
Vrije Universiteit Amsterdam
Faculty of Sciences
Warsaw University

Faculty of Mathematics, Informatics and Mechanics

Urszula Herman-Iżycka
Student number: 1544071

Flash Crowd Prediction

Master’s Thesis
in COMPUTER SCIENCE

Supervisors

Dr. Guillaume Pierre
Drs. Michał Szymaniak
Vrije Universiteit Amsterdam

Dr. Piotr Chrząstowski-Wachtel
Warsaw University

July 7, 2006

Abstract

Sudden surges of traffic, also known as flash crowds, present a significant problem to Web sites.
Current systems deal with flash crowds by offloading a portion of the Web site load to a content
delivery network. However, it is hard to determine in advance when the offloading should start. As
a result, most systems react only after detecting a flash crowd during its initial phase. In this thesis,
we implement a system capable of predicting rather than detecting a flash crowd. The prediction is
based on linear regression analysis of the system load over time. We demonstrate that it is possible to
configure our prediction system such that it achieves reasonable results on all the studied real-world
traffic load traces.

Contents

1. Introduction . 5

2. Related Work . 7
2.1. Flash Crowd Characterization . 7
2.2. Flash Crowd Detection and Handling . 9
2.3. Flash Crowd Prediction . 11

2.3.1. Definitions . 12
2.3.2. Linear Regression . 12
2.3.3. Prediction Algorithm . 13
2.3.4. Prediction Performance . 13

2.4. Discussion . 16

3. Definitions . 17
3.1. Definition Improvements . 18
3.2. Summary . 20

4. Prediction System . 23
4.1. Functional Definition . 23
4.2. Architecture . 24

4.2.1. Aggregator . 25
4.2.2. Detector . 25
4.2.3. Predictor . 26
4.2.4. Merger . 27

5. Evaluation . 29
5.1. Evaluation Settings . 29

5.1.1. False Positive Prediction . 29
5.1.2. False Negative Prediction . 31
5.1.3. Summary . 31
5.1.4. Settings . 31

5.2. Traces . 33
5.3. Experiments . 34

5.3.1. Detection . 34
5.3.2. Prediction . 36

6. Conclusions . 45

3

Chapter 1

Introduction

The continuous growth in the number of Internet users often results in popular Web sites becoming
overloaded. This might happen, for example, when a Web site is linked by some very popular news
Web site such as Slashdot [12], or when its address is advertised to a wide public in the media [1, 2].
In both cases, the number of requests received by the Web site grows rapidly, causing the server’s ca-
pacity to soon become exceeded. Overloaded Web sites service as many requests as possible (usually
with very low performance), and simply drop the remaining ones. Such events are often referred to
as Slashdot effects, hot spots, or flash crowds.

Flash crowds present a significant problem to Web site owners. In the case of commercial Web
sites, a flash crowd can lead to severe financial losses, as clients often resign from purchasing the
goods and search for another, more accessible Web site. However, non-commercial Web sites can
also experience flash crowds. For example, an unfrequently visited government Web site might be
saturated by client requests when it is used to announce important administrative regulations, as a
great number of citizens will then attempt to retrieve the regulations content. In general, it is impos-
sible to predict which sites shall be subject to flash crowds, and so each Web site should be ready to
handle them.

The research community has investigated flash crowds for several years. A widely adopted solu-
tion consists of offloading a portion of the Web site load to some distributed infrastructure such as a
content delivery network (CDN) [4]. In that case, the Web site replicates its content to a number of
CDN servers, and starts redirecting the clients to these servers when the load becomes too high. This
effectively increases the client-serving capacity of the Web site by that of the CDN, which enables
the Web site to service all the clients with a good performance.

The problem with offloading is that the Web site has to decide when exactly the offloading should
begin. If it starts too early, then the CDN capacity will be utilized unnecessarily, resulting in higher
maintenance costs of the Web site. On the other hand, if the Web site begins offloading too late, then
some of the clients shall still experience the reduced Web site performance during the initial flash
crowd phase. Worse yet, replicating Web site content to a CDN during a flash crowd puts additional
stress on the Web site, thus reducing its performance even further and causing the replication itself to
last much longer compared to replication done in advance.

Ideally, a Web site would start offloading right before a flash crowd begins such that the CDN
capacity is utilized optimally. To this end, the Web site would have to predict each flash crowd before
it actually starts. However, current systems tend to merely detect flash crowds during their initial
phases rather than predict them in advance. The classical flash crowd detection schemes continuously
monitor the Web site load to detect that it has almost approached the Web site capacity. The inherent
problem is that such a solution is very sensitive to the setting of the offloading threshold. If that
threshold is set too high, then the Web site is informed about upcoming flash crowds at a very short

5

notice. In theory, the warning time could be longer if the threshold was set lower. This, however,
would often result in numerous false alarms generated when the Web site load becomes high enough
to exceed the threshold, but at the same time it is not high enough to be classified as a flash crowd.

A recent paper on flash crowd prediction suggests that Web sites can predict upcoming flash
crowds by applying simple statistical techniques to the history of recently observed Web site load [6].
More specifically, a Web site can use linear regression to identify the ascending trend in its load,
and verify whether the load anticipated in the near future might be classified as a flash crowd. The
authors demonstrate that their solution offers an excellent balance between accuracy and simplicity,
and that it succeeds at predicting a number of flash crowds. However, although the theoretical findings
presented in the paper seem promising, one needs to address a number of additional problems before
exploiting these findings in an actual flash crowd prediction system. For example, our experience
with several real-world flash crowd traces indicates that the proposed flash crowd definition does not
reflect the human intuition of what should be considered a flash crowd. Worse yet, it does not lead to
correct Web site actions in terms of activating and de-activating the CDN infrastructure, causing the
prediction algorithm to be of little practical use.

This thesis proposes a flash crowd prediction system built around an alternative flash crowd def-
inition. Our definition aims at usability: an event should be characterized as a flash crowd if and
only if the Web site needs to exploit the CDN servers in order to sustain it. Our prediction system
combines that definition with the original prediction algorithm based on linear regression to decide
when to activate and de-activate the CDN infrastructure.

The prediction system has the form of a pipeline, which takes the client request rate as its input
and outputs decisions to activate or de-activate the CDN infrastructure. The pipeline consists of four
components. First, the original request rates are aggregated by a pre-processing component. Next,
they are passed to two other components, responsible for prediction and detection of flash crowds,
respectively. The output of these two components is combined by a post-processing component,
which makes the final (de)activation decision. Our experience indicates that combining prediction
and detection is necessary to achieve good performance, as each of them recognizes different flash
crowd phases.

We test our prediction system based on a number of real-world flash crowd traces of different
types. As one could expect, the system performance depends greatly on both the trace characteris-
tics and the system configuration. However, we demonstrate that there exists a set of configuration
parameters that allows for achieving reasonably good performance on all the traces. We also show
that adjusting the system configuration to individual trace characteristics allows for improving the
performance of our prediction system even further.

The remainder of this thesis is structured as follows. Chapter 2 presents general flash crowd
characteristics along with a description on how current systems deal with flash crowds. Chapter 3
discusses the formal flash crowd definition. Chapter 4 treats of the prediction system architecture.
Chapter 5 describes the evaluation criteria followed by the performance results. Finally, Chapter 6
concludes.

6

Chapter 2

Related Work

A flash crowd is a sudden growth of request rate experienced by a Web site. Since Web sites are
seldom prepared to service requests at high rates, the site performance during a flash crowd is typically
degraded. This is undesirable, as low performance of a Web site discourages clients from using it,
which usually translates into bad site reputation and financial losses. To prevent such situations from
happening, a Web site needs to implement some techniques for flash crowd handling, such that it can
offer good performance to its clients even when receiving requests at very high rates.

This section gives the foundation to the entire thesis by summarizing a number of research efforts
dealing with the issue of flash crowds. In principle, these efforts fall into three categories. The first
category defines flash crowd properties, which we analyze to better understand the phenomenon of
a flash crowd. The second category builds on the first one by proposing concrete systems for flash
crowd handling. These systems demonstrate how a Web site can adjust its operation and continue to
efficiently service its clients under severe conditions. The third category shows that flash crowds can
be predicted, which potentially enables the site to adjust its operation in advance, leading to better
site performance. We build on the research presented in the three above categories and propose how
to predict flash crowds more effectively than using earlier techniques.

As we present the research efforts, we use a unified terminology to avoid confusion. We refer to
the server affected by a flash crowd as origin server. The remaining terms are introduced later as we
need them.

