid scheduling, we are going to look at a
simulation of the protocol, the source code for which is included in its entirety in the
appendix.

5.1 Simulation techniques

There are two common ways to simulate peer-to-peer protocols. As we will see later
on, I have used a third, but let us take a look at the two common techniques first.

Realistic simulation

The most obvious way to simulate a peer-to-peer protocol is what I shall call the real-
istic method. When you simulate a peer-to-peer protocol using the realistic method,
you closely follow the way it would run on a real network by representing nodes as
concurrent processes that pass messages. You implement those processes using fork()
and sockets, or similar primitives provided by a thread library or programming lan-
guage run-time. A cleverly written realistic simulation can easily share code with an
actual implementation of the same protocol.

Lockstep simulation

Another way to simulate peer-to-peer processes is the more efficient lockstep method.
In this method, you divide the algorithm that is run by each node into steps. During
each step, an arbitrary amount of computation may occur, and arbitrary messages
can be sent, but only messages can be received that had already been sent at the be-
ginning of the step. Any messages that are sent during the step are buffered to be
made available to their recipients only at the beginning of the following step. Steps
are synchronized globally, and each step lasts until all nodes are done with it.

Rewriting a peer-to-peer algorithm in this way makes simulation faster and more
reliable. Because messages are the only way in which the concurrent processes can
influence each other’s state, and messages are delayed until the end of the step, it

45



Chapter 5 Evaluation

does not matter at all whether the processes within a step are actually executed con-
currently or sequentially. This makes it possible to dispense with all the overhead of
threads and communication primitives provided by the operating system, and to im-
plement everything in terms of loops, tables and queues.

One disadvantage of the lockstep method is that simulation is entirely determinis-
tic, whereas the actual implementation is not. This overspecification makes it very
hard to tell whether results obtained in lockstep simulation are a good prediction of
what might happen in implementation. Another disadvantage of the lockstep method
is that you need to rewrite the peer-to-peer algorithm in a very particular way that of-
ten increases the amount of internal bookkeeping that needs to be done.

Hybrid simulation

I have used neither the realistic nor the lockstep method of simulation. Rather, I have
used a variant of the realistic method, inspired by the lockstep method. My nodes
are represented by Glasgow Haskell Control.Concurrent threads running on a single
machine, and they communicate using the Glasgow Haskell Control.Concurrent.Chan
mechanism, which allows simple buffered message passing. So far, this looks like a
typical realistic simulation.

The chief problem of the realistic simulation technique, though, is that it relies on
computations and events happening at the same speed, or at least in the same or-
der, as they would in an actual implementation. If no special care is taken to make
that happen, then all job submissions and gossip events are initiated immediately
when the simulation starts up, and the first round of the allocation algorithm will have
barely enough time to finish before the last job gets submitted. If we try to remedy this
by pacing the job submissions with a timer to correspond to a realistic schedule taken
from an actual grid, such as DAS-2, it will take much longer than needed to do a sim-
ple simulation—after all, we are only interested in scheduling, and do not care much
about the actual computations that the scheduled jobs may represent, so we should
be able to model an entire grid on a simple PC with considerable speedup. A possi-
ble compromise is to try to use a wall clock timer to submit jobs and pace events, but
apply a scale factor, such that for instance each second in the simulation corresponds
to an hour on DAS-2. It is very hard to get such a scale factor just right. The results of
such a simulation will be sensitive to what machine you use to run it and how heavily
that machine is loaded at the time.

In order to avoid this problem, I have chosen to make a slight modification to Oner’s
algorithm for simulation purposes, not as radical as I would have to do for a typical
lockstep simulation, but just enough to be able to simulate comfortably. It so hap-
pens that in Oner’s algorithm, and the variants on it that we explore, when there is no
activity in the system, activity can be generated only by the submission of a new job
or by a node initiating a gossip transaction. In the absence of one of those two events,

46



5.2 Evaluation

if there is nothing going on, nothing can start.
This makes it possible to implement the simulation of Oner’s algorithm in such a

way that both gossip transactions and job submissions are only begun in response to
the ticking of a global clock. Peer gossip happens once every φ ticks, schedule gossip
once every γ ticks. New jobs are initiated upon the ticking of the clock according to
a set workload that describes the behavior of the actual human users of the grid as
a function W : time→ list (address×N×N) that generates upon each clock tick a list
of tuples, each corresponding to a given node ordering a job for a given duration and
team size.

After a clock tick, an avalanche of messages is generated. There is gossiping, there
is scheduling, and there is two-phase-committing. At some point after the clock tick
happens, this avalanche dies down, and there will not be any more messages before
the next clock tick. I have modified the algorithm so that it keeps track of when this
point of tranquility is reached and follows it immediately by another clock tick. This
way the clock need tick no slower than necessary, but we know for sure that it will not
tick so fast as to make it impossible for the system to react to the events triggered by
one clock tick before the next one happens.

5.2 Evaluation

I stated in the introduction that the goal of this project is to arrive at a system that is
decentralized and efficient.

The decentralized nature of the GOSSIPTRON algorithm is built right into the de-
sign, with the one caveat that the reciprocity-enabled algorithm, which requires an
amount of storage space for the accounts that scales quadratically with the size of the
grid, is not exactly scalable, as we have already seen in the previous chapter.

Efficiency, on the other hand, is a more elusive goal. The criterion of wealth max-
imization lends itself well to theorizing, but not to measurement, because it is im-
possible to tell by observation whether all wealth-increasing transactions have been
exhausted. Preferences remain per se unobservable, so it becomes very hard to trans-
late the abstract criterion of efficiency into some sort of a baseline maximally efficient
outcome that our algorithm can be expected to approach. Moreover, it is impossible
to test the algorithm in the face of every possible set of strategic behaviors on the part
of malicious nodes.

In order to proceed from here, we will have to combine some analytical tests with
some intuition about the problem. First, we must recognize that there are two major
requirements for efficiency. One is for the algorithm to solve the information problem
and find all potential interactions that would lead to aggregate gains of wealth. The
second is for the algorithm to address the trust problem and cut off proposed interac-
tions that would lead to aggregate loss of wealth. If we evaluate these two components

47



Chapter 5 Evaluation

of efficiency separately, we can get a sense of how well the GOSSIPTRON algorithm is
doing.

5.3 The information problem

The first claim we will want to evaluate is that the algorithm does no worse at solving
the information problem than Oner’s algorithm. It is definitely the case that Oner’s
algorithm does not always find the best possible schedule, and that in cases where it
does not, GOSSIPTRON won’t find it either, but that is not what this thesis is about.
We will want to find out in this section whether GOSSIPTRON can do as well as Oner’s
algorithm in a fair comparison.

In order to get such a fair comparison, we focus on the case where the nodes make
demands on the grid that, averaged over as short as possible a timescale, are equal
in size. In that case, we cannot reasonably blame any failures of GOSSIPTRON to
schedule jobs as fast as Oner’s algorithm on a legitimate effort to prevent free riding,
so the information problem is cleanly separated from the trust problem.

Before we do the comparison, let us explore in yet more detail than before why ex-
actly the comparison is a fair one. We know that it is arithmetically impossible on av-
erage, in the long run for users to be using more resources than they contribute. From
this, in combination with the fact that the grid does apparently get used, we must con-
clude that nodes, on average, get more value out of using grid resources than they give
up by putting in the same amount. This may be the case, as we discussed in chapter
2, because their demand for resources fluctuates whereas their supply is steady—but
for all we know, it might as well be because other people’s CPU cycles are tastier than
your own—the fact follows from revealed preference, not any particular assumption
about “why” resources are valued the way they are. Furthermore, we will assume that
nodes value jobs executed soon after submission higher than jobs executed much
later.1 This means that in the case where demands on the grid, averaged over as short
as possible a timescale, are equal in size, there is strictly no gain in efficiency to be
had from restricting the scheduling performed by Oner’s original algorithm, and any
additional delay is a loss.

In order to operationalize this criterion, we must choose a particular workload. We
will use an artificial workload function Wheavy where in each of the first 5 time units, 20
jobs of 5 machine, 5 time each are submitted, as well as a load Wlite where 10 such jobs
are submitted in each of the first 10 time units, and a load Wwacky which is like Wlite

except that during the first 5 time units, jobs are originated by even-numbered nodes,
and during the next 5, by odd-numbered nodes. The jobs produced by a workload

1This is a standard assumption in economics. Occasionally, an economist will try to use it to analyze a
futures market in perishable goods and feign surprise at the fact that it does not apply, but usually it
is a sound assumption, because if you prefer to consume the good later, you can always save it.

48



5.3 The information problem

are submitted sequentially by all nodes (with the twist of the odd and even nodes in
the “wacky” case), the grid has 100 nodes in it, and the simulation is run for 100 time
units before being cut off, or 200 time units in the case of the GOSSIPTRON algorithm
with T = 10 and T = 99. The primary overlay is initialized to a random graph so as
to remove the need to run the gossip algorithm for a considerable time before the
graph takes on desirable properties. The gossip frequencies are set to φ = γ = 1, the
primary overlay neighborhood size to σ = 10, and the primary overlay gossip size to
κ = 2. We also choose to set the parameters for the reciprocity part of the algorithm
to G = 1, E = 0.6, D = 0.05 for no particular reason other than that they seem intuitively
reasonable and they seem to work.

Oner’s original algorithm

In figure 5.1 we can see how Oner’s original algorithm performs on the various loads.
Not all jobs are scheduled for immediate runs because the load is fairly heavy com-
pared to the size of the grid.

Reciprocity-enabled algorithm

In figure 5.1, we can see that introducing a direct reprocity requirement hampers the
ability of the algorithm to find good schedules somewhat, especially with a heavier
load, but not very much. This is partially due to the particularly smooth distribution
of job origins in the workload we used, and in the case of the “wacky” workload, which
is designed to put more strain on the generosity mechanism, we see that efficiency is
reduced.

Locality-enabled algorithm

In figure 5.1, we can see that introducing locality into the reciprocity-enabled algo-
rithm completely destroys the algorithm’s ability to get anything done. Dealing only
with secondary overlay neighbors just doesn’t work if you need to get 5 worker teams
together. It turns out that for smaller teams and smaller network sizes, it sometimes
happens, as though by accident, that the initial team is composed of nodes that are all
the workers’ neighbors not only in the primary but also in the secondary overlay, but
this is exceedingly rare. Obviously, the locality-enabled algorithm is no good except
as a basis for the transitivity-enabled algorithm.

Transitivity-enabled algorithm

The transitivity-enabled algorithm (figure 5.2) for a low value of the transitivity limit
T performs as poorly as the locality-enabled algorithm, but as T goes up, its perfor-

49



Chapter 5 Evaluation

Figure 5.1: Results from Oner’s algorithm, the reciprocity-enabled algorithm, and the
locality-enabled algorithm. The graphs are histograms of scheduling de-
lays, with delay on the x -axis and frequency on the y -axis, for a 100 node
network run for 100 time steps with σ= 10,κ= 2,φ = γ= 1.

Oner’s algorithm

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

heavy (0 failed)

0

5

10

15

20

0 5 10 15 20 25 30 35 40

lite (0 failed)

0
10
20
30
40
50
60
70

0 5 10 15 20 25 30 35 40

wacky (0 failed)

The reciprocity-enabled algorithm, G = 1, E = 0.6, D = 0.05

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

heavy (8 failed)

0

5

10

15

20

0 5 10 15 20 25 30 35 40

lite (0 failed)

0
10
20
30
40
50
60
70

0 5 10 15 20 25 30 35 40

wacky (58 failed)

The locality-enabled algorithm, G = 1, E = 0.6, D = 0.05

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

heavy (100 failed)

0

5

10

15

20

0 5 10 15 20 25 30 35 40

lite (20 failed)

0
10
20
30
40
50
60
70

0 5 10 15 20 25 30 35 40

wacky (100 failed)

50



5.3 The information problem

Figure 5.2: Results from GOSSIPTRON. The graphs are histograms of scheduling de-
lays, with delay on the x -axis and frequency on the y -axis, for a 100 node
network run for 100 time steps in T = 5 case and 200 time steps in the T = 10
and T = 99 cases, with σ= 10,κ= 2,φ = γ= 1.