2.1. Flash Crowd Characterization

Flash crowds might come to existence for various reasons. For example, some flash crowds, called
Slashdot effects, occur when an origin server is linked by Slashdot [12] or any other popular news Web
site. Typically, such linking results in a large number of Web clients accessing the origin server, which
leads to a flash crowd lasting several hours [3]. The actual flash crowd duration is often correlated
with the time for which the link to the origin server is visible on the front page of the news Web site.

The number of clients visiting the origin server during a flash crowd changes over time. Figure 2.1
depicts how the number of requests to some origin server evolves when that Web site is linked by two
news Web sites. The origin server hosted the “Preserving the Information Ecosystem” publication,
which attracted significant attention of the Internet users. The first vertical line denotes the moment
when the publication was commented on in the Linux Today. The link to the origin server remained
visible on the Linux Today Web page for about 12 hours. The second vertical line indicates the time
when an editorial about the publication appeared on Freshmeat, which kept the editorial on its front
page for several days.

As can be observed, the Linux Today peak is lower than that for Freshmeat. This is most likely

7

Figure 2.1: Server hit statistics for the Adler publication (adapted from [3]).

because Freshmeat has more readers than Linux Today. Also, in both cases, the number of requests
gradually decreases after the initial peak, and reaches its usual level shortly after the link to the origin
server is removed from the front page of a respective news Web site.

Another publication, “An Ode to Richard Stallman”, also attracted the interest of Internet users.
The hit rate evolution for this article is depicted in Figure 2.2. The publication was initially read
only by the subscribers of the Redhat and LNXY mailing lists. Later, Linux Today and Slashdot
announced the publication, which is marked by the two vertical lines. The first line corresponds
to the Linux Today publication and the second one to the time when the article was announced on
Slashdot.

As can be observed, announcing the publication on Redhat and LNXY caused only a slight in-
crease in the request rate, and the actual flash crowd started when the article was linked by Linux
Today and Slashdot. Interestingly, the form of the announcement influenced its resulting traffic surge.
Linux Today published a complete article text, whose copy was hosted on the Linux Today server.
Slashdot, in turn, published only a hyper link to the original article hosted on the origin server. As a
consequence, announcing the article on Slashdot caused a distinctly larger traffic surge compared to
publishing the article text on Linux Today. Another important observation is that the traffic surge was
sudden, but not instantaneous. The request rate increased from about 30 requests per minute up to
over 250 requests per minute within 15 minutes. This observation underlies the assumption that one
can predict flash crowds by analysing the trends in request rates.

Flash crowds are somewhat similar to denial of service (DoS) attacks, as both of them cause a
sudden growth in request rates. However, while requests arriving during a flash crowd should be
processed, those received during a malicious attack should be rejected. To distinguish between flash
crowds and DoS attacks, Jung et al. characterizes both of them based on traffic patterns, topological
client distribution, and file reference characteristics [9]. The authors identify three major differences
between flash crowds and DoS attacks. First, flash crowds cause per-client request rates to decrease,
as the origin server can handle fewer requests per client, which causes each client to reduce its request
rate. Second, the topological distribution of clients during a flash crowd is preserved in the sense that
clients typically originate from the same networks as before the flash crowd. Third, the popularity of
files requested by the clients follows the Zipf-like distribution [16].

8

Figure 2.2: Early phase of the flash crowd.

On the other hand, DoS attacks exhibit different properties. First, they cause per-client request
rates to remain stable or even increase, as clients do not care about server responses and therefore
do not adjust their request rates accordingly. Second, a large number of requests originates from
randomly dispersed clients that have never been seen before. Third, the popularity of requested files
does not follow Zipf-like distribution. Rather, only a certain small set of files is requested, many of
which may even not exist on the server.

The above differences between flash crowds and DoS attacks can be used to devise strategies for
detecting and ignoring malicious requests. However, they also contribute to our better understanding
of what flash crowds are and how they come to existence.

2.2. Flash Crowd Detection and Handling

Detecting a flash crowd forces the origin server to adjust its operation such that it can continue ser-
vicing clients. This typically requires using some distributed infrastructure of mirror servers, which
provide the origin server with additional hosting capacity. Mirror servers can originate either from
a CDN [9] or from a community of contributed servers [8, 15]. The origin server typically exploits
the capacity of mirror servers by using them to service some fraction of client requests. This section
surveys various techniques for flash crowd detection and handling.

Before starting to adapt its operation, the origin server needs to actually detect a flash crowd.
The simplest technique is to monitor the request rate, and initiate adaptation once that rate exceeds
a certain threshold. The intuition behind this technique is that the high request rate can be treated as
the indication of an upcoming flash crowd. In practice, however, using a single adaptation threshold
is not enough, as request rates might oscillate around it, thereby causing frequent and unnecessary
system adaptations.

To address the oscillation problem, several algorithms use a simple watermarking technique. In
that case, the origin server defines two watermarks, high and low, and determines its state as follows:

Definition 2.1 We say that a server enters the overloaded state, when the request rate reaches the
high watermark. The server remains in overloaded state until the request rate drops below the low

9

S1

S3

S4

S5

S6

S2 S7

S8

offloading

Figure 2.3: DotSlash architecture. S1 and S2 are origin servers. S3,S4,S5 and S6 are mirror servers
(adapted from [15]).

proxy request

requestrequest

origin server mirror server

client

cache

Figure 2.4: DotSlash HTTP redirection.

watermark. When the request rate reaches the low watermark, the server returns to its normal oper-
ation mode.

This watermarking technique is exploited in the DotSlash system to decide when to start delegat-
ing client requests to mirror servers [15]. When the origin server enters the overloaded state, DotSlash
seeks underloaded mirror servers and redirects some of its requests to them (see Figure 2.3). The ex-
perimental results based on synthetic data indicate that DotSlash enables the origin server to service
at least an order of magnitude more clients.

However, the problem with DotSlash is that it does not replicate its content to mirror servers in
advance. Instead, the mirror servers act as caches, which fetch content from the origin server upon
each cache miss (see Figure 2.4). Given that mirror servers are used to serve content only when
the origin server is overloaded, they intuitively should not contact the origin server at all to avoid
increasing the origin server load any further.

The limitation of DotSlash is addressed by Felber et al., who propose a method to detect and
avoid flash crowds proactively [8]. The main idea of the algorithm is to detect flash crowds gradually,
and to adapt the server operation according to the current flash crowd phase. The adaptation strate-
gies include redirection and replication, and the algorithm applies them based on the watermarking
technique. As opposite to DotSlash, however, it exploits an additional “middle” watermark between
the high and low watermarks, which is treated as a warning about a potentially upcoming flash crowd.

The three watermarks are used as illustrated in Figure 2.5. More precisely, exceeding the middle
watermark is an indication of a possibly upcoming flash crowd. At that time, the contents of the origin
server are replicated to mirror servers in anticipation of a flash crowd (time t1). The content is being
replicated as long as the request rate is between the middle and high watermark. However, the origin
server does not redirect clients to the mirror servers yet. It starts doing it once the high watermark
has been reached (time t2). Analogous to what happens in DotSlash, repetitive changes in adaptation

10

Figure 2.5: Felber algorithm specifics (adapted from [8]).

strategies are avoided by returning to the normal state only when the low watermark is reached again.
This means that clients are redirected until time t3. Interestingly, content replication can be recursive,
with mirror servers replicating their content and redirect clients to other mirror servers. Still, the
overall system capacity remains constrained by the initial redirection performed at the origin server.

A somewhat different adaptation scheme is exploited in RaDaR (Replicator and Distributor and
Redirector), which has a broader goal than only providing rescue to the origin server in times of
a flash crowd [10]. RaDaR is an architecture for a large pool of globally-distributed servers that
continuously migrate and replicate content among themselves to optimize per-server request rates and
per-client access latencies. The proposed hierarchical model resembles the hierarchy of the Internet,
and implements a special distributed service responsible for content migration and replication (see
Figure 2.6).

RaDaR is not specifically designed to handle flash crowds. Rather, its main functionality is to
ensure efficient resource usage. However, the system is scalable and can redirect clients to their
closest servers while considering the load of each server at the same time. Extending RaDaR with a
module for predicting flash crowds could be a natural next step, as RaDaR already implements all the
necessary adaptation techniques.

The continuation of RaDaR is the Application CDN [11]. ACDN extends RaDaR by the ability
to deliver dynamic content. Also, it implements a better request distribution algorithm, which spreads
the load more evenly across the servers and offers a better average access latency.

Similar to other systems, ACDN also defines two watermarks for request rates, but uses them in
a different manner. In essence, any server with load above its high watermark receives no requests
at all. If the load is below low watermark, in turn, the server gets all the traffic. Otherwise, servers
are assigned weights according to their respective load. Also, when the average server load increases,
access latencies become less important than load balancing.

The experimental results show that ACDN is able to efficiently distribute requests among its
servers, especially because it focuses on load balancing instead of latency optimization once the
average server load increases. However, gradual adaptation to changes in request rates might still
turn out to be too slow to effectively deal with a flash crowd.

2.3. Flash Crowd Prediction

A recent study shows that flash crowds might not only be detected based on the observed workload,
but that they can actually be predicted shortly before they start [6]. The authors evaluate different

11

Figure 2.6: RaDaR replicator hierarchy. Tree leaves are servers, that provide content to the clients
(adapted from [10]).

prediction methods based on several flash crowd traces, and demonstrate that linear regresion offers
excellent balance between accuracy and simplicity. The results appear to be very promising and offer
broad field for exploitation. We present these results in detail as they are the starting point for this
thesis.

2.3.1. Definitions

The descriptive definition of a flash crowd is insufficient in order to conduct precise mathematical
studies. Therefore, the authors mathematically define a flash crowd as follows. First, they define r t

as the number of page requests in a time slot, which is defined as the time unit. The slot size depends
on the data structure or the desired reaction time. Second, they define H as the maximum capacity of
the server. Finally, they define a flash crowd at time t as the event during which rt > H .

However, large variations between samples make this definition impractical. Samples oscillate
around H and the server would constantly change its state, making the whole system unstable. The
authors therefore propose to aggregate the samples into windows of size Wd, such that flash crowds
can be reliably detected. The resulting flash crowd definition is therefore:

Definition 2.2 We say that traffic is experiencing a flash crowd at time t if the average request rate
over [t − Wd, t] is at least H .

Whereas the above definition allows for a detailed flash crowd analysis to be conveyed, our expe-
rience indicates that it can be improved even further. In the next chapter, we discuss the implications
of such definition for the detection algorithm in greater detail, and propose how to improve it.

2.3.2. Linear Regression

The prediction algorithm in [6] is based on the linear regression method. It allows one to predict the
value of an independent variable at some future time t given a number of variable samples measured

12

248 248.5
time slots (hours)

nu
m

be
r

of
 r

eq
ue

st
s

pe
r

tim
e

sl
ot

number of requests per time slot

W

H

current time

predicted time

p
to hotspot

t=248.75 s

249 249.5

20

40

60

80

100

120

0

Figure 2.7: Linear regression and advance notice (adapted from [6]).

in the past.
The authors apply linear regression at any time t over a set of samples collected between time

t − Wp and t, where Wp ≥ 0 is a prediction window parameter. The regression allows to predict the
variable value at time t + τ , where τ ≥ 0 denotes the advance notice parameter. Thus, the authors
define a mapping from observations in the prediction window [t−Wp, t] to a number pt ≡ pt(τ) ≥ 0
of predicted load value in the interval [t + τ, t + τ + 1], starting τ time units in the future.

Linear regression uses the extrapolation of a least-squares linear fit to define pt, i.e. pt = ft(t+τ),
where the coefficients of ft(s) = ats + bt are chosen to minimize the mean quadratic deviation over
the window [t − Wp, t], that is

∑t
i=t−Wp

[ft(i) − ri]
2.

2.3.3. Prediction Algorithm

The prediction algorithm works in two steps. First, it exploits linear regression to produce a sequence
of advance notices for the request rate. Second, it verifies whether and when the request rate is
expected to exceed H . The predictions are valid only when the results pt are positive and finite.
This means that the linear regression of request rates from the window [t − Wp, t] (t representing the
current time) should have a positive slope and intersect the H level at some time in the future (see
Figure 2.7).

Reliable flash crowd detection requires analyzing general trends observed for groups of samples
rather than making predictions in a few individual points. This means in particular that the size of the
linear regression window Wp should be sufficiently large, as only then is it possible to isolate actual
trends in request rates. Also, the window size determines the upper bound on the advance notice
τmax, beyond which predictions are too unreliable to be made.

The ultimate prediction algorithm can be defined according to when it raises flash crowd alarms.
First, an alarm is set if the origin server is currently in a flash crowd. Second, an alarm is also set when
the trend of advance notices isolated using linear regression over the [t−Wp, t] window indicates that
a flash crowd will occur at time ta ∈ [t, t + τmax]. If neither a flash crowd is in progress nor is it
predicted, then the alarm is not set.

2.3.4. Prediction Performance

The authors evaluate their predictor based on a real flash crowd trace collected for the server hosting
the Winter Olympic Games Web site depicted in Figure 2.8. Predicting flash crowds in that trace is

13

Figure 2.8: Winter Olympics trace with H = 40.

248 248.2 248.4 248.6 248.8 249
Time (hours)

N
um

be
r

of
 r

eq
ue

st
s

pe
r

tim
e

sl
ot

248 248.2 248.4 248.6 248.8 249

Ht

H = 40

100

90

80

70

60

50

40

30

20

10

0

0.9

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

A
dv

an
ce

 N
ot

ic
e

(h
ou

rs
)

Advance notice
Traffic

(a) 10 seconds per time slot

248 248.2 248.4 248.6 248.8 249
Time (hours)

N
um

be
r

of
 r

eq
ue

st
s

pe
r

tim
e

sl
ot

248 248.2 248.4 248.6 248.8 249

A
dv

an
ce

 N
ot

ic
e

(h
ou

rs
)

H = 120

Ht
Advance notice
Traffic

200

180

160

140

120

100

80

60

40

20

0

1

0.9

0.8

0.7

0.6

0.1

0

0.2

0.3

0.4

0.5

(b) 30 seconds per time slot

Figure 2.9: Sequence of advance notices with different time slot granularities.

challenging, as several peaks almost reach the H threshold, potentially leading to many false alarms.
Figure 2.9 illustrates how advance notice sequences can visualize the arrival of a flash crowd.

The X axis denotes time, whereas the left hand Y axis specifies the number of requests per time
slot. The right hand Y axis, in turn, shows advance notices at different moments in time. A well-
predicted upcoming flash crowd is represented by a linearly decreasing sequence of advance notices.
This means that they should be close to 0 at about the flash crowd arrival time (denoted as tH in
Figure 2.9), i.e. when the request rate averaged over the last Wd time units increases to H .

The effectiveness of prediction depends on the choice of parameters. One of such parameters
is the maximum advance notice τmax. Too small values of τmax can cause the algorithm to return
many false alarms, i.e. situations in which the flash crowd is predicted, but the load will eventually
not exceed the H threshold. On the other hand, τmax should not be too large, as it will then constraint
the algorithm reactiveness (see figure 2.10). In the case depicted in Figure 2.9, the combination of
τmax of 5 minutes and the Wp of 15 minutes seems to be a good choice.

Another parameter is the granularity of samples. The authors demonstrate that it may greatly
influence the prediction quality, and show that increasing the granularity accelerates the prediction
algorithm without significant degradation of the prediction quality (see Figure 2.9).

14

243 243.5 244 244.5
Time (hours)

N
um

be
r

of
 r

eq
ue

st
s

pe
r

tim
e

sl
ot

243 243.5 244 244.5

100

90

80

70

60

50

40

30

20

10

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Advance notice
Traffic

H = 40

A
dv

an
ce

 N
ot

ic
e

(h
ou

rs
)

Figure 2.10: An example of a too large τmax.

248 248.2 248.4 248.6 248.8 249

100

Time (hours)

N
um

be
r

of
 r

eq
ue

st
s

pe
r

tim
e

sl
ot

248 248.2 248.4 248.6 248.8 249
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H = 40

Ht
Traffic
Advance notice

90

80

70

60

50

40

30

20

10

0

A
dv

an
ce

 N
ot

ic
e

(h
ou

rs
)

(a) Wp = 10 minutes

248 248.2 248.4 248.6 248.8 249
Time (hours)

N
um

be
r

of
 r

eq
ue

st
s

pe
r

tim
e

sl
ot

248 248.2 248.4 248.6 248.8 249

Ht

H = 40

100

90

80

70

60

50

40

30

20

10

0

0.9

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

A
dv

an
ce

 N
ot

ic
e

(h
ou

rs
)

Advance notice
Traffic

(b) Wp = 20 minutes

248 248.2 248.4 248.6 248.8 249
Time (hours)

N
um

be
r

of
 r

eq
ue

st
s

pe
r

tim
e

sl
ot

248 248.2 248.4 248.6 248.8 249

A
dv

an
ce

 N
ot

ic
e

(h
ou

rs
)

H = 40

Advance notice
Traffic

100

90

70

80

60

50

40

30

20

10

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tH

(c) Wp = 45 minutes

Figure 2.11: Prediction quality for different Wp.