GOSSIPTRON, with T = 5 and G = 1, E = 0.6, D = 0.05

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

heavy (100 failed)

0

5

10

15

20

0 5 10 15 20 25 30 35 40

lite (20 failed)

0
10
20
30
40
50
60
70

0 5 10 15 20 25 30 35 40

wacky (98 failed)

GOSSIPTRON, with T = 10 and G = 1, E = 0.6, D = 0.05

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

heavy (19 failed)

0

5

10

15

20

0 5 10 15 20 25 30 35 40

lite (8 failed)

0
10
20
30
40
50
60
70

0 5 10 15 20 25 30 35 40

wacky (37 failed)

GOSSIPTRON, with T = 99 and G = 1, E = 0.6, D = 0.05

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

heavy (6 failed)

0

5

10

15

20

0 5 10 15 20 25 30 35 40

lite (1 failed)

0
10
20
30
40
50
60
70

0 5 10 15 20 25 30 35 40

wacky (4 failed)

51



Chapter 5 Evaluation

mance improves to approach that of the original algorithm. Most jobs are still sched-
uled within 0–5 time units, but the right-hand tail of jobs that take longer is longer
and fatter than it was in the previous algorithms.

5.4 The trust problem

The trust problem does not lend itself to the same kind of direct empirical testing as
the information problem, because it is not possible to test a given strategy against all
possible other strategies. Instead, we need to inform any testing we do with some
more analysis.

The only bounds we can give on the unbalance of any given node w for Oner’s algo-
rithm are

−∞<ΣUw −ΣIw <∞.

That means that the difference between the amount a node can get cheated for is
unbounded, as is the amount to be gained in resources in excess of contributions by
acting strategically.2 These characteristics of Oner’s algorithm clearly leave something
to be desired.

For the reciprocity-enabled algorithm it is

|N |×






G +E ×
∑

k∈Uw

vk (1−D)t−tk






<ΣUw −ΣIw < |N |×






G +E ×
∑

k∈Iw

vk (1−D)t−tk







where Iw is the set of contributions k made to w expressed as amounts vk and times
tk (but we have always set v = 1 in the simulation), Uw is the set of contributions
made by w , and |N | is the number of nodes in the grid. For both the locality-enabled
algorithm and the ultimate transitivity-enabled algorithm GOSSIPTRON, the bound
is

δw ×






G +E ×
∑

k∈Uw

vk (1−D)t−tk






<ΣUw −ΣIw <δw ×






G +E ×
∑

k∈Iw

vk (1−D)t−tk







δw is the secondary overlay out-degree of w , which is at most 7 on average [6, corollary
9.5.3]3, so we can estimate the bound to be typically

7×






G +E ×
∑

k∈Uw

vk (1−D)t−tk






<ΣUw −ΣIw < 7×






G +E ×
∑

k∈Iw

vk (1−D)t−tk







2It is of course possible to compute bounds on the amount of resources that can be gained within some
amount of time based on the size of the grid, but that is beside the point here.

3The theorem referred to states that for a simple, finite planar graph, the average degree of nodes is at
most 5. Our graph is such a graph with additional long-range links bringing that average up to 7.

52



5.4 The trust problem

Figure 5.3: Results from the various algorithms with 10% cheaters. The graphs are his-
tograms of scheduling delays, with delay on the x -axis and frequency on
the y -axis, for a 100 node network run for 100 time steps in T = 5 case and
200 time steps in the T = 10 and T = 99 cases, with σ= 10,κ= 2,φ = γ= 1.

Oner Reciprocity Locality

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

cheat (0 failed)

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

cheat (58 failed)

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

cheat (100 failed)

GOSSIPTRON T = 5 GOSSIPTRON T = 10 GOSSIPTRON T = 99

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

cheat (100 failed)

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

cheat (35 failed)

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

cheat (7 failed)

53



Chapter 5 Evaluation

If we assume that D = 0, which is really the worst case in terms of risk, then

lim
Iw→∞

ΣLw /ΣIw = 8E .

This means that, if D = 0, in the limit a node running GOSSIPTRON may still have
to provide 8 times as many resources as it has gained from participating in the grid.
We know from previous analysis that the reason nodes participate in the grid has to
do with the fact that they value the resources they get higher than the resources they
contribute, but how likely is it to be 4.2 times more? (That’s what 7E is in the examples
of the previous section, where E = 0.6.)

Actually, such situations could easily occur. There are many situations in which
people who occasionally need lots of resources really need them only a small fraction
of the time, and providing 4.2 nighttime CPU-hours for every daytime CPU-hour con-
sumed may be a fair deal for many casual uses. Also, future research could focus on
fine-tuning the parameters to see by how much E can be brought down, or whether
the number of long-range links can be reduced, or any number of other expedients.

But it is not only the amount of damage that can be done to any given node that be-
comes bounded, but also the amount of gains any given node can make from doing
damage. The hard bound on damages of limIw→∞ΣLw /ΣIw = 8E is not what GOSSIP-
TRON is built on. Trust is extended slowly toward those who have contributed, and
reduced again slowly when they no longer contribute. Moreover, if we assume that
node addresses are a hash of a node’s actual IP address, so that it is not possible to
execute Sybil attacks (an assumption that we can make by noting that identity fraud
is outside of the scope of this thesis), the bound on how much there is to be gained
from cheating becomes a disincentive for anybody who actually wants to use the grid.

54



Chapter 6

Conclusion

In the introduction, I wrote that the concept of “sharing” as it is often applied to grid
computing covers up a lot of complexity. In this thesis, we have dug through some of
that complexity. We have seen that through the careful application of known princi-
ples such as escalating reciprocal trust and spatial routing, the grid can become not
just a place for friends to share resources in ways determined by a common under-
standing of goals, but also a place where the multitude of conflicting preferences of a
group of not otherwise connected users can co-exist. Moreover, that co-existence is
achieved without central management in a way that creates value and can draw users
to the grid.

We moved from a grid that was a common pool that everyone could draw on with-
out contributing to one where such abuse is prevented by the allocation mechanism
itself. As we made that move, we also moved from the language of sharing, commonly
applied to small homogeneous groups with commonly understood goals, to notions
of property and exchange, commonly applied to larger groups of people with possibly
conflicting goals. It is no different with computers than with people—in small groups,
it may suffice to determine how to divide tasks to reach a certain goal, and rely on
common understanding for coordination, but in large groups, abstract principles are
needed. Without such abstract, “civic” principles, the blind application of small group
principles to large groups leads inevitably to overloading of communication channels
and the tragedy of the commons.

The abstract principles used to solve the public goods problem of the grid resource
pool involve property rights, which are very well understood by economists, and tran-
sitive barter, which is usually overlooked because it is so often made unnecessary
by the introduction of money. We have also looked into the issues of trust and de-
layed reciprocity, issues that are relevant to Bittorrent, and to consumer credit, and to
friendship, but that we do not fully understand. We are perfectly capable, though, of
taking the solutions that appear to work in the one-on-one case and extending them
to a more general case by way of chains of one-on-one relationships, and this is what
we have done.

There are other ways in which this type of research could have been approached.
We should not write off the possibility of creating a decentralized monetary system of

55



Chapter 6 Conclusion

sorts and then organizing an efficient grid on top of that as a set of straightforward
monetary transactions. It is to be expected, though, that such an approach would
raise much the same problems that we have encountered, albeit on the monetary
system level rather than on the resource allocation level.

In order for my research to become practically significant on the grid, the algorithm
needs to be tested under a larger variety of circumstances. It needs to be determined
how tolerant it is to changes in any of its parameters, and how it holds up to partic-
ular attacks. Furthermore, it needs to be investigated how well the algorithm deals
with churn in the grid and with failures of various sorts, and how well the transitivity
algorithm scales as grids get bigger. To ensure scalability, a limitation on backtrack-
ing may well be needed in addition to the already established limitation T on chain
length.

What we have established is not a ready made grid resource allocator to be deployed
on a production grid tomorrow, but the understanding of broad economic principles
in the specific context of grid computing that is required to build one. Unlike the
previous literature, we have not passed off a centralized application of the textbook
models used by economists to describe decentralized markets as a true decentralized
resource allocation system, and neither have we relied on hidden centralized facilities
such as grid banks. GOSSIPTRON is a truly decentralized grid allocator as much as
Oner’s original algorithm was a truly decentralized grid allocator, but unlike Oner’s
original algorithm, it can be shown to yield acceptable levels of economic efficiency
under a variety of conditions where nodes are allowed to act strategically.

56



Appendix A

The Gossiptron code

The GOSSIPTRON algorithm and its constituent algorithms—the gossip algorithm
and Oner’s scheduler—are subtle distributed algorithms. It is easy to overlook details
in implementing any of them. In order to make absolutely explicit what the algo-
rithms are that I have used, I have written the simulation code as literate Haskell, so
that it can be included entirely in this document. Where there is a discrepancy be-
tween the algorithms as specified in the text of this thesis and in the following Haskell
code, either one (or both) could be wrong, but it is certain that the Haskell code is
what was used for all measurements. I have attempted to accompany the code with
a commentary written in such a way as to make this appendix useful even to readers
who are not familiar with the Haskell programming language.

A.1 Module header

import Control.Arrow

import Control.Concurrent

import Control.Exception (assert)

import Control.Monad

import Data.Array

import Data.Array.IO

import Data.Bits

import Data.Char

import Data.Graph.Inductive.Graph hiding(out)

import Data.Graph.Inductive.Graphviz

import Data.Graph.Inductive.Tree

import Data.IORef

import Data.List

import Data.Maybe

import Data.Ord

import Data.Word

import System

import System.Directory

import System.IO

import System.Process

import System.Random

import Text.Printf

57



Appendix A The Gossiptron code

import qualified Data.IntMap as IntMap

import qualified Data.Map as Map

import qualified Data.Set as Set

import Compat

A.2 The simulation framework

The simulation framework operates on an object of type Simulation m t, which con-
sists of a list of node addresses along with protocol objects that describe the behaviors
of the nodes. Typically, these protocol objects will be identical or at least very similar,
but this is not necessary. The only requirement is that all nodes communicate with
each other using the same type m of messages, and that they all generate the same
type t of log messages.

type Simulation m t = [(Addr, Proto m t)]

type Addr = Int

type Proto m t = Net m t -> IO ()

Protocol objects are arbitrary actions in the IO monad. If you do not know Haskell,
just remember that they represent algorithms that can do anything, including both
computation and I/O. Each of these arbitrary actions is provided with a special Net
object to play with, which serves as a handle that needs to be passed to the various
primitives provided by the simulation framework library, which we will now discuss.

First of all, nodes can send messages of type m to each other. In order to do so, they
must know the (integer) address of another node.

send :: Net m t -> Addr -> m -> IO ()

send net addr msg =

do node <- catch (IntMap.lookup addr (_us net)) $ \e ->

printf "send: node %d not found" addr >> ioError e

writeChan (_mbox node) (_addr (_me net), msg)

Messages can also be received, and they are delivered along with the address of the
node that sent the message.

recv :: Net m t -> IO (Addr, m)

recv net =

readChan (_mbox (_me net))

It is also possible to receive a message in a non-blocking way. If there is no message
to be received, this procedure returns Nothing, and otherwise Just (addr,msg), where
addr is the address the message came from and msg is the message.