15

A more sensitive parameter than data granularity is the prediction window Wp. The size of the
window may vary, but only to a certain extent. A too small Wp can lead to erratic advance notice
sequences, as the prediction algorithm is sensitive to local variations. On the other hand, prediction
algorithm with a too large Wp uses unfresh data for the prediction. Figure 2.11 depicts how prediction
performance depends on the window size.

2.4. Discussion

The discussed research efforts identify a number of properties exhibited by typical flash crowds. Some
of them, such as gradual increase in the request rate, can be exploited to predict flash crowds shortly
before they happen. Predicting a flash crowd could enable the origin server to adapt in advance, and
not only when the flash crowd begins. This, in turn, is likely to result in a better server performance
during the flash crowd.

The proposed prediction algorithm is based solely on linear regression. However, although it
offers promising results, we are convinced that it can be improved further. The following chapters
demonstrate how this can be achieved.

16

Chapter 3

Definitions

The overview of flash crowd characteristics helps to develop a good intuition about what flash crowds
are and how they come to existence. However, deciding whether a given event is a flash crowd is still
quite subjective. Therefore, to allow for systematic studies of flash crowds, a more formal definition
is necessary. In particular, such a formal definition is essential when comparing the performance of
different prediction strategies.

We propose a formal definition that aims at usability: an event should be characterized as a flash
crowd if and only if the Web system needs to adjust its operation in order to sustain it. Note that
this meta-definition rules out short-lived traffic overloads. We believe that the right reaction to these
relatively frequent events is simply to serve the requests without adapting, as the cost of performing
an adaptation would most likely exceed the benefits that adaptation would provide.

Our definition is a result of an evolutionary process. We start with the definition proposed in the
original paper on flash crowd prediction described in Section 2.3. Then, we gradually improve the
definition by eliminating its subsequent shortcomings.

Each definition improvement is illustrated based on a hypothetical flash crowd trace depicted in
Figure 3.1 (graph presents the average request rate over [t − Wd, t] for each t). As can be seen, there
are six peaks of different kinds. Our aim is to present a definition that identifies two flash crowds and
one short-lived overload, which we call a burst.

More specifically, peak 1 depicts a rather small and short-lived traffic growth. However, it is close
to peak 2. Since peak 2 is a result of a long-lasting growth in the request rate, the system should adapt
to handle it properly. Given that peak 1 is in close vicinity of peak 2, the adaptation should already
start at the beginning of peak 1, and peaks 1 and 2 should be recognized together as a single flash
crowd.

Peak 3 is also a short-lived increase in the request rate close to a large peak 4. Similar as in
the case of peaks 1 and 2, peaks 3 and 4 should be handled together. However, these two peaks are
followed by another long-lasting peak (5), which happens after a sudden decrease in the request rate
(6). There are many reasons for such a decrease, such as a transient system failure caused by the
flash crowd itself. We believe that such transient decreases should not affect flash crowd continuity.
In particular, they should not cause the system to become unadapted again. Our definition should
therefore consider peaks 3, 4, and 5 as a single long-lasting flash crowd.

Peak 7, in turn, is an isolated short-lived increase in the request rate. Although such a short-lived
increase might degrade the system performance, it affects only a small number of clients for a short
time. Hence, adapting to such short-lived increases would most likely result in wasting the system
resources. Our definition should therefore identify peak 7 as a burst, and not as a flash crowd.

17

H

1

2

3

4

5

6

7

Figure 3.1: A hypothetical flash crowd trace.

H

1

2

3

4

5

6

7Flash crowd

Figure 3.2: Flash crowds identified according to Definition 3.1.

3.1. Definition Improvements

The starting point of the definition evolution is the definition presented in Section 2.3:

Definition 3.1 We say that traffic is experiencing a flash crowd at time t if the average request rate
over [t − Wd, t] is at least H .

According to the original definition, our hypothetical trace contains six flash crowds (see Fig-
ure 3.2). In particular, it considers different phases of the two long-lasting flash crowds as indepen-
dent events. This is because the request rate sometimes decreases below H for a couple of minutes
only to increase above H afterwards, which might be caused by, for example, a transient system fail-
ure. However, a system relying on the current flash crowd definition would react to such oscillations
by adapting continuously, which is likely to be very expensive.

We solve this problem by means of the classical watermarking technique, which is commonly
used by other systems to handle oscillations in the request rate. We define a flash crowd level Hd

(low watermark) at a certain fraction of the H threshold (high watermark). Also, we define three load
zones:

18

H

Hd

WHITE

GREY

RED 1

2

3

4

5

6

7Flash crowd

Figure 3.3: Flash crowds identified according to Definition 3.2 (zones).

• red: rt ≥ H ,

• grey: Hd ≤ rt < H ,

• white: rt < Hd.

These definitions allow for refining the flash crowd definition as follows:

Definition 3.2 The flash crowd is said to start at time tstart when the traffic enters the red zone,
i.e. the average request rate over [tstart −Wd, tstart] is at least H . It is said to stop at time tend when
it enters the white zone, i.e. the average request rate over [tend − Wd, tend] is less than Hd.

Introducing the watermarks results in aggregating closely situated peaks. However, as can be
observed in Figure 3.3, the new definition identifies four flash crowds, still considering peak 5 to be
a separate flash crowd. This is because the request rate decreases so much between peaks 4 and 5
that it crosses the low watermark. We intuitively call such short-lived decreases in the request rate
as “negative bursts”. A system relying on the current flash crowd definition would react to each such
negative burst by de-adapting itself, believing that the flash crowd is over. On the other hand, it makes
more sense to keep the system adapted during a negative burst to save on the cost of re-adaptation.

We refine our flash crowd definition to interpret negative bursts properly by introducing another
parameter, We, which denotes the longest time for which the request rate can remain in the white zone
during a flash crowd. In other words, a flash crowd is considered to be over only after the request rate
has stayed within the white zone for We seconds, which leads to the following definition:

Definition 3.3 The flash crowd is said to start at time tstart when the traffic enters the red zone,
i.e. the average request rate over [tstart −Wd, tstart] is at least H . It is said to stop at time tend when
it enters and remains in the white zone for more than We time units, i.e. ∀s∈[tend−We,tend] the average
request rate over [s − Wd, s] is less than Hd.

As depicted in Figure 3.4, the last problem that needs to be solved is that the burst represented
by peak 7 is still considered to be a flash crowd. The reason here is that our zone definition does not
distinguish between flash crowds and bursts, as it does not consider the duration of an overload. We
solve this problem by introducing a new parameter, τfc, which denotes the minimal time for which a
flash crowd should last. The resulting final definition of a flash crowd states therefore as follows:

19

H

Hd

We We

WHITE

GREY

RED

We We

1

2

3

4

5

6

7Flash crowd

Figure 3.4: Flash crowds identified according to Definition 3.3 (zones and We).

H

Hd

We We

WHITE

GREY

RED

Flash crowd
Burst

We

1

2

3

4

5

6

7

Figure 3.5: Flash crowds identified according to Definition 3.4 (zones, We and τfc).

Definition 3.4 The flash crowd is said to start at time tstart when the traffic enters the red zone,
i.e. the average request rate over [tstart −Wd, tstart] is at least H . It is said to stop at time tend when
it enters and remains in the white zone for more than We time units, i.e. ∀s∈[tend−We,tend] the average
request rate over [s − Wd, s] is less than Hd. The difference tend − tstart − We should be greater
than τfc. All other cases, where for time t the average request rate over [t − Wd, t] is at least H are
defined as bursts.

3.2. Summary

The notion of flash crowd is by nature imprecise and so there is no ideal definition. However, we
propose a formal definition that is driven by expected system reactions, and therefore approximates
human intuition.

Our definition relies on a number of parameters. First, it properly interprets oscillations around
the capacity threshold by means of watermarking. Second, it eliminates the problem with negative
bursts by introducing the We interval during which the request rate should remain in the white zone

20

before the flash crowd is considered to be over. Finally, it distinguishes between bursts and actual
flash crowds by means of τfc, which denotes the minimum duration of a flash crowd.

Introducing the formal definition enables us to evaluate the performance of our flash crowd pre-
diction system. We discuss this system in detail in the next chapter.

21

Chapter 4

Prediction System

The goal of a good prediction system is to output accurate warnings of upcoming flash crowds. For
a given time period, the prediction system should therefore detect the same flash crowds as those
identified based on the formal flash crowd definition. The vital property of a prediction system,
however, is that it issues warnings before flash crowds actually begin, thus allowing some preventive
actions to be taken by the origin server to preserve high client-handing performance.

This section describes the architecture of our prediction system. We first discuss the system
interface, and then explain its actual architecture in detail.

4.1. Functional Definition

As illustrated in Figure 4.1, our prediction system can in essence be seen as a black box which
reads the request rates observed in subsequent time units, analyses them, and decides whether to
activate or de-activate the infrastructure of mirror servers. The black-box approach hides all the
details of prediction from the user and makes our system highly usable, as no further interpretation of
its decisions is necessary.

More precisely, the input to the prediction system is a stream of (time, request rate) pairs. Each
such pair denotes the request rate observed for a given moment, and all the pairs are sorted ascendingly
according to the observation time. For each pair it reads, the prediction system returns its decisions in
the form of (time, alarm) pairs, in which the “time” field corresponds to the time of the last observation
result read from the input stream. The “alarm” field, in turn, can have either one of two possible
values: “set”, meaning that the origin server should switch to, or remain in the adapted mode, because
of upcoming/lasting flash crowd; or “unset”, which means that the origin server can switch to, or
remain in the normal operation mode, because there are no upcoming/lasting flash crowds any more.

Deciding whether to activate or de-activate the server infrastructure is hard for two reasons. First,
recall that our flash crowd definition distinguishes between two types of overloads: long-lasting,
called flash crowds, and short-lasting, called bursts. The problem is that bursts are practically indis-
tinguishable from flash crowds in their early phase. This means that the prediction system cannot
differentiate between bursts and flash crowds when analyzing the request rates observed for subse-

(time, request rate)
Prediction System

(time, set/unset)

Figure 4.1: Prediction system as a black box.

23

Linear

Regression

PREDICTION

Aggregation

Additional

Simple

Avg Checking

DETECTION

Aggregation

PREPROCESSING

Merging

POSTPROCESSING

Figure 4.2: Detailed architecture of the prediction system.

quent time units. As a result, our prediction system might incorrectly decide to adapt the server
infrastructure to handle bursts.

Another reason why making right activation decisions is hard is that request rates sometimes
oscillate around the capacity threshold H . In particular, the request rates may remain just below that
threshold for some time, and then suddenly cross it. Such events are not indicated by any trend in the
request rates and therefore cannot be predicted, causing our prediction system to activate the server
infrastructure only after a flash crowd actually starts.

However, while the problem with bursts cannot be recognized until after a flash crowd has started,
our prediction system can easily detect oscillations around the capacity threshold. It can then decide
to activate the server infrastructure preventingly even though the actual capacity threshold has not
been crossed yet. We return to this issue below, when discussing the details of flash crowd prediction.

4.2. Architecture

In order to design a reliable prediction system that outputs activation recommendations it is necessary
to have both the detection and the prediction algorithms working in parallel. The reasons for that
are twofold. First, each of the two algorithms have different goals and performs better under certain
traffic conditions. When the flash crowd is already in progress, the sensitive detection algorithm can
be more of an advantage. The prediction algorithm, in turn, is responsible for identifying such trends
that may actually lead to a flash crowd. Second, every prediction issued by the prediction algorithm
should be verified by the detection algorithm. Thus, if an alarm is actually false, the system is able
to identify such a situation and return to the normal operation mode. We therefore implemented the
prediction system in a component manner with the detection and prediction algorithms as its core
components.

Figure 4.2 depicts the modular architecture of our prediction system. The system input is first
pre-processed by a component called aggregator, which groups fine-grain request rate samples into
bigger portions to facilitate their analysis. Then, the aggregated samples are passed in parallel to two
other components. The first of them, called a detector, implements the formal flash crowd definition
to detect flash crowds when they are already in progress. The second component, called a predictor,
implements the linear regression algorithm to analyse the trends in the received samples. The output
of both these components is passed to the last component, called a merger, which makes the final
decision about activating or de-activating the system infrastructure. The following sections discuss
each of the four components in detail.

24

4.2.1. Aggregator

Depending on the system infrastructure where the predictor runs, the request rate samples received by
the prediction system might be very fine-grained such as one sample per second. Meanwhile, both the
formal flash crowd definition implemented by the detector and the linear regression implemented by
the predictor require relatively coarse-grained samples. The detector uses coarse-grained samples to
verify whether the average request rate exceeds the capacity threshold. The predictor, in turn, needs
coarse-grain samples to reliably identify trends in the request rate.

To meet the requirements of the detector and the predictor, the prediction system first aggregates
the request rate samples in the aggregator. The aggregation is performed in two steps. First, the data is
aggregated into samples of ρd seconds, which corresponds to the resampling interval of the detector.
At this stage, the samples are ready to be passed to the detector.

However, as shown in Chapter 5, reliably detecting trends in the request rate mandates that the
samples are aggregated even further. To this end, the aggregator performs the second-step aggrega-
tion, in which the samples are grouped into larger samples of ρp seconds. Note that, as a side effect,
using more coarse-grained leads enables the prediction system to work faster, as it then has fewer
samples to process.

4.2.2. Detector

The request rate samples produced during the first-step aggregation are passed to the detector, which
implements the formal flash crowd definition in order to detect flash crowds and bursts. For each
aggregated sample, the detector outputs a boolean value denoting whether the system is already in a
flash crowd according to the formal flash crowd definition.

The operation of the detector depends on three parameters. We now provide a brief description of
them, and present their detailed study in Chapter 5.

The first parameter of the detector is the window size Wd, which denotes the size of a window
over which the average request rate is computed. In general, the size of the window affects sensitivity
of the detector. Using large windows might therefore lead to ignoring many bursts.

The choice of a window size influences the reaction time of the detector. While detecting a flash
crowd, the average request rate of samples is computed over the time of Wd seconds. The detector
therefore obtains information about a flash crowd after Wd

2 seconds on average, which might already
be too long when the window size is very large. On the other hand, using small windows causes
the detector to recognize even short-lasting overloads as flash crowds. Note that the window size Wd

should be a multiple of the resampling parameter ρd used by the aggregator so that the window always
contains the same number of samples.

Another parameter of the detector is the low watermark Hd. As opposite to the high watermark,
which defines the system capacity and therefore cannot be changed, the low watermark causes the
detector to unify closely situated peaks, thereby reducing the number of necessary adaptations. In
general, a too low Hd would result in ever-lasting flash crowd, whereas too high values of Hd reduce
the detector’s ability to connect peaks. However, choosing the right value of Hd is not easy, as it
strongly depends on the burstiness of the request rate itself.

The last parameter of the detector is We, which is the interval during which the request rate should
remain in the white zone before the flash crowd ends. Recall that this interval enables the detector to
ignore “negative bursts”, which are short-lasting decreases in the request rate during a flash crowd. In
practice, the length of that interval corresponds to the time when the infrastructure of mirror servers
may remain allocated even though the flash crowd is over. This time typically depends on the cost of
utilizing such an infrastructure.

25

(time, request rate)
Linear Regression

(time, zone, prediction)

Figure 4.3: Refined interface of the linear regression predictor.

248 248.5
time slots (hours)

nu
m

be
r

of
 r

eq
ue

st
s

pe
r

tim
e

sl
ot

W

H

H

current time

predicted time

p

to hotspot

249 249.5

20

40

60

80

100

120

0

τmax

WHITE

GREY

RED

grey zone
alarm

p

Figure 4.4: Grey zone alarm in predictor.

4.2.3. Predictor

The core of our prediction system is the predictor, which applies the linear regression algorithm to the
stream of request rate samples received from the aggregator. In principle, the linear regression works
exactly as described in Section 2.3. However, instead of returning a pair of (time, prediction) where
“prediction” denotes the output of linear regression, our predictor uses a more sophisticated interface
to convey more information to the merger.

More specifically, while analysing trends in the request rate, our predictor can not only predict
future request rates, but also identify if the present request rate approaches a dangerously high level.
This capability enables the predictor to inform the merger about the situations when trend analysis
makes no sense, as the request rate remains so close to the capacity threshold that it may be exceeded
at any moment. Such information is extremely valuable to the merger, as it then might decide to
preventingly activate the infrastructure of mirror servers. Thus, we are able to solve the problem of
an oscillating traffic request rate, described at the beginning of this chapter.