58



A.2 The simulation framework

peek :: Net m t -> IO (Maybe (Addr, m))

peek net =

do isEmpty <- isEmptyChan (_mbox (_me net))

(if isEmpty then

return Nothing

else

do msg <- readChan (_mbox (_me net))

return (Just msg))

Aside from comunicating with each other, nodes can also generate output to be
displayed on the user’s terminal. Every time they do this, they must also supply a
string called the tag. (This may sound annoying, but it is a very convenient feature,
because it allows us later to filter the sometimes voluminous output of a simulation
by tag!)

out :: Show u => Net m t -> String -> u -> IO ()

out net tag msg = writeChan (_out net) (_addr (_me net),tag, show msg)

Outputting data to the terminal is convenient for informal debugging, but in order
to collect statistics from the simulation process, you should use the report procedure.
Whereas out accepts anything that is fit to print (in Haskell-speak, anything that im-
plements the Show typeclass), the report procedure takes only objects of type t. Re-
member that t can be anything—it just needs to be the same all the time and for all
nodes. After the last call to report by any of the nodes, eot should be called once.

report :: Net m t -> t -> IO ()

report net msg = writeChan (_report net) (Just msg)

eot :: Net m t -> IO ()

eot net = writeChan (_report net) Nothing

Once we have assembled an object of type Simulation m t that describes the sim-
ulation we want to run, it is time to feed it to the run procedure. The simulation will
then be run until either it receives a character of input from stdin (the terminal), or
one of the nodes calls off. While the simulation is running, any invokations of out will
result in terminal output, but run takes an argument supress which must be a list of
tags, and when out is called with a tag included in that list, no output will result.

When the simulation is over, the run procedure returns a list of all log messages of
type t that have been output by any of the nodes during the simulation. It does not
keep track of which node sent which log message, and log messages do not necessarily
come out in order!

run :: Show t => Bool -> [String] -> Simulation m t -> IO [t]

run interactive suppress nodes =

do (switch, report,children) <- sim suppress nodes

59



Appendix A The Gossiptron code

-- The interruptor waits for the user to interrupt

interruptor <- forkIO $

if interactive then

hGetChar stdin >> flick switch

else

return ()

-- The user can flick the switch, and so can the process...

wait switch

-- But either way, when the switch is thrown, kill them all!

forM_ (interruptor:children) killThread

-- Return log messages for bookkeeping

reportOut <- getChanContents report

return $ map fromJust (takeWhile isJust reportOut)

off Net {_off=switch} = flick switch

isOff Net {_off=switch} = isEmptyMVar switch >>= return . not

flick switch = tryPutMVar switch () >> return ()

wait switch = readMVar switch >> return ()

sim :: [String] -> Simulation m t -> IO (MVar (), Chan (Maybe t),[ThreadId])

sim suppress nodes =

do bus <- foldM addToBus IntMap.empty nodes

outC <- newChan

reportC <- newChan

switch <- newEmptyMVar

cs <- forM (IntMap.assocs bus) $ \(_,node) ->

forkIO $ (_proto node) (Net bus node outC reportC switch)

c <- forkIO $ forM_ [1..] $ \_ ->

do o@(_,tag,_) <- readChan outC

when (not (tag ‘elem‘ suppress)) (displayOutput o)

return (switch, reportC, c:cs)

where

addToBus bus (addr, proto) =

do mbox <- newChan

return $ IntMap.insert addr (NetNode proto addr mbox) bus

displayOutput (sender, tag, msg) =

printf "[%4d] %8s %s" sender (map toUpper tag) (fmt 17 msg)

fmt indent s = drop indent (unlines (fmt’ indent s))

fmt’ indent "" = []

fmt’ indent s = let (x,xs) = splitAt (78-indent) s in

[replicate indent ’ ’ ++ x] ++ (fmt’ indent xs)

data Net m t =

Net { _us :: IntMap.IntMap (NetNode m t), -- All nodes, by address
_me :: NetNode m t, -- The present node
_out :: Chan (Addr,String,String), -- An output channel
_report :: Chan (Maybe t), -- A report channel
_off :: MVar () -- An "off switch"

}

60



A.3 Basic data structures

data NetNode m t =

NetNode { _proto :: Proto m t, -- This node’s protocol
_addr :: Addr, -- This node’s address
_mbox :: Chan (Addr, m) -- This node’s communication channel

}

A.3 Basic data structures

In the GOSSIPTRON algorithm, nodes communicate by sending objects of type Msg to
each other. The meaning of all these messages will become clear as we discuss how
they are used.

data Msg = Tick Time

| Tock

| Wake

| Sleep

| HoldOn

| Gossip [(Int,Addr)]

| Pissog [(Int,Addr)]

| Apply NodeSch

| Run Work

| Ask JobId

| Answer JobId NodeSch

| Update JobId NodeSch

| Enter Job Job

| Broker Job Job [Addr] (Maybe Addr)

| Brokered Bool Job Job [Addr] [Addr]

| Entered Bool Job Job [Addr]

| Commit Bool Job Job [Addr]

| Committed Bool Job Job [Addr]

| Cancel Job Job [Addr]

| Unbroker Job Job [Addr]

| Canceled Job Job

| Ran Bool Job Job

| Finish

| Finished

deriving(Show)

type JobId = Int

type Time = Int

data Work = Work { _wStart:: Time, -- Time to start
_wId :: JobId, -- Job ID
_wLength :: Int, -- Duration of job
_wSize :: Int, -- Number of nodes in team
_wNode :: Addr -- Address of team boss

} deriving Show

61



Appendix A The Gossiptron code

Besides sending messages to each other, the nodes can also report diagnostics to a
special logging facility as messages of type Report.

data Report = ReportDelay Int

| ReportFail Int

| ReportOvl1 Addr [Addr]

| ReportOvl2 Addr [Addr]

| ReportConf Conf

deriving(Show)

The GOSSIPTRON algorithm is parameterized by a number of parameters which
are collected into an object of type Conf. The meaning of these parameters has been
discussed in the main text of the thesis, and will become clear as they are used.

data Conf = Conf { _n :: Int, -- number of nodes
_u :: Int, -- duration of run in ticks
_s :: Int, -- nr of neighbors
_c :: Int, -- nr of neighbors exchanged in gossip
_f :: Int, -- neighbor gossip frequency (0=never)
_g :: Int, -- schedule gossip frequency (0=never)
_G :: Double, -- generosity (<0: naive)
_E :: Double, -- escalation
_D :: Double, -- depreciation
_T :: Int, -- maximum transitivity
_cheaters :: [Addr], -- cheaters
_ovl1 :: Ovl1, -- initial primary overlay
_ovl2 :: Ovl2, -- initial secondary overlay
_workload :: Workload -- workload function

}

data Ovl1 = Ovl1 String (Conf -> IO (Array Addr [Addr]))

data Ovl2 = Ovl2 String (Conf -> IO (Array Addr [Addr]))

data Workload = Workload String (Conf -> Time -> [Work])

The followng piece of code overrides the standard Haskell printer for the purpose of
converting objects of type Conf to human-readable strings. It is needed because the
standard Haskell printer loops on recursive data structures.

instance Show Conf where

show Conf {_n=n,_u=u,_s=s,_c=c,_f=f,_g=g,
_E=ee,_G=gg,_D=dd,_T=tt,

_ovl1=ovl1, _ovl2=ovl2, _workload=workload }=

"n="++show n ++" "++ "u="++show u ++" "++ "s="++show s ++" "++

"c="++show c ++" "++ "f="++show f ++" "++ "g="++show g ++" "++

"E="++show ee++" "++ "G="++show gg++" "++ "D="++show dd ++" "++

"T="++show tt++" "++

show ovl1++" "++show ovl2++" "++show workload

instance Show Ovl1 where show (Ovl1 s _) = s

instance Show Ovl2 where show (Ovl2 s _) = s

instance Show Workload where show (Workload s _) = s

62



A.4 Specifying the simulation

A.4 Specifying the simulation

In the following description of the GOSSIPTRON protocol itself, I will be making use
of a number of data structures and procedures that have not yet been defined, but if
you’ve read this far, you now know enough to be able to appreciate the structure of
the algorithm and fill in those details later.

The protocol is described by a procedure gossiptron, which accepts a configuration
object of type Conf and returns (in the IO monad, but if you don’t know haskell, don’t
worry about that) an object of type Simulation, ready to be interpreted by the simula-
ton framework described in module Simulator. The returned object will contain one
entry for each of the worker nodes (the actual nodes in the grid), as well as one entry
each for the clock node and the user node, both of which are contraptions required for
purposes of the simulation, but not part of the specification of the algorithm proper.

gossiptron :: Conf -> IO (Simulation Msg Report)

gossiptron conf@Conf{ _ovl1 = Ovl1 _ ovl1’,
_ovl2 = Ovl2 _ ovl2’ } =

do ovl1 <- ovl1’ conf

ovl2 <- ovl2’ conf

return $ [(worker, workerP conf (ovl1!worker) (ovl2!worker) worker)

| worker <- workers conf ] ++

[(clock, clockP conf)] ++

[(user, userP conf)]

A.5 The worker nodes

Each worker node runs nearly the same protocol, but it is parameterized by the node’s
initial neighbors in the primary and secondary overlays and the node’s own address.
To that end, the workerP procedure takes three additional parameters, which are sup-
plied by gossiptron.

When a worker node is started, it proceeds to initialize its state, and then it enters
an infinite loop in which it receives messages and acts upon them.

workers conf = [0 .. _n conf-1]

workerP conf ovl1 ovl2 addr net = do

report net $ ReportOvl1 addr ovl1

report net $ ReportOvl2 addr ovl2

ledger <- newLedger

neighbors <- newNeighborhood ovl1

myNodeSch <- newNodeSch addr

agenda <- newAgenda

brokerage <- newBrokerage

time <- newIORef (-1)

forM_ [0..] $ \_ -> do

now <- readIORef time

63



Appendix A The Gossiptron code

(sender, msg) <- recv net

case msg of

A Tick message updates the internal clock. That’s all it does.

Tick t ->

do writeIORef time t

depreciate conf ledger

send net sender $ Tock

A Wake message instructs the worker node to initiate all pending gossip operations
for the current time step. Gossip and Pissog messages, which are exchanged every
f units of time, are used to exchange parts of neighbor lists to maintain the primary
overlay.

Wake ->

do nodeGarbage myNodeSch now

currentJobs <- agendaNow agenda now

forM_ currentJobs $ \job ->

do report net $ ReportDelay (now - _submit job)

when (_f conf /= 0 && now ‘mod‘ _f conf == 0) $

do [(_,peer)] <- pickNeighbors 1 neighbors

i_k <- pickNeighbors (_c conf) neighbors

send net clock $ HoldOn -- >A

send net peer $ Gossip i_k

when (_g conf /= 0 && now ‘mod‘ _g conf == 0) $

do ns <- getNodeSch myNodeSch

[(_,boss)] <- pickNeighbors 1 neighbors

send net clock $ HoldOn -- >B

send net boss $ Apply ns

send net clock Sleep

Gossip i_k ->

do j_l <- pickNeighbors (_c conf) neighbors

let ((i,k),(j,l)) = (unzip i_k, unzip j_l)

let (i_l, j_k) = (zip i l, zip j k)

send net sender $ Pissog i_l

forM_ j_k $ setNeighbor neighbors

Pissog i_l ->

do forM_ i_l $ setNeighbor neighbors

send net clock $ Sleep -- <A

Apply messages, which are sent out by each node every g units of time, are what
drives the improvement phase in Oner’s algorithm. They are "job applications" that
come with the node schedule of the sender. When one is received, the receiver pro-
ceeds to find out if the sender might be of use as a worker in any of the teams for the
jobs that it coordinates. When a worker is hired, it receives a Ran message in return.