The predictor identifies the oscillations around the capacity threshold by means of the watermark-
ing technique. Similar as with the detector, it defines three zones for the current request rate: white,
grey, and red. The difference, however, is that the grey zone is much thinner than in the detector, as
the predictor sets its low watermark at around 90% of the capacity threshold. In that case, the sole fact
of entering the grey zone can be a good reason to activate the infrastructure of mirror servers, as the
request rate is already very close to the capacity threshold (see Figure 4.4). Another difference is that
the predictor determines the zone using linear regression and not load averaging, as it is interested in
the current situation rather than in average situation over some recent past.

The refined predictor interface can therefore be defined as follows (see Figure 4.3):

Definition 4.1 We denote the result of the prediction algorithm as a triplet (t1, zone, t2). t1 is time at

26

which the prediction was given. Zone corresponds to the load zone to which belongs the request rate
at time t1. This is the result of the linear regression with τmax = 0. t2 is time for which the prediction
was issued, t2 ∈ [0, τmax] ∪ ∞. In case the flash crowd is predicted to occur too far away in the
future, then t2 = ∞. If the flash crowd has already started or has just been detected, then t2 = 0.
Otherwise t2 is time at which the linear regression line crosses the flash crowd level H .

In order to better understand the behaviour of the predictor and how it can be interpreted during
the postprocessing phase, we discuss the actual semantics of the returned triplets. Being in the white
zone (t1, white,∞) is the normal situation, in which the request rate is much below the capacity
threshold. However, if the request rate starts to grow fast enough to exceed the high watermark within
a short amount of time, the prediction algorithm returns a warning and a predicted time to flash crowd
(t1, white, t2).

Being in the grey zone, in turn, is an indicator of a dangerously high request rate. The possible
predictor outputs are (t1, grey,∞) and (t1, grey, t2). Although t2 might still be provided, it should
only be treated as an additional piece of information. Also, the value of t2 might be inaccurate, as the
linear regression algorithm works based on a relatively long window of samples compared to the very
small size of the grey zone.

Finally, while in the red zone, the predictor does not need to predict any flash crowd as it is already
in progress. It can therefore return only the information about the current zone: (t1, red, 0).

Similar to the detector, the operation of the predictor depends on a number of parameters. The
influence of the prediction window Wp and the maximum advance notice τmax on the predictor per-
formance has already been discussed in Section 2.3. In addition to that, the prediction window Wp is
usually a few times larger than Wd used by the detector. This is because Wd determines the magnitude
of flash crowds detected by the prediction system, and must by nature be short to ensure the detector’s
sensitivity. Wp, in turn, is used to analyze longer-lasting trends, which can be reliably identified only
when Wp is large enough.

The general parameters defining a flash crowd, including the watermarks and the We interval,
apply to the predictor as well. Similar as in the detector, the high watermark and the We interval
reflect the capacity and cost of the system. The low watermark Hp, however, defines the beginning
of the predictor’s grey zone and as such should be carefully chosen. In most cases, it is better to set it
much higher than the low watermark Hd used by the detector. We return to this issue when evaluating
our prediction system below.

4.2.4. Merger

Both the detector and the predictor pass their output to the merger, which makes the final decision
about whether the infrastructure of mirror servers should be activated or de-activated. We discuss the
decision-making process according to the possible outcomes it might have, starting from the normal
operation without any flash crowds, through the detection and handling of a flash crowd, and until
that flash crowd ends.

The operation of the merger implements the state machine depicted in Figure 4.5. During the
normal operation, the high sensitivity of the detector might cause it to occassionally return a false
alarm when it detects a burst. Therefore, the merger relies more on the predictor at this stage and
waits until an alarm is issued by the predictor (state NORMAL).

Given that the predictor identifies trends in the request rate, it is supposed to discover whenever
the request rate is growing significantly, and to issue a warning about an upcoming flash crowd before
the detector does. The predictor issues two types of warnings. First, it might detect an upcoming
flash crowd based on the trend in the request rate while still in the white zone. Second, it might detect
that the current request rate has entered the grey (or even red) zone. Both these situations cause the

27

NORMAL

UNSET

1(t , GREY, t)2

1(t , RED, t)2

DETECTED

SET

1(t , FC)

DETECTOR

ALARM

SET

1(t , NOFC)

1(t , FC)

1(t , NOFC)e1FOR EACH t IN W

PREDICTOR

FALSE NEGATIVE/ IGNORED BURST

FALSE POSITIVE
*
#

#

*

1 2

8(t , WHITE, t <)

Figure 4.5: Merging state machine.

merger to switch to the ALARM state, in which the prediction system recommends to activate the
infrastructure of mirror servers.

While in the ALARM state, the merger is waiting for the flash crowd to be confirmed by the
detector, which shall cause the state to be changed to DETECTED. However, if no confirmation
arrives within We, the merger returns to the NORMAL state, and recommends to de-activate the
infrastructure. This is consistent with the nature of the We parameter, which defines the maximum
time for which the infrastructure can remain active and unused.

The DETECTED state corresponds to the situation when the flash crowd has already been con-
firmed by the detector. The merger keeps recommending infrastructure activation initiated in the
ALARM state, and waits until the flash crowd is over, which is reported by the detector. Once that
happens, the merger switches its state back to NORMAL, and recommends to de-activate the infras-
tructure.

An important observation is that the infrastructure is activated at time t1, as soon as an alarm is
raised, even though the predictor might indicate that the time remaining until the start of the flash
crowd is t2. There are two reasons for that. First, recall that t2 ∈ [0, τmax] where τmax denotes
the maximum time in the future for which prediction can be issued. As we have already discussed,
predictions based on a too large τmax tend to be unreliable. The value of τmax should therefore
be relatively small, especially compared to the We interval. This causes the cost of infrastructures
activated at t1 and t2 to be very similar. Second, the growing intensity of a flash crowd might cause the
request rate to reach the high watermark faster than initially expected, justifying earlier infrastructure
activation. As a consequence, the potential benefits of such an early activation far outweigh the
possible losses.

Another observation is that the merger could be a perfect place to distinguish between flash crowds
and bursts, thereby solving the first problem we mentioned at the beginning of this chapter. In prin-
ciple, the merger could avoid activating the infrastructure during bursts by first confirming that the
detected overload is a real flash crowd. To this end, it would wait for the minimum flash crowd du-
ration time τfc before triggering the infrastructure activation. However, such an approach would also
cause the prediction system to react too late to all the flash crowds, as each of them would first have
to be confirmed. We therefore do not use the τfc parameter in our flash crowd prediction strategy, but
only in the evaluation process as discussed in the next chapter.

28

Chapter 5

Evaluation

The goal of a good prediction system is to output accurate warnings of upcoming flash crowds. This,
however, is not an easy task due to certain traffic properties. As a result, the prediction system may
output warnings too late or too early when compared to the real flash crowd duration. In order to
compare the quality of different prediction systems with respect to the number of false positive and
false negative alarms they return, we first precisely define these properties. We then present the traces
that will serve as example data sets for our prediction systems. Finally, we present results of different
prediction system runs on these traces so that we can give guidelines on how to find optimal values
of parameters for the prediction system.

5.1. Evaluation Settings

The detector actually defines what a real flash crowd for a given trace is, thereby allowing to count
both false positives and false negatives. Therefore, the main idea for evaluating a given flash crowd
prediction system is to compare the outputs of the prediction system and that of the detector and
count the number of occurrences where they diverge. Importantly, we do not count a penalty for
each time slot separately, but treat an undetected flash crowd or an unnecessary alarm as one error.
Thus, the penalty corresponds to the number of events that are correctly/incorrectly detected and not
to the number of slots in a given run, thereby avoiding correlation with the resampling interval of the
detector during the evaluation stage.

More precisely, we compare the output streams of the detector and prediction system, as shown in
Figure 5.1. The detector for each time slot returns a binary value “FC” or “NOFC”, which denote if
there is a flash crowd or not. As described in Chapter 3 the “FC” samples form consecutive sequences
of length at least We. We denote the start of such sequence by tstartFC and its end by tendFC .

The prediction system, in turn, outputs “SET” and “UNSET” recommendations for each time slot
following the decision strategy presented in the previous chapter. The “SET” recommendations also
form consecutive sequences which either last precisely We seconds (in case of a false alarm) or as
long as the detector issues “FC” values (other cases). Similarly, we denote by tstartSET the start of
such sequence and by tendSET its end.