64



A.5 The worker nodes

Apply ns ->

do ps <- agendaImprove agenda now sender ns

forM_ ps $ \(old,new) ->

do send net clock $ HoldOn -- >C

let ns = Map.keys (Map.union (_team new)(_team old))

let new’ = new { _user = addr }

clear <- agendaJobIni agenda (_id old) (length ns)

case clear of

0 ->

forM_ ns $ \n -> send net n $ Enter old new’
_ ->

send net addr $ Ran False old new’

send net clock $ Sleep -- <B

Ran r old new ->

do send net clock $ Sleep -- <C

dumpAcc net r now old new

Run messages are requests for entirely new jobs to be scheduled. They are sent by
the user node, which models the actions of the users of the grid system. When a Run

message is received, a random initial team is assembled, and the job must be sched-
uled at the earliest common convenience of the team. The first step in that process is
to ask all team members for their schedules. Further action is postponed until all the
schedules are in. The sender will receive a Ran message telling it whether the request
succeeded, either immediately if things fail early on, or otherwise later.

Run w@(Work { _wId=i, _wSize=m, _wLength=d }) ->

do job <- agendaNewJob agenda i m d sender addr now

team <- pickDistinctNeighbors m neighbors

ini <- agendaJobIni agenda i m

forM_ team $ \p -> send net p $ Ask i

when (null team) $ send net sender $ Ran False job job

An Ask message is a request for a worker’s current node schedule. The worker re-
sponds with its node schedule in an Answer message, which is duly recorded in the
boss’s agenda. When enough Answer messages have been collected, an attempt is
made to schedule the job based on the collected node schedules, and all workers are
notified of the new job schedule using Enter messages.

Ask jobId ->

do nodeSch <- getNodeSch myNodeSch

send net sender $ Answer jobId nodeSch

Answer jobId nodeSch ->

do agendaJobAddNode agenda jobId sender nodeSch

left <- agendaJobDown agenda jobId True

when (left==0) $

do rdy <- agendaJobLaunch agenda jobId (now + 1)

job <- agendaJob agenda jobId

65



Appendix A The Gossiptron code

ini <- agendaJobIni agenda jobId (_size job)

let _ = assert (ini==0) ()

let team = Map.keys (_team job)

forM_ team $ \node ->

send net node $ Enter (nulJob job) job

At this point, it is still possible for the job to be rejected, either because the node
schedules that the boss used to schedule it were out of date, or because the boss has
insufficient credit with the worker.

Enter old new ->

do nodeRelease myNodeSch old

isFree <- nodeFree myNodeSch new addr

nodeCommit myNodeSch old -- B

(if isFree && not (addr ‘elem‘ _cheaters conf) then

do nodeCommit myNodeSch new -- B

uoi ledger addr -- B -a

send net addr $ Broker old new [] Nothing

else

do send net sender $ Entered False old new [])

A Broker message is a request to be rewarded for help offered. There are three pos-
sible cases. The first is that the current node is the boss, who requested the help in the
first place. The boss will chalk up an IOU for the helper and declare the transaction
successful. The second case is that the current node is not the boss. In that case, it
must find out which of its neighbors lives closest to the boss and whether that neigh-
bor is worthy of credit. It must also make sure not to exceed the limit on transitivity
(parameter T ). If the right conditions are met, it chalks up a "you owe me" to the next
neighbor on the path and sends it another Broker request. If the conditions are not
met, it has to report failure to the sender of the Broker message.

Broker old new path detour ->

do let routes = route ovl2 (_boss new) \\ path

liquidRoutes <- filterM (liquid conf ledger) routes

let nextRoute =

case (liquidRoutes, detour) of

([], _) -> Nothing

(n:_, Nothing) -> Just n

(_, Just d) -> case dropWhile (/= d) liquidRoutes of
_:n:_ -> Just n
_ -> Nothing

case (addr == _boss new, nextRoute) of

(True, _) ->

do iou ledger sender -- +a / +b

send net sender $ Brokered True old new path path

(False, Just next) | length path < _T conf ->

do iou ledger sender -- A +a / +b

66



A.5 The worker nodes

uoi ledger next -- A -b

send net next $ Broker old new (addr:path) Nothing

(False, _) ->

do send net sender $ Brokered False old new path []

When Broker requests fail, there is still a possibility to backtrack and try it by some
other route.

Brokered False old new (x:xs) path ->

-- Too clever by half! After successor fails, cancel account

-- modifications and emulate a message that will lead the

-- existing above code to try it again with the next available

-- successor. Get it?

do uniou ledger sender -- undo A ^+a

unuoi ledger sender -- undo A ^-b

send net addr $ Broker old new xs (Just sender)

Brokered False old new [] path ->

do nodeRelease myNodeSch new -- undo B

nodeCommit myNodeSch old -- undo B

unuoi ledger sender -- undo B ^-a

send net (_boss new) $ Entered False old new path

Brokered True old new (x:xs) path ->

do send net x $ Brokered True old new xs path

Brokered True old new [] path ->

do send net (_boss new) $ Entered True old new path

At some point, the brokering is done, and the node that sent the Enter message, i.e.
requested that a job be entered into a node’s schedule, must be notified of whether
this worked out. When all these replies have been gathered, it can then in turn decide
whether they were all positive. If they were, it will proceed to notify the workers to
make the reservation permanent. If they were not, it will tell them to roll back the
transaction.

Entered ok old new@Job{ _id=j } path ->

do left <- agendaJobDown agenda j ok

when ok $ brokerageAdd brokerage j sender path

when (left==0) $

do let ns = Map.keys (Map.union (_team new) (_team old))

acc <- agendaJobAccepted agenda j

ini <- agendaJobIni agenda j (length ns)

x <- agendaJobNak agenda j

let _ = assert (ini==0) ()

let _ = assert (x==length ns) ()

forM_ ns $ \n -> send net n $ Commit acc old new path

Commit True old new@Job{ _id=j } path ->

do nodeRelease myNodeSch old

nodeCommit myNodeSch new

jobs <- nodeAllJobs myNodeSch

67



Appendix A The Gossiptron code

nodeSch <- getNodeSch myNodeSch

forM_ jobs $ \job@Job { _id=i, _boss=boss } ->

do send net clock $ HoldOn -- >D

send net boss $ Update i nodeSch

send net sender $ Committed True old new path

Commit False old new path ->

do nodeRelease myNodeSch new

nodeCommit myNodeSch old

send net sender $ Committed False old new path

Update jobId nodeSch ->

do agendaJobUpdateNode agenda jobId sender nodeSch

send net clock $ Sleep -- <D

Committed ok old new@Job{ _id=j,_user=c, _team=t } path ->

do left <- agendaJobDown agenda j ok

acc <- agendaJobAccepted agenda j

case (left,acc) of

(0, True) ->

do agendaJobRelease agenda old

agendaJobCommit agenda new

send net c $ Ran True old new

(0, False) ->

do agendaJobRelease agenda new

agendaJobCommit agenda old

brokered <- brokerageGet brokerage j

(if (Map.null brokered) then

send net (_boss new) $ Canceled old new

else

forM_ (Map.assocs brokered) $ \(node,path) ->

send net node $ Cancel old new path)
_ ->

return ()

Cancel old new path ->

do unuoi ledger addr -- ^-a

send net addr $ Unbroker old new path

Unbroker old new going ->

do case going of

y:ys ->

do uniou ledger sender -- ^+b / ^+a

unuoi ledger y -- ^-b

send net y $ Unbroker old new ys

[] ->

do uniou ledger sender -- ^+b

send net (_boss new) $ Canceled old new

Canceled old new@Job {_id=j,_user=c}->

do brokerageRemove brokerage j sender

brokered <- brokerageGet brokerage j

when (Map.null brokered) $

do send net c $ Ran False old new

Finish ->

do send net sender $ Finished

68



A.6 The clock pseudo-node

A.6 The clock pseudo-node

Peer-to-peer systems are typically simulated in either one of two ways. The first is
a “realistic” setup with communicating threads, where delays are simulated as such.
The second is a “lockstep” setup where the algorithm is rewritten as a series of actions
and delays, and communication is only allowed once per action. Because actions
and delays are so neatly separated, there is no need to actually delay anything when
a delay happens; the lockstep simulation can just deterministically march onward to
the next action.

My simulation uses a hybrid model. In this hybrid model, there are episodes of
“realistic” simulation, in which arbitrary amounts of communication are allowed and
the precise order of messages depends on details of the underlying message passing
and scheduling implementation. Each such episode, however, is initiated by a special
clock node, which will initiate the next episode precisely when it is sure that no more
communication will result from the previous; hence the episodes can never overlap.

To accomplish this, there is a system of Sleep, HoldOn and Wake messages that are
exchanged between nodes and a single, special “clock” node. The clock node sends a
Wake message to each node, and then proceeds to wait for HoldOn and Sleep messages
until the number of Sleep messages equals the total number of Wake messages sent
plus the total number of HoldOn messages received. At that point, the clock “knows”
that there will be no more messages until it initiates a new cycle, so it proceeds to lose
no time and initiate a new cycle immediately.

clock = (-1)

clockP conf net = do

out net "conf" $ conf

report net $ ReportConf conf

forM_ [0 .. _u conf] $ \t ->

do

interrupt <- isOff net

when interrupt $ fail "interrupt"

out net "t" $ t

let agents = user:(workers conf)

forM_ agents $ \i -> do send net i (Tick t) >> recv net

forM_ agents $ \i -> send net i $ Wake

sem <- newBucket (length agents)

let loop = do (sender,msg) <- recv net

case msg of

Sleep -> bucketOut sem

HoldOn -> bucketIn sem

done <- bucketEmpty sem

when (not (done)) $ loop

loop

-- One last message to know that the user has finished

(_, Sleep) <- recv net

69



Appendix A The Gossiptron code

forM_ (workers conf) $ \w -> send net w Finish >> recv net

eot net

off net

A.7 The user pseudo-node

In addition to the clock node, there is another pseudo-node used for simulation pur-
poses, called the “user” node. The user node instructs various peers in the peer-to-
peer system to initiate new jobs. In this sense, the user node algorithm models the
unpredictable actions of the actual human users of the grid who submit jobs when
they need them done. It keeps track of the jobs that failed to be scheduled in a given
episode and resubmits them in the next.

user = (-2)

userP conf net = do

stale <- foldM buy [] [0 .. _u conf]

forM_ stale $ \w -> report net $ ReportFail (_wId w)

send net clock Sleep -- >E

where

buy stale _ =

do (sender, Tick now) <- recv net

send net sender Tock

(_, Wake) <- recv net

let Workload _ workload = _workload conf

success <-

forM (stale ++ workload conf now) $ \w ->

-- do a <- randomRIO (0, _n conf -1) -- RANDOM

do send net (_wNode w) $ Run w -- AS PLANNED

(_, Ran r old new) <- recv net

dumpAcc net r now old new

return (r, w)

send net clock $ Sleep -- <E

return $ map snd $ filter (not . fst) success

dumpAcc net r t old new =

out net (if r then "acc" else "!acc") $

("i",_id old,"t",t,"s",_submit old,"b",_boss old,

"old",(fromMaybe (-1) $ _start old, Map.keys $ _team old),

"new",(fromMaybe (-1) $ _start new, Map.keys $ _team new))

A.8 Primary overlay

The management of the primary overlay is done according to the gossip algorithm.
Each node has a neighborhood stored as an array of node addresses and interpreted
as a multiset of neighbors:

70



A.8 Primary overlay

type Neighborhood = IOUArray Int Addr

newNeighborhood :: [Addr] -> IO Neighborhood

newNeighborhood iniNeighbors =

newListArray (0, length iniNeighbors-1) iniNeighbors

setNeighbor :: Neighborhood -> (Int,Addr) -> IO ()

setNeighbor n (i,a) = writeArray n i a

getNeighbor :: Neighborhood -> Int -> IO Addr

getNeighbor = readArray

getNeighbors :: Neighborhood -> IO [Addr]

getNeighbors = getElems

In order to maintain the primary overlay in a state approximating a random graph,
nodes will need to periodically pick random sub-multisets of their neighbor multisets.

pickNeighbors :: Int -> Neighborhood -> IO [(Int,Addr)]

pickNeighbors n nb =

replicateM n $

do bounds <- getBounds nb

i <- randomRIO bounds

x <- getNeighbor nb i

return (i,x)

For the purposes of the part of GOSSIPTRON that follows Oner’s scheduling algo-
rithm, you also need to be able to pick a given number of distinct neighbors. This
algorithm is a little clumsy, but it turns out upon profiling not to be a bottleneck.

pickDistinctNeighbors :: Int -> Neighborhood -> IO [Addr]

pickDistinctNeighbors m set = -- Don’t optimize

do nb <- getElems set

let xs = nub (sort nb)

pickDistinct m (listArray (0, length xs - 1) xs)

where

pickDistinct m xs =

let (lb,ub) = bounds xs

n = ub - lb in

if m > ub - lb then

return []

else

let p 0 acc = return acc

p m acc = do i <- randomRIO (0, n - 1)

let x = xs ! i

(if x ‘Set.member‘ acc then

p m acc

else

p (m - 1) (Set.insert x acc)) in

71



Appendix A The Gossiptron code

do r <- p m Set.empty

return $ Set.toList r

A.9 Node schedules

In order to implement the part of GOSSIPTRON that follows Oner’s scheduling algo-
rithm, each node needs t omaintain a node schedule that records what jobs will be
run at each future moment on that node. In order to save memory and improve pro-
cessing speed of these schedules, I record them not as maps of times to jobs, but as
"Intermaps" of time intervals to jobs.

data NodeSch = NodeSch Addr (Intermap Job)

instance Show NodeSch where

show (NodeSch _ ns) = interShow (\j -> show (_id j,_ticks j)) ns

newNodeSch :: Addr -> IO (IORef NodeSch)

newNodeSch a = newIORef (NodeSch a Map.empty)

getNodeSch :: IORef NodeSch -> IO NodeSch

getNodeSch = readIORef

nodeGarbage :: IORef NodeSch -> Time -> IO ()

nodeGarbage nsRef now =

do NodeSch a ns <- readIORef nsRef

writeIORef nsRef (NodeSch a (interCleanup now ns))

nodeCommit :: IORef NodeSch -> Job -> IO ()

nodeCommit nsRef job =

do ns@(NodeSch a _) <- readIORef nsRef

when (Map.member a (_team job)) $

writeIORef nsRef (nodeAddJob job ns)

nodeRelease :: IORef NodeSch -> Job -> IO ()

nodeRelease nsRef job =

do ns <- readIORef nsRef

writeIORef nsRef (nodeRemoveJob job ns)

nodeFree :: IORef NodeSch -> Job -> Addr -> IO Bool

nodeFree nsRef Job { _start=Nothing } _ = return True

nodeFree nsRef job@Job { _start=Just s, _ticks=d } addr =

if (not (Map.member addr (_team job))) then

return True

else

do (NodeSch _ ns) <- readIORef nsRef

return $ not $ interMember (interval s (s + d - 1)) ns

nodeAllJobs :: IORef NodeSch -> IO [Job]

nodeAllJobs nsRef =

72



A.10 Agendas

do NodeSch _ ns <- readIORef nsRef

return $ interVals ns

nodeAddJob :: Job -> NodeSch -> NodeSch

nodeAddJob j@Job { _start=Just s, _ticks=d } (NodeSch a ns) =

NodeSch a (interInsert (interval s (s + d - 1)) j ns)

nodeRemoveJob :: Job -> NodeSch -> NodeSch

nodeRemoveJob j@Job { _start=Nothing } n = n

nodeRemoveJob j@Job { _start=Just s, _ticks=d } (NodeSch a ns) =

NodeSch a (interWipeWhen (== j) (interval s (s + d - 1)) ns)

A.10 Agendas

In order to implement the part of GOSSIPTRON that follows Oner’s scheduling algo-
rithm, each node needs to maintain an agenda that records data about the jobs it is
"boss" for.

data Agenda = Agenda (Map.Map JobId Job) deriving Show

data Job =

Job { _id :: JobId, -- job ID number
_size :: Int, -- size of team
_ticks :: Int, -- ticks required
_team :: Map.Map Addr NodeSch, -- node schedules
_submit :: Int, -- time submitted
_start :: Maybe Int, -- start time
_nak :: Int, -- msgs pending
_nok :: Int, -- msgs pending or !OK
_user :: Addr, -- user
_boss :: Addr -- boss

} deriving Show

Two jobs with the same ID are considered equal.

instance Eq Job where a == b = (_id a == _id b)

newAgenda :: IO (IORef Agenda)

newAgenda = newIORef (Agenda Map.empty)

newJob :: JobId -> Int -> Int -> Addr -> Addr -> Int -> Job

newJob id size ticks user boss submit =

Job { _id=id, _size=size, _ticks=ticks, _team=Map.empty,
_submit=submit, _start=Nothing, _nak=0, _nok=0,
_user=user, _boss=boss }

nulJob :: Job -> Job

nulJob job = job { _team=Map.empty, _start=Nothing }

73



Appendix A The Gossiptron code

agendaNow :: IORef Agenda -> Time -> IO [Job]

agendaNow ref t =

do Agenda agenda <- readIORef ref

return $ Map.elems (Map.filter ((== Just t) . _start) agenda)

agendaNewJob ::

IORef Agenda -> JobId -> Int -> Int -> Addr -> Addr -> Int -> IO Job

agendaNewJob ref j size ticks user boss now =

do Agenda agenda <- readIORef ref

let new = newJob j size ticks user boss now

writeIORef ref $ Agenda (Map.insert j new agenda)

return new

agendaJobCommit :: IORef Agenda -> Job -> IO ()

agendaJobCommit ref job =

do Agenda agenda <- readIORef ref

writeIORef ref (Agenda (Map.insert (_id job) job agenda))

agendaJobRelease :: IORef Agenda -> Job -> IO ()

agendaJobRelease ref Job { _start=Nothing } =

return ()

agendaJobRelease ref job =

do Agenda agenda <- readIORef ref

writeIORef ref (Agenda (Map.delete (_id job) agenda))

agendaJobIni :: IORef Agenda -> JobId -> Int -> IO Int

agendaJobIni ref j n =

do Agenda agenda <- readIORef ref

old <- Map.lookup j agenda

case _nak old of

0 ->

do let new = old { _nak=n, _nok=n }

writeIORef ref $ Agenda (Map.insert j new agenda)

return 0

nak ->

do return nak

agendaJobDown :: IORef Agenda -> JobId -> Bool -> IO Int

agendaJobDown ref j accepted =

do Agenda agenda <- readIORef ref

old <- Map.lookup j agenda

let new = old { _nak=_nak old - 1,
_nok=_nok old - (if accepted then 1 else 0) }

writeIORef ref $ Agenda (Map.insert j new agenda)

return (_nak new)

agendaJobNak ref j =

do Agenda agenda <- readIORef ref

old <- Map.lookup j agenda

return (_nak old)

74



A.10 Agendas

agendaJobAccepted :: IORef Agenda -> JobId -> IO Bool

agendaJobAccepted ref j =

do Agenda agenda <- readIORef ref

old <- Map.lookup j agenda

return (_nok old == 0)

agendaJobAddNode :: IORef Agenda -> JobId -> Addr -> NodeSch -> IO ()

agendaJobAddNode ref j node nodeSch =

do Agenda agenda <- readIORef ref

old <- Map.lookup j agenda

let new = old { _team=Map.insert node nodeSch (_team old) }

writeIORef ref $ Agenda (Map.insert j new agenda)

agendaJobUpdateNode :: IORef Agenda -> JobId -> Addr -> NodeSch -> IO ()

agendaJobUpdateNode ref j node nodeSch =

do Agenda agenda <- readIORef ref

case Map.lookup j agenda of

Nothing ->

return ()

Just old@Job { _team=t } ->

if Map.member node t then

let new = old { _team=Map.insert node nodeSch t } in

writeIORef ref $ Agenda (Map.insert j new agenda)

else

return ()

agendaJob :: IORef Agenda -> JobId -> IO Job

agendaJob ref j =

do Agenda agenda <- readIORef ref

Map.lookup j agenda

When a new team has been assembled for a new job, it is the task of the boss to find
the first time at which all team members are available. It does this simply by trying out
time periods until it finds one that fits for everyone. It might be possible to optimize
this, but it turns out upon profiling that this procedure is not a bottleneck.

agendaJobLaunch :: IORef Agenda -> JobId -> Time -> IO ()

agendaJobLaunch ref j start =

do Agenda agenda <- readIORef ref

old <- Map.lookup j agenda

writeIORef ref $

Agenda (Map.insert j (launch old start) agenda)

where

launch old start =

let iv = interval start (start + _ticks old - 1) in

if or [ interMember iv s | NodeSch _ s <- Map.elems (_team old) ] then

launch old (start+1)

else

75



Appendix A The Gossiptron code

let newNodes = Map.map (nodeAddJob nu) (_team old)

nu = old { _team=newNodes, _start = Just start } in nu

The big trick of Oner’s algorithm is the ability to improve schedules by adding a new
member to a team and simultaneousy removing another. When it is suggested that a
given member could be added to a job’s team, it is the task of the boss to determine
whether it would be possible to schedule that job earlier than it is currently scheduled
by using this new member. This is a costly operation and it happens often, so it may
be worth trying to think about how to optimize it.

agendaImprove :: IORef Agenda -> Int -> Int -> NodeSch -> IO [(Job,Job)]

agendaImprove ref now hireAddr hire =

do Agenda agenda <- readIORef ref

return $ concatMap improve (Map.elems (Map.filter fresh agenda))

where

fresh Job { _start=Just t, _submit=s } | t>now && s<now = True

fresh _ = False

improve old =

let teams =

[ Map.map (nodeRemoveJob old) $

Map.insert hireAddr hire $

Map.delete fire (_team old)

| fire <- Map.keys (_team old),

not (Map.member hireAddr (_team old)) ]

starts =

[ now+1 .. (fromMaybe 0 (_start old)) - 1 ]

options =

[ (team, start)

| start <- starts,

team <- teams,

let iv = interval start (start+_ticks old - 1),

let meToo (NodeSch _ me) us = interMember iv me || us,

not $ Map.fold meToo False team ] in

case options of

[] ->

[]

((team,start):_) ->

let new = old { _team=Map.map (nodeAddJob new) team,
_start=Just start, _nok=0, _nak=0 } in

[(old,new)]

A.11 Buckets

The bucket is a data structure used by the clock node.

type Bucket = IORef Int

newBucket n = newIORef n

76



A.12 Accounting

bucketIn u = do x <- readIORef u; writeIORef u (x + 1)

bucketOut u = do x <- readIORef u; writeIORef u (x - 1)

bucketEmpty u = do x <- readIORef u; return (x == 0)

A.12 Accounting

Accounting is not a feature of the Oner’s original scheduler. It is new in GOSSIPTRON.
A Ledger represents what a node remembers about its history of interaction with other
nodes. For each known node it records an Account. Each account has three entries:
_iou (for “IOU” or “I Owe You”) and _uoi (for “UOI” or “You Owe Me”), and _limit,
which is used to compute credit limits.