5.1.1. False Positive Prediction

A false positive prediction depicts an adaptation that takes place too early before a real flash crowd
to allow for efficient infrastructure usage (see Figure 5.2). We use the We parameter to denote the
maximal interval before a flash crowd in which the adaptation can legitimately start. Note that this

29

UNSETUNSETUNSET SET SET SET SET SET SET SET SET SETSETSET UNSETUNSETUNSET

NOFC NOFC NOFC NOFC NOFC NOFC NOFC NOFC NOFC NOFC NOFCFCFC FC FC FC FC FC

tstartFC tendFC

tstartSET tstartSET tstartSET

SET

SET SET SET SET SETSETSETSET UNSETUNSET UNSETUNSETUNSETSET SETSET SETSET

P
R

E
D

IC
T

IO
N

 S
Y

ST
E

M Time

D
E

T
E

C
T

O
R

Figure 5.1: Detector and prediction system output comparison. Slots between tstartFC and tendFC

are grey. Also slots tstartSET are marked as grey.

UNSETUNSETUNSET SET SET SET SET SET SET SET SET SETSETSET

UNSETUNSET SET SET SET SET SET SET SET SET SETSETSETSETSETSET

SET SET SET SET SETSETSETSET UNSETUNSET

UNSET

UNSET

UNSETUNSETUNSET

UNSETUNSET SET

SET

SET SET

e W

SET SETSET

NOFC NOFC NOFC NOFC NOFC NOFC NOFC NOFC NOFC NOFC NOFCFCFC FC FC FC FC FC

FALSE POSITIVE
Time

D
E

T
E

C
T

O
R

P
R

E
D

IC
T

IO
N

 S
Y

ST
E

M

Figure 5.2: Detector and prediction system output comparison: false positives.

is consistent with the nature of We parameter, as it defines the time for which the infrastructure can
remain active and unused. The false positive prediction is therefore as follows:

Definition 5.1 A false positive prediction occurs for an adaptation starting at time tstartSET when
tstartSET < tstartFC − We.

A special type of false positives are adaptations during which a short-lived overload, a burst, oc-
curs. Bursts differ from flash crowds in such a way that they last shorter, that is less than τfc. Recall
that we presented such a prediction system that tries to avoid adapting to bursts. However, bursts can
look very similar to flash crowds in their early stages and therefore the prediction system might rec-
ommend an adaptation anyway. Such an adaptation is not as efficient in terms of infrastructure usage
as a flash crowd adaptation, but it could still have some sense, depending on the user preferences.
Therefore we introduce in the evaluation procedure the notion of a false positive adaptation during a
burst, a false burst in short, whose definition is the following:

30

SET SET SETUNSETUNSET UNSETUNSET SET UNSETUNSET SETUNSET

SET SET SETUNSETUNSET UNSETUNSET SET UNSETUNSET

SET SETUNSETUNSET UNSETUNSET UNSETUNSET UNSET SETUNSETUNSET

SET SET

NOFC NOFC NOFC NOFC NOFCFC FC FC FCFCNOFC NOFC NOFC

UNSETUNSET

UNSETUNSET

UNSETUNSET

NOFCNOFCNOFCNOFC

UNSETUNSETUNSETUNSET

UNSETUNSETUNSETUNSET

UNSETUNSETUNSETUNSET

tendBURSTtstartBURST

Time

NOFC

D
E

T
E

C
T

O
R

SY
ST

E
M

P
R

E
D

IC
T

IO
N

Figure 5.3: Detector and prediction system output comparison: false bursts.

Definition 5.2 A false burst occurs for an adaptation starting at time tstartSET when tstartBURST ∈

[tstartSET , tendSET] or tstartSET ∈ [tstartBURST , tendBURST] where tstartBURST and tendBURST

denote the start and end of a burst respectively.

Possible situations in which an adaptation could be classified as a false burst are depicted in
Figure 5.3.

5.1.2. False Negative Prediction

A false negative prediction occurs when the prediction system recommends no adaptation at all for
a given flash crowd, or this adaptation starts too late. Figure 5.4 depicts possible false negative
predictions, where the adaptation is supposed to start within δneg seconds before a flash crowd (if it is
not in progress due to an earlier alarm already). The definition of a false negative prediction therefore
states:

Definition 5.3 A false negative prediction occurs for a flash crowd starting at time tstartFC when no
alarm is raised between tstartFC − δneg and tstartFC .

5.1.3. Summary

We can therefore summarize the recommendations based on where they start and where the actual
flash crowd begins as presented in Table 5.1. Notice that the “no penalty” period is the time between
a false positive and a true positive. During this time we are actually indifferent whether the prediction
system recommends us to activate the infrastructure or to remain in the normal operation mode.

5.1.4. Settings

In the following sections we evaluate our prediction system with the following parameter settings.
Our goal is to predict flash crowds that last at least 10 minutes, which means that τfc = 600 seconds.
We expect the prediction system to recommend an adaptation within 150 seconds before a flash crowd

31

UNSETUNSETUNSET SET SET SET SET SET SET SET UNSETUNSETUNSET

NOFC NOFC NOFC NOFC NOFC NOFC NOFC NOFC NOFC NOFC NOFCFCFC FC FC FC FC FC

e W
δneg

SETUNSETUNSETUNSETUNSET

UNSETUNSET SET SET SET SET SET UNSETUNSETUNSETUNSETUNSETUNSETUNSETUNSETUNSET SETUNSET

SET SET SET SET SETSETSETSET UNSETUNSET UNSETUNSETUNSETSET SET SETUNSETUNSET

UNSETUNSET SET SET SET SET SET UNSETUNSETUNSETUNSETUNSETUNSETUNSETUNSETUNSET SET SET

FALSE POSITIVE
Time

D
E

T
E

C
T

O
R

P
R

E
D

IC
T

IO
N

 S
Y

ST
E

M CORRECT FALSE NEGATIVE

Figure 5.4: Detector and prediction system output comparison: false negatives.

Start time Description

tstartSET < tstartFC − We
False positive;
wasted resources.

tstartFC − We ≤ tstartSET < tstartFC − δneg
No penalty;
resources used at the end of We period.

tstartFC − δneg ≤ tstartSET < tstartFC
True positive;
most efficient resources usage.

tstartFC ≤ tstartSET
False negative;
system unprepared.

Table 5.1: Classification of possible adaptation recommendations, which start at time tstartSET .

32

(a) Worldcup: 87 days (H = 10000 rps) (b) Minix: 119 days (H = 20 rps)

(c) AST: 70 days (H = 150 rps) (d) Fractal: 60 days (H = 250 rps)

Figure 5.5: Traces (ρd = 15 s).

starts (δneg = 150). However, the adaptation can start earlier, but at most 30 minutes, which is the
value of the We interval corresponding to the time the infrastructure can remain active and unused.

We decided to apply equal penalties to false negative and false positive predictions (set to 1 penalty
unit), as they both should be avoided. The cost of a false burst, in turn, is set lower (0.5 units). The
goal of the prediction system is to minimize the number of errors during a given run.

5.2. Traces

We evaluate our predictor on four traffic load traces, which have very different properties. We describe
them briefly here so that we can develop intuition of what type of prediction errors might be expected.

Figure 5.5 presents the four traces aggregated by such a ρd that is used during the experiments
(servers capacity is expressed in requests per second, rps).

The first trace is the Worldcup trace from the Soccer World Cup in 1998 [5]. There are several
easily distinguishable flash crowds, which typically last several hours. Their periodic occurrence
corresponds to the times when matches are played. In addition, there are up to two bursts (depending
on the detector parameters), at the beginning and at the end of the trace. The capacity of the server is
fairly large, what might be the reason for the flash crowds to be so noticeable and long.

The second trace is more bursty, coming from a smaller-sized server hosting the minix3.org
Web site [14]. This is a classical example of a flash crowd trace, in which the flash crowd is preceded

33

Trace Start Date Duration (days) H [rps]
Worldcup 30 Apr 1998 87 10000
Minix 24 Oct 2005 119 20
AST 18 Apr 2004 70 150
Fractal 31 Dec 2003 60 250

Table 5.2: Traces summary (rps denotes requests per second).

by a period of very low request rates. At some point, the Internet community becomes interested in
the content hosted on the server, in this case the new release of the Minix operating system. This
results in a flash crowd, which after a few days is followed by a decrease in the request rate to a
moderate level.

Another bursty trace is the AST trace, which shows the popularity of Prof. Andrew Tanenbaum’s
home page during the course of his scientific debate with Ken Brown [13]. The largest flash crowd
appears at the beginning of the trace after a period of a rather low request rate. This peak is followed
by a few others, but of a smaller magnitude than the first one. Outside the flash crowd periods the
request rate remains at about 40% of the servers capacity.