type Ledger = IORef (Map.Map Addr Account)

data Account = Account { _iou, _uoi, _limit :: Double } deriving Show

newLedger :: IO Ledger

newLedger = newIORef Map.empty

depreciate :: Conf -> Ledger -> IO ()

depreciate Conf { _D=depreciation } ref =

do old <- readIORef ref

let dep a@Account{_limit=limit} = a { _limit = limit * (1-depreciation) }

let new = Map.map dep old

writeIORef ref new

Check whether they are worthy of a favor...

liquid :: Conf -> Ledger -> Addr -> IO Bool

liquid Conf { _E=escalation, _G=generosity } ref addr =

if generosity < 0 then

return True

else

do old <- readIORef ref

let Account { _uoi=uoi,_iou=iou,_limit=limit} =

Map.findWithDefault (Account 0 0 0) addr old

return $ iou + generosity + escalation * limit > uoi

Record that we owe them a favor...

iou :: Ledger -> Addr -> IO ()

iou ref addr =

do old <- readIORef ref

let acct = Map.findWithDefault (Account 0 0 0) addr old

let new = Map.insert addr acct { _iou=_iou acct+1,
_limit=_limit acct+1 } old

writeIORef ref new

77



Appendix A The Gossiptron code

Record that we don’t owe them a favor after all...

uniou :: Ledger -> Addr -> IO ()

uniou ref addr =

do old <- readIORef ref

let acct = Map.findWithDefault (Account 0 0 0) addr old

let new = Map.insert addr acct { _iou=_iou acct-1 } old

writeIORef ref new

Record that they owe us a favor...

uoi :: Ledger -> Addr -> IO ()

uoi ref addr =

do old <- readIORef ref

let acct = Map.findWithDefault (Account 0 0 0) addr old

let new = Map.insert addr acct { _uoi=_uoi acct+1 } old

writeIORef ref new

Record that they don’t owe us a favor after all...

unuoi :: Ledger -> Addr -> IO ()

unuoi ref addr =

do old <- readIORef ref

let acct = Map.findWithDefault (Account 0 0 0) addr old

let new = Map.insert addr acct { _uoi=_uoi acct-1 } old

writeIORef ref new

A.13 Keeping track of chains of credit

Chains of credit need to be kept track of because they must sometimes be torn down
again if a team changes. This is what the Brokerage object is for. The details of this are
not described in the main text of the thesis, because they are not very interesting.

type Brokerage = Map.Map JobId (Map.Map Addr [Addr])

newBrokerage :: IO (IORef Brokerage)

newBrokerage = newIORef Map.empty

brokerageAdd :: IORef Brokerage -> JobId -> Addr -> [Addr] -> IO ()

brokerageAdd ref j node path =

do b <- readIORef ref

let new = Map.insert node path (Map.findWithDefault Map.empty j b)

writeIORef ref $ (Map.insert j new b)

brokerageRemove :: IORef Brokerage -> JobId -> Addr -> IO ()

brokerageRemove ref j node =

do b <- readIORef ref

78



A.14 Some common parameters used in simulation

let new = Map.delete node (Map.findWithDefault Map.empty j b)

writeIORef ref $ (Map.insert j new b)

brokerageGet :: IORef Brokerage -> JobId -> IO (Map.Map Addr [Addr])

brokerageGet ref j =

do b <- readIORef ref

return (Map.findWithDefault Map.empty j b)

In order for the secondary overlay to work, we have to impose a spatial structure on
the nodes. That is what these three functions do.

-- Sort a list of addresses by proximity to a target address

route :: [Addr] -> Addr -> [Addr]

route partners target = sortBy (comparing (distance target)) partners

-- Map an integer to a point in the unit square with FNV hash

hashXY :: Int -> (Double,Double)

hashXY i =

let scale x = fromIntegral (x .&. 0xffff) / fromIntegral (maxBound::Word16)

fnv32 i = foldl (\h x -> (h * 16777619) ‘xor‘ x) 2166136261

[ 0xff .&. (i‘shiftR‘(y*8)) | y <- [0..(bitSize i‘div‘8)-1]]

in (scale (fnv32 i), scale (shiftR (fnv32 i) 16))

-- Distance measure using the hash

distance :: Addr -> Addr -> Double

distance p0 p1 =

let (x0,y0) = hashXY p0; (x1,y1) = hashXY p1 in sqrt ((x1-x0)^2+(y1-y0)^2)

A.14 Some common parameters used in simulation

A circular primary overlay topology.

circular :: Ovl1

circular =

Ovl1 "circular" $ \ Conf {_n=n,_s=s} ->

do return $ listArray (0,n-1) [ [ x‘mod‘n | x<-[i+1..i+s] ]

| i<-[0..n-1] ]

A randomized primary overlay topology

randomized :: Ovl1

randomized =

Ovl1 "r" $ \ Conf {_n=n,_s=s} ->

return $

accumArray (flip (:)) [] (0,n-1) $

zip (concat $ replicate s [0..n-1]) (randomRs (0,n-1) (mkStdGen seed))

where

seed = 31415

79



Appendix A The Gossiptron code

A secondary overlay topology where each node is connected to each other node.

dense :: Ovl2

dense =

Ovl2 "d" $ \ Conf {_n=n} ->

do return $ listArray (0,n-1) (repeat [0..n-1])

A secondary overlay topology where nodes are connected as a Delaunay graph ac-
cording to coordinates determined from their addresses by the hashXY hash function,
and another topology that is identical but with the addition of long range links, more
or less the same way as in VORONET (but not quite.)

shell cmd inpS =

do (inp,out,err,pid) <- runInteractiveCommand cmd

hPutStr inp inpS

hClose inp

outS <- hGetContents out

errS <- hGetContents err

status <- waitForProcess pid

return (outS,errS,status)

delone :: Ovl2

delone =

Ovl2 "d" $ \ Conf {_n=n} ->

do let input = unlines $ ["2",show n] ++

map (\i -> let (x,y) = hashXY i in

show x ++ " " ++ show y) [0..n-1]

(output,_,_) <- shell "qdelaunay i" input

let readTriangle t =

case map read t of

[a,b] -> [(a,b),(b,a)]

[a,b,c]-> [(a,b),(b,c),(c,a),(b,a),(c,b),(a,c)]

[a,b,c,d]-> [(a,b),(b,c),(c,d),(d,a),(b,a),(c,b),(d,c),(a,d)]

xs -> error (show xs)

let delaunayEdges =

nub $ sort $ concatMap readTriangle $ map words $ tail $ lines output

let ovl = accumArray (flip (:)) [] (0,n-1) $ delaunayEdges

return ovl

voronet :: Ovl2

voronet =

Ovl2 "v" $ \ Conf {_n=n} ->

do let input = unlines $ ["2",show n] ++

map (\i -> let (x,y) = hashXY i in

show x ++ " " ++ show y) [0..n-1]

(output,_,_) <- shell "qdelaunay i" input

let readTriangle t =

case map read t of

[a,b] -> [(a,b),(b,a)]

80



A.14 Some common parameters used in simulation

[a,b,c]-> [(a,b),(b,c),(c,a),(b,a),(c,b),(a,c)]

[a,b,c,d]-> [(a,b),(b,c),(c,d),(d,a),(b,a),(c,b),(d,c),(a,d)]

xs -> error (show xs)

let delaunayEdges =

nub $ sort $ concatMap readTriangle $ map words $ tail $ lines output

let farEdges = [ (a,fnv32 a‘mod‘n) | a <- [0..n-1] ]

let farEdges’ = map (\(a,b)->(b,a)) farEdges

let ovl = accumArray (flip (:)) [] (0,n-1) $ delaunayEdges ++ farEdges

return ovl

A very common hash function.

fnv32 i = fromIntegral (f (fromIntegral i))

where f :: Word32 -> Word32

f i = foldl (\h x -> (h * 16777619) ‘xor‘ x) 2166136261

[ 0xff .&. (i‘shiftR‘(y*8)) | y <- [0..(bitSize i‘div‘8)-1]]

A workload imported from a GWF file.

fromTrace :: Int -> FilePath -> IO Workload

fromTrace n fn =

do gs <- readSimpleGwfFile n fn

return $ Workload "fn" $ \conf t ->

Map.findWithDefault [] t $ Map.fromListWith (++) $

[ ( t‘div‘60,

[ Work { _wStart=t‘div‘60,
_wId=i,
_wLength=(d‘div‘60)+1,
_wSize=m,
_wNode=a‘div‘_n conf }] )

| (SimpleGwf i t m d, a) <- zip gs [0..] ]

Some other workloads.

steady :: Int -> Int -> Workload

steady intensity tMax =

Workload "" $ \ conf t ->

[ Work { _wStart=t,
_wId=id,
_wLength=5,
_wSize=5,
_wNode= id ‘mod‘_n conf }

| i <- [0..intensity-1], t < tMax, let id=t*intensity+i ]

switchy :: Int -> Int -> Workload

switchy intensity tMax =

Workload "" $ \ conf t ->

[ Work { _wStart=t,
_wId=intensity*t+i,

81



Appendix A The Gossiptron code

_wLength=5,
_wSize=5,
_wNode=

if t < tMax‘div‘2 then

ev id ‘mod‘_n conf

else

od id ‘mod‘_n conf

}

| i <- [0..intensity-1], t < tMax, let id=t*intensity+i ]

where

ev n = (n‘div‘2)*2

od n = (n‘div‘2)*2+1

A.15 Run the simulation

These are a number of sample configurations for the simulation. You can design your
own configurations by analogy to these.

t = Conf { _n=100, _u=100, _s=10, _c=2, _f=1, _g=1,
_T=1, _G=1, _E=0.6, _D=0.01, _cheaters=[],
_ovl1=randomized, _ovl2=dense, _workload=steady 0 0 }

l = t { _workload=steady 2 10 }

lite t f = gossiptron t >>= run False ["!acc"] >>= tex f

lite_ "o" = lite l { _T=1, _G=(-1), _ovl2=dense } "lite/o"

lite_ "r" = lite l { _T=1, _G=1, _ovl2=dense } "lite/r"

lite_ "l" = lite l { _T=1, _G=1, _ovl2=voronet } "lite/l"

lite_ "t5" = lite l { _T=5, _G=1, _ovl2=voronet } "lite/t5"

lite_ "t10" = lite l { _T=10, _G=1, _ovl2=voronet , _u=200} "lite/t10"

lite_ "t99" = lite l { _T=99, _G=1, _ovl2=voronet , _u=200} "lite/t99"

h = t { _workload=steady 10 10 }

heavy t f = gossiptron t >>= run False ["!acc"] >>= tex f

heavy_ "o" = heavy h { _T=1, _G=(-1), _ovl2=dense } "heavy/o"

heavy_ "r" = heavy h { _T=1, _G=1, _ovl2=dense } "heavy/r"

heavy_ "l" = heavy h { _T=1, _G=1, _ovl2=voronet } "heavy/l"

heavy_ "t5" = heavy h { _T=5, _G=1, _ovl2=voronet } "heavy/t5"

heavy_ "t10" = heavy h { _T=10, _G=1, _ovl2=voronet,_u=200 } "heavy/t10"

heavy_ "t99" = heavy h { _T=99, _G=1, _ovl2=voronet,_u=200 } "heavy/t99"

c = t { _workload=steady 10 10, _cheaters=[1,10..99] }

cheat t f = gossiptron t >>= run False ["!acc"] >>= tex f

cheat_"o" = cheat c { _T=1, _G=(-1), _ovl2=dense } "cheat/o"

cheat_ "r" = cheat c { _T=1, _G=1, _ovl2=dense } "cheat/r"

cheat_ "l" = cheat c { _T=1, _G=1, _ovl2=voronet } "cheat/l"

cheat_ "t5" = cheat c { _T=5, _G=1, _ovl2=voronet } "cheat/t5"

cheat_ "t10" = cheat c { _T=10, _G=1, _ovl2=voronet,_u=200 } "cheat/t10"

cheat_ "t99" = cheat c { _T=99, _G=1, _ovl2=voronet,_u=200 } "cheat/t99"

s = t { _workload=switchy 10 10 }

82



A.16 Driver code

wacky t f = gossiptron t >>= run False ["!acc"] >>= tex f

wacky_ "o" = wacky s { _T=1, _G=(-1), _ovl2=dense } "wacky/o"

wacky_ "r" = wacky s { _T=1, _G=1, _ovl2=dense } "wacky/r"

wacky_ "l" = wacky s { _T=1, _G=1, _ovl2=voronet } "wacky/l"

wacky_ "t5" = wacky s { _T=5, _G=1, _ovl2=voronet } "wacky/t5"

wacky_ "t10" = wacky s { _T=10, _G=1, _ovl2=voronet,_u=200 } "wacky/t10"

wacky_ "t99" = wacky s { _T=99, _G=1, _ovl2=voronet,_u=200 } "wacky/t99"

A.16 Driver code

This is the bit that processes command line arguments.

main =

do [exp,alg] <- System.getArgs

case exp of

"heavy" -> heavy_ alg

"cheat" -> cheat_ alg

"lite" -> lite_ alg

"wacky" -> wacky_ alg

return ()

A.17 Interval maps

In this section, we will define the Intermap, a data structure that behaves very similarly
to a standard Haskell Map, but that is specialized to deal with the case where the keys
are integer ranges. This data structures is used to implement some of the schedules
more efficiently.

An Intermap is simply a map from intervals to values, of some arbitrary type t. In-
tervals are pairs of integers representing the beginning and end of the interval. They
are considered equal by the Eq typeclass only when their beginning and end points
are exactly identical, but the Ord typeclass specifies a partial order where all overlap-
ping intervals are “EQ”, which turns out to be useful because we do not want to have
overlapping entries in our Intermaps.

type Intermap t = Map.Map Interval (Interval,t)

newtype Interval = Interval (Int, Int)

instance Show Interval where

show (Interval (x0,x1)) = show x0++"-"++show x1

instance Eq Interval where

Interval (x0,x1) == Interval (y0,y1) = x0 == y0 && x1 == y1

instance Ord Interval where

compare (Interval (x0,x1)) (Interval (y0,y1)) | x1 < y0 = LT

83



Appendix A The Gossiptron code

| y1 < x0 = GT

| otherwise = EQ

interEmpty :: Intermap t

interEmpty = Map.empty

interShow :: (t -> String) -> Intermap t -> String

interShow showVal m =

"["++ (concat $ intersperse ", " $

map (\(k,v) -> show k++":"++showVal v) (Map.elems m)) ++ "]"

interInsert :: Interval -> t -> Intermap t -> Intermap t

interInsert k v m =

foldr (uncurry interAdd) (interWipe k m) additions

where

interAdd k v m = Map.insert k (k,v) m

additions = (k,v):[ (q,v_)

| (k_,v_) <- interLookup k m, q <- k_ .-. k ]

Interval (x0,x1) .-. Interval (y0,y1) =

msum [mInterval x0 (min x1 (y0-1)), mInterval (max x0 (y1+1)) x1]

interFindWhen :: (t -> Bool) -> Int -> Intermap t -> Maybe (Interval,t)

interFindWhen f t m =

case Map.lookup (instant t) m of

Just (k,v) | f v -> Just (k,v)
_ -> Nothing

interFind :: Int -> Intermap t -> Maybe (Interval,t)

interFind t m = interFindWhen (\_ -> True) t m

interLookupWhen :: (t -> Bool) -> Interval -> Intermap t -> [(Interval,t)]

interLookupWhen f (Interval (k0,k1)) m =

let (_,a,x) = Map.splitLookup (instant k0) m

(y,b,_) = Map.splitLookup (instant k1) x in

filter (f . snd) $ concatMap maybeToList [a,b] ++ Map.elems y

interLookup :: Interval -> Intermap t -> [(Interval,t)]

interLookup k m = interLookupWhen (\_ -> True) k m

interMemberWhen :: (t -> Bool) -> Interval -> Intermap t -> Bool

interMemberWhen f k m = not $ null $ interLookupWhen f k m

interMember :: Interval -> Intermap t -> Bool

interMember k m = Map.member k m

interWipeWhen :: (t -> Bool) -> Interval -> Intermap t -> Intermap t

interWipeWhen f k m = Map.filter (f . snd) m

interWipe :: Interval -> Intermap t -> Intermap t

interWipe k m = interWipeWhen (\_ -> True) k m

84



A.18 Statistics

interCleanup :: Int -> Intermap t -> Intermap t

interCleanup t m =

case Map.splitLookup (interval t t) m of

(_,Nothing,x) -> x

(_,Just (k,v),x) -> Map.insert k (k,v) x

interVals :: Intermap t -> [t]

interVals m =

map snd $ Map.elems m

instant :: Int -> Interval

instant x = Interval (x,x)

interval :: Int -> Int -> Interval

interval x y | x <= y = Interval (x,y)

| otherwise = error "bad interval"

mInterval :: Monad m => Int -> Int -> m Interval

mInterval x y | x <= y = return $ Interval (x,y)

| otherwise = fail "bad interval"

A.18 Statistics

These functions do some basic descriptive statistics.

-- Compute the mean of a list of numbers

mean :: Integral a => [a] -> Double

mean = mean’ . map fromIntegral

where mean’ xs = sum xs / fromIntegral (length xs)

-- Compute the standard deviation of a list of numbers

sd :: Integral a => [a] -> Double

sd = sd’ . map fromIntegral

where sd’ xs = sqrt (sum [ (x-x_)**2 | x <- xs, let x_ = mean’ xs ] )

mean’ xs = sum xs / fromIntegral (length xs)

-- Compute the median of a list of numbers

median :: Integral a => [a] -> Double

median = median’ . map fromIntegral

where median’ xs | odd (length xs) = xs !! (length xs ‘div‘ 2)

| otherwise = (xs !! (length xs ‘div‘ 2)+

xs !! ((length xs ‘div‘ 2)+1))/2

85



Appendix A The Gossiptron code

A.19 Data analysis and visualization

-- Print the maximum delay to stdout

mxd report =

do print $ maximum [ n | ReportDelay n <- report ]

return report

-- Print the log messages to stdout unmodified

raw report =

do mapM_ print report

return report

-- Show various bits of data on X11

gui level report =

do when (level>=0) $ summarize "delays" delays

when (level>=1) $ histogram "x11" "temp" title xlabel 10 delays

when (level>=2) $ graphic "neato" ovl2 (>)

when (level>=3) $ graphic "circo" ovl1 (/=)

return report

where

delays = [ n | ReportDelay n <- report ]

failed = [ n | ReportFail n <- report ]

ovl1 = [ (x,xs) | ReportOvl1 x xs <- report ]

ovl2 = [ (x,xs) | ReportOvl2 x xs <- report ]

[conf] = [ p | ReportConf p <- report ]

title = show conf

xlabel = "and " ++ show (length failed) ++ " failed"

-- Output a histogram of delays to a LaTeX file

tex name report =

do histogram "tex" name "" xlabel 10 delays

writeFile (name ++ "c.tex") title

writeFile (name ++ ".err") (show (length failed))

return report

where

delays = [ n | ReportDelay n <- report ]

failed = [ n | ReportFail n <- report ]

ovl1 = [ (x,xs) | ReportOvl1 x xs <- report ]

ovl2 = [ (x,xs) | ReportOvl2 x xs <- report ]

[conf] = [ p | ReportConf p <- report ]

xlabel = "and " ++ show (length failed) ++ " failed"

title =

let Conf { _n=n,_u=u,_s=s,_c=c,_f=f,_g=g,_E=ee,_G=gg,_D=dd,_T=tt,
_ovl1=ovl1, _ovl2=ovl2, _workload=workload } = conf in

foo "n" n ++

foo "u" u ++

foo "\\sigma" s ++

foo "\\kappa" c ++

foo "\\phi" f ++

foo "\\gamma" g ++

86



A.19 Data analysis and visualization

foo "G" gg ++

foo "E" ee ++

foo "100\\times D" (100*dd) ++

foo "T" tt

foo x y = "$" ++ x ++ "=" ++ show y ++ "$ "

-- Print a summary of the data on stdout

summarize :: String -> [Int] -> IO ()

summarize name vals =

do printf "\tSUMMARY\t(%s) mean=%.4f median=%.4f sd=%.4f N=%d\n"

name (mean vals) (median vals) (sd vals) (length vals)

-- Plot a histogram using gnuplot

histogram :: String -> String -> String -> String -> Int -> [Int] -> IO ()

histogram terminal name title xlabel bins vals =

do withFile fnDat WriteMode $ \fd ->

forM_ frequencies $ \(delay, frequency) ->

hPrintf fd "%f %f\n" delay frequency

when (terminal == "x11") $

do withFile fnPlt WriteMode $ \fd ->

do hPrintf fd "unset title\n"

hPrintf fd "unset border\n"

hPrintf fd "set xlabel \"%s\"\n" xlabel

hPrintf fd "set title \"%s\"\n" title

hPrintf fd "plot \"%s\" notitle with boxes\n" fnDat

runCommand ("gnuplot " ++ fnPlt) >>= waitForProcess >> return ()

return ()

where

fnDat = name ++ ".dat"

fnErr = name ++ ".err"

fnPlt = name ++ ".plt"

frequencies :: [(Double,Double)]

frequencies = [ ((dbl n0 + dbl (n1 + 1))/2, dbl f)

| n0 <- take bins [min, min + bin ..],

let n1 = n0 + bin - 1,

let inBin n0 n1 n = n >= n0 && n <= n1,

let f = length (filter (inBin n0 n1) vals) ]

dbl = fromInteger . toInteger

min = if null vals then 0 else minimum vals

max = if null vals then 40 else maximum vals

bin = ((max - min) ‘div‘ bins) + 1

-- Draw a digraph using circo/neato

graphic :: String -> [(Int,[Int])] -> (Int -> Int -> Bool) -> IO ()

graphic tool graph filter =

do withFile "dat/neighbors.dot" WriteMode $ \fd -> hPutStr fd viz

runCommand cmd >>= waitForProcess

return ()

where

nodes = [ (x,()) | (x,_) <- graph ]

87



Appendix A The Gossiptron code

edges = concat [ [ (x,y,()) | y <- ys,filter x y] | (x,ys) <- graph ]

viz = graphviz (mkGraph nodes edges::UGr) "" (6,6) (1,1) Portrait

cmd = case tool of

"n" -> "neato -Earrowhead=none -Nfontname=georgia -Nfontsize=10 \

\-Nheight=0.1 -Nwidth=0.1 -Ncolor=white -Txlib neighbors.dot"

"c" -> "circo -Nfixedsize=true -Earrowhead=none -Txlib neighbors.dot"

A.20 Parsing GWF files

-- This is the meaning of the GWF fields according to a DAS data file:

--

-- 1 JobID counter

-- 2 SubmitTime in seconds, starting from zero

-- 3 WaitTime in seconds

-- 4 RunTime runtime measured in wallclock seconds

-- 5 NProcs number of allocated processors

-- 6 AverageCPUTimeUsed average of CPU time over all allocated processors

-- 7 Used Memory average per processor in kilobytes

-- 8 ReqNProcs requested number of processors

-- 9 ReqTime: requested time measured in wallclock seconds

-- 10 ReqMemory requested memory (average per processor)

-- 11 Status job completed = 1, job failed = 0, job cancelled = 5

-- 12 UserID string identifier for user

-- 13 GroupID string identifier for group user belongs to

-- 14 ExecutableID name of executable

-- 15 QueueID string identifier for queue

-- 16 PartitionID string identifier for partition

-- 17 OrigSiteID string identifier for submission site

-- 18 LastRunSiteID string identifier for execution site

-- 19 JobStructure single job = UNITARY, composite job = BoT

-- 20 JobStructureParams if JobStructure = BoT, contains batch identifier

-- 21 UsedNetwork used network resources in kilobytes/second

-- 22 UsedLocalDiskSpace in megabytes

-- 23 UsedResources list of comma-separated generic resources

-- (ResourceDescription:Consumption)

-- 24 ReqPlatform CPUArchitecture,OS,OSVersion

-- 25 ReqNetwork in kilobytes/second

-- 26 ReqLocalDiskSpace in megabytes

-- 27 ReqResources list of comma-separated generic resources

-- (ResourceDescription:Consumption)

-- 28 VOID identifier for Virtual Organization

-- 29 ProjectID identifier for project

-- I have assumed that doubles are intended whenever the sample data

-- file had numbers with decimal points in them, and integers

-- elsewhere. XXX Check this in official docs, if there are any!

-- REAL GWF RECORDS -------------------------------------------------

88



A.20 Parsing GWF files

data Gwf = Gwf { _gwfJobid :: Int,
_gwfSubmittime :: Int,
_gwfWaittime :: Int,
_gwfRuntime :: Int,
_gwfNprocs :: Int,
_gwfAveragecputimeused :: Double,
_gwfUsedmemory :: Double,
_gwfReqnprocs :: Int,
_gwfReqtime :: Double,
_gwfReqmemory :: Int,
_gwfStatus :: Int,
_gwfUserid :: String,
_gwfGroupid :: String,
_gwfExecutableid :: String,
_gwfQueueid :: String,
_gwfPartitionid :: Int,
_gwfOrigsiteid :: String,
_gwfLastrunsiteid :: String,
_gwfJobstructure :: String,
_gwfJobstructureparams :: Int,
_gwfUsednetwork :: Int,
_gwfUsedlocaldiskspace :: Int,
_gwfUsedresources :: String,
_gwfReqplatform :: Int,
_gwfReqnetwork :: Int,
_gwfReqlocaldiskspace :: Int,
_gwfReqresources :: Int,
_gwfVoid :: Int,
_gwfProjectid :: Int

}

deriving (Show)

-- READ REAL GWF RECORDS --------------------------------------------

readGwfFile :: FilePath -> IO [Gwf]

readGwfFile fn = readFile fn >>= return . readGwf

readGwf :: String -> [Gwf]

readGwf = map parse . map splitOnTab . uncomment . lines

where

parse [ jobid, submittime, waittime, runtime, nprocs,

averagecputimeused, usedmemory, reqnprocs, reqtime,

reqmemory, status, userid, groupid, executableid, queueid,

partitionid, origsiteid, lastrunsiteid, jobstructure,

jobstructureparams, usednetwork, usedlocaldiskspace,

usedresources, reqplatform, reqnetwork, reqlocaldiskspace,

reqresources, void, projectid ] =

Gwf { _gwfJobid = read jobid :: Int,
_gwfSubmittime = read submittime :: Int,
_gwfWaittime = read waittime :: Int,
_gwfRuntime = read runtime :: Int,

89



Appendix A The Gossiptron code

_gwfNprocs = read nprocs :: Int,
_gwfAveragecputimeused = read averagecputimeused :: Double,
_gwfUsedmemory = read usedmemory :: Double,
_gwfReqnprocs = read reqnprocs :: Int,
_gwfReqtime = read reqtime :: Double,
_gwfReqmemory = read reqmemory :: Int,
_gwfStatus = read status :: Int,
_gwfUserid = userid :: String,
_gwfGroupid = groupid :: String,
_gwfExecutableid = executableid :: String,
_gwfQueueid = queueid :: String,
_gwfPartitionid = read partitionid :: Int,
_gwfOrigsiteid = origsiteid :: String,
_gwfLastrunsiteid = lastrunsiteid :: String,
_gwfJobstructure = jobstructure :: String,
_gwfJobstructureparams = read jobstructureparams :: Int,
_gwfUsednetwork = read usednetwork :: Int,
_gwfUsedlocaldiskspace = read usedlocaldiskspace :: Int,
_gwfUsedresources = usedresources :: String,
_gwfReqplatform = read reqplatform :: Int,
_gwfReqnetwork = read reqnetwork :: Int,
_gwfReqlocaldiskspace = read reqlocaldiskspace :: Int,
_gwfReqresources = read reqresources :: Int,
_gwfVoid = read void :: Int,
_gwfProjectid = read projectid :: Int

}

uncomment = filter (not . (all white)) .

map (takeWhile (/= ’#’))

splitOnTab = filter (not . (all white)) .

groupBy (\x y -> not (white x || white y))

white = (‘elem‘ " \t\v\n\r")

-- SIMPLIFIED GWF RECORDS -------------------------------------------

-- In practice, we only use a few elements of the GWF records, and it

-- is much more convenient to throw the rest away right

-- away. Meanwhile, we add the option to read only the first i lines

-- of a file, we modify the records to start at t=0, and we clean up

-- records with invalid reqtimes, so that the result can be used for

-- simulation without further ado. For accurate retrieval of a GWF

-- file in all its glory, the whole shebang above is still necessary,

-- but for the purposes of gossiptron, the simplified version is

-- faster and better.

data SimpleGwf = SimpleGwf { _jobid, _submittime, _reqnprocs, _reqtime :: Int }

deriving (Show)

readSimpleGwfFile :: Int -> FilePath -> IO [SimpleGwf]

readSimpleGwfFile i fn = readFile fn >>= return . readSimpleGwf i

90



A.20 Parsing GWF files

readSimpleGwf :: Int -> String -> [SimpleGwf]

readSimpleGwf i = normalize . map (defaultize . parse . splitOnTab) .

uncomment . take i . lines

where

parse [ jobid, submittime, _, _, _, _, _, reqnprocs, reqtime, _,
_, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _ ] =

SimpleGwf { _jobid = read jobid,
_submittime = read submittime,
_reqnprocs = read reqnprocs,
_reqtime = round (read reqtime :: Double) }

normalize [] =

[]

normalize gs@(SimpleGwf { _submittime=t0 }:_) =

map (\g@SimpleGwf { _submittime=s } -> g { _submittime=s-t0 }) gs

defaultize g@SimpleGwf { _reqtime=d }

| d < 0 = g { _reqtime=defaultReqtime }

| otherwise = g

defaultReqtime = 60 -- XXX check this!

91



92



Bibliography

[1] ANONYMOUS. What is the grid? http://gridcafe.web.cern.ch/gridcafe/

whatisgrid/whatis.html.

[2] AXELROD, R. The Evolution of Cooperation. Basic Books, 1984.

[3] BARBER, B. Qhull manual. The Geometry Center, University of Minnesota http:

//www.qhull.org.

[4] BARMOUTA, A., AND BUYYA, R. GridBank: a Grid Accounting Services Architec-
ture (GASA) for distributed systems sharing and integration. Parallel and Dis-
tributed Processing Symposium, 2003 (2003), 8.

[5] BEAUMONT, O., KERMARREC, A., MARCHAL, L., AND RIVIÈRE, E. VoroNet: A scal-
able object network based on Voronoi tessellations. Writing (2006), 02.

[6] BONDY, J., AND MURTY, U. Graph Theory with Applications. MacMillan. http:
//www.ecp6.jussieu.fr/pageperso/bondy/books/gtwa/gtwa.html, 1976.

[7] COHEN, B. Incentives Build Robustness in BitTorrent. Workshop on Economics
of Peer-to-Peer Systems 6 (2003).

[8] EYMANN, T., REINICKE, M., STREITBERGER, W., RANA, O., JOITA, L., NEUMANN,
D., SCHNIZLER, B., VEIT, D., ARDAIZ, O., CHACIN, P., ET AL. Catallaxy-based Grid
markets. Multiagent and Grid Systems 1, 4 (2005), 297–307.

[9] FRIEDMAN, D. Price Theory: an Intermediate Text. Cincinnati, OH:
South-Western publishing Co. http://www.daviddfriedman.com/Academic/Price_

Theory/PThy_ToC.html, 1990.

[10] GARCIA, F., AND HOEPMAN, J. Off-Line Karma: A Decentralized Currency for
Peer-to-peer and Grid Applications. In Applied Cryptography And Network Secu-
rity: Third International Conference (2005).

[11] JELASITY, M., VOULGARIS, S., GUERRAOUI, R., KERMARREC, A., AND VAN STEEN,
M. Gossip-based peer sampling. ACM Transactions on Computer Systems (2007).

[12] ONER, C. Decentralized grid scheduler. Master’s thesis, Vrije Universiteit, 2007.

93

http://gridcafe.web.cern.ch/gridcafe/ whatisgrid/whatis.html
http://gridcafe.web.cern.ch/gridcafe/ whatisgrid/whatis.html
http://www.qhull.org
http://www.qhull.org
http://www.ecp6.jussieu.fr/pageperso/bondy/books/gtwa/gtwa.html
http://www.ecp6.jussieu.fr/pageperso/bondy/books/gtwa/gtwa.html
http://www.daviddfriedman.com/Academic/Price_Theory/PThy_ToC.html
http://www.daviddfriedman.com/Academic/Price_Theory/PThy_ToC.html


Bibliography

[13] PIATEK, M., ISDAL, T., ANDERSON, T., KRISHNAMURTHY, A., AND VENKATARA-
MANI, A. Do incentives build robustness in BitTorrent? In 4th USENIX Sympo-
sium on Networked Systems Design & Implementation (2007).

[14] VISHNUMURTHY, V., CHANDRAKUMAR, S., AND SIRER, E. KARMA: A secure eco-
nomic framework for peer-to-peer resource sharing. In Workshop on Economics
of Peer-to-Peer Systems (2003).

[15] VOULGARIS, S., GAVIDIA, D., AND VAN STEEN, M. CYCLON: Inexpensive Mem-
bership Management for Unstructured P2P Overlays. Journal of Network and
Systems Management 13, 2 (2005), 197–217.

[16] WOLSKI, R., BREVIK, J., PLANK, J., AND BRYAN, T. Grid resource allocation and
control using computational economies. In Grid Computing: Making the Global
Infrastructure a Reality (2003).

94


	Introduction
	Goals
	Prior work
	Approach
	The rest of this document

	A little economics
	Exchange
	Property
	Wealth maximization
	Obstacles to wealth maximization
	Markets and money
	Back to grid resource allocation
	Surplus on the grid
	Property on the grid
	Money on the grid
	Transaction costs on the grid

	Decentralized resource allocation
	Overview of the algorithm
	Specification of the algorithm

	Efficient resource allocation
	Resource ownership
	A reciprocity-enabled algorithm
	A locality-enabled algorithm
	A transitivity-enabled algorithm: GOSSIPTRON

	Evaluation
	Simulation techniques
	Evaluation
	The information problem
	The trust problem

	Conclusion
	The Gossiptron code
	Module header
	The simulation framework
	Basic data structures
	Specifying the simulation
	The worker nodes
	The clock pseudo-node
	The user pseudo-node
	Primary overlay
	Node schedules
	Agendas
	Buckets
	Accounting
	Keeping track of chains of credit
	Some common parameters used in simulation
	Run the simulation
	Driver code
	Interval maps
	Statistics
	Data analysis and visualization
	Parsing GWF files

	Bibliography