The last trace used during the evaluation is the Fractal trace from an Australian Web server hosting
a page about fractals [7]. The trace is also very bursty with the request rate usually reaching 80% of
the servers capacity. There are several sudden peaks in the request rate which are not indicated by any
previous traffic behaviour, what makes the predictions a rather hard task. In addition, the typical level
reached by the request rate is distinctly higher than that of the AST, for example. As a consequence,
the prediction system may issue many warnings related to the grey zone entries.

We should note that the capacity thresholds were set arbitrarily. For example we set it lower in the
Fractal trace, in comparison to the AST trace, so that we can check how our prediction system behaves
on a similarly bursty trace, but under much harder conditions which actually resemble a permanently
overloaded server. Table 5.2 summarizes the basic information about the four traces.

5.3. Experiments

In order to compare different prediction systems we have to define the magnitude of flash crowds
that are to be predicted. Therefore we first choose settings for the detector, whose output will serve
as a reference point for all prediction systems run on this trace. Consequently, the structure of this
section is as follows. First, we discuss parameters that influence detection. Then, we present short
characteristics of our prediction system and choose predictor settings that behave best for the given
traces.

5.3.1. Detection

This section discusses how to select parameters that influence the detection process. They either
depend on human judgement or are coupled with the handling infrastructure deployed in the system.

We Interval

The We parameter is chosen with respect to the infrastructure cost, independently from the detection
process. It influences the detection in such a way that it unifies closely situated peaks, thereby causing
flash crowds to last longer.

34

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 0 30 60 90 120 150 180 210

N
um

be
r

of
 fl

as
h

cr
ow

ds
/b

ur
st

s

Detection window Wd [s]

flash crowds
bursts

(a) Worldcup

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 0 30 60 90 120 150 180 210

N
um

be
r

of
 fl

as
h

cr
ow

ds
/b

ur
st

s

Detection window Wd [s]

flash crowds
bursts

(b) Minix

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 0 30 60 90 120 150 180 210

N
um

be
r

of
 fl

as
h

cr
ow

ds
/b

ur
st

s

Detection window Wd [s]

flash crowds
bursts

(c) AST

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 0 30 60 90 120 150 180 210

N
um

be
r

of
 fl

as
h

cr
ow

ds
/b

ur
st

s

Detection window Wd [s]

flash crowds
bursts

(d) Fractal

Figure 5.6: Different detection windows.

Resampling Interval ρd

In all our experiments the resampling interval ρd is set to 15 seconds because of two reasons. First, it
is very close to the resampling interval used in the initial paper on flash crowd prediction where it was
set to 10 seconds (for details see Section 2.3). Second, detectors that differ little in setting of the ρd

parameter usually output almost identical flash crowd sequences. However, larger values of ρd speed
up the computation.

Detection Window Wd

The size for the detection window Wd greatly influences the magnitude of the flash crowds that are
detected. Figure 5.6 illustrates the correlation between the size of the detection window and the
number of detected flash crowds and bursts. In the experiments ρd = 15 s and Hd = 0.7 ∗H rps (the
low watermark is discussed in detail below).

Recall that small window sizes cause the detector to be very reactive, whereas larger windows
allow for more stability. This can be easily seen when comparing the detection results in Figure 5.6
for Wd = 30 and Wd = 180 seconds. A detector with such a small window size as 30 seconds
recognizes an overload very fast as either a flash crowd or a burst. A detector with a very large
window size like 180 seconds, in turn, obtains information about a flash crowd only after 90 seconds.
An exception here is the very regular Worldcup trace, whose results are all independent from the
window size.

35

Trace H [rps]
Detector Number of Number of

Hd [rps] ρd [s] Wd [s] Flash Crowds Bursts
Worldcup 10000 0.6*H 15 90 19 1
Minix 20 0.6*H 15 90 5 0
AST 150 0.6*H 15 90 4 0
Fractal 250 0.6*H 15 120 4 2

Table 5.3: Traces summary: detector’s stage.

Defining where the flash crowd actually starts and ends is quite subjective. Therefore we cannot
give here an ultimate answer with one detection window size suitable for each and every trace. How-
ever, based on the observations of Figure 5.6 we propose to distinguish between “small” and “large”
window sizes. As “small” we define windows of less than 60 seconds, whereas “large” windows are
those that have at least 150 seconds. Both window types have their advantages and drawbacks as
described above. We therefore believe that it is reasonable to choose a window that is between the
two extremes.

Closer investigation of Figure 5.6 shows that for the Worldcup, Minix and AST traces the number
of flash crowds remains fairly stable for windows of 90 seconds and larger. Importantly, bursts for
these window sizes are eliminated. The Fractal trace, in turn, produces a distinctly larger number of
bursts in comparison to the number of flash crowds. For the larger window sizes the number of bursts
decreases, but they are hard to eliminate. The reason for that is probably the fact that the Fractal trace
simulates an overloaded server trace, where load quite often increases above the high watermark. As
a , we use Wd = 90 s during the tests of our prediction system for the Worldcup, Minix and AST
traces. For the more bursty Fractal trace, it is better to choose a larger window Wd = 120 s, as this
might reduce the number of bursts.

Low Watermark Hd

The final parameter we need to set in the detector is the low watermark Hd, which connects closely
situated request rate peaks. As depicted in Figure 5.7 this parameter typically helps to reduce the
number of detected flash crowds. However, setting this parameter lower also influences the duration
of both flash crowds and bursts. As a consequence, it not only helps to merge several flash crowds
into one, but produces new flash crowds from peaks previously recognized as bursts. Such a situation
occurs, for example, when analysing the Fractal trace. The second burst in the Worldcup trace has
also turned into a flash crowd after the low watermark crossed the 0.8*H value. In general, we advise
to choose this parameter between 0.6 and 0.7 of the capacity server. In the experiments presented
below we set the low watermark at 0.6*H rps.

Summary

Table 5.3 summarizes the current evaluation settings. In the next section all prediction systems are
evaluated against detectors with such settings.

5.3.2. Prediction

This section presents how the prediction system, in particular the linear regression predictor, works
with the detector described above.

There are four parameters that need to be set. We test our prediction system against four values
of the resampling interval ρp: 15, 30, 45 and 60 seconds. For each of these values we try to find such

36

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 fl

as
h

cr
ow

ds
/b

ur
st

s

Low watermark (Hd/H)

flash crowds
bursts

(a) Worldcup (Wd = 90 s)

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 0.4 0.5 0.6 0.7 0.8 0.9 1
N

um
be

r
of

 fl
as

h
cr

ow
ds

/b
ur

st
s

Low watermark (Hd/H)

flash crowds
bursts

(b) Minix (Wd = 90 s)

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 fl

as
h

cr
ow

ds
/b

ur
st

s

Low watermark (Hd/H)

flash crowds
bursts

(c) AST (Wd = 90 s)

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 fl

as
h

cr
ow

ds
/b

ur
st

s

Low watermark (Hd/H)

flash crowds
bursts

(d) Fractal (Wd = 120 s)

Figure 5.7: Different low watermark settings.

37

combination of the prediction window Wp (values from the range between 150 and 720 seconds) and
the predictors low watermark Hp (values between 0.95*H and 0.80*H rps) that the number of errors
is minimal. The parameter that remains constant throughout the experiments is the maximal advance
notice τmax, which is set to 5 minutes.

Figure 5.8 presents the overall results of our prediction system. Each subfigure shows the respec-
tive number of errors depending on the window size Wp and the resampling interval ρp. Results with
two low watermark values are presented: in the left column are the results for Hp = 0.95∗H , whereas
the right one shows the outputs for Hp = 0.90 ∗H . Thus, we can most easily compare the results for
all the traces and find common patterns concerning the curve shapes. While analyzing Figure 5.8 it is
important to compare the outputs of prediction system with respective numbers of flash crowds and
bursts given in Table 5.3.

Before we describe all parameters separately, notice that the curves for different ρp values are all
“U-shaped”. In general, the values for which the curves reach their minimum are different for each
trace. Therefore we should not expect to find a single best value for all of them. However, we can
determine default values that will allow reasonable predictions for all studied traces.

Prediction Window Wp

While analyzing the presented data, it is clear that for most cases a window size lower than 300
seconds tends to generate a distinctly greater number of errors in comparison to larger windows.
Note that smaller values cause the prediction system to issue many warnings, whereas larger values
stabilize at such levels that practically no flash crowds are predicted on time. We therefore propose to
set Wp between 420 and 600 seconds.

Recall that prediction window influences reactiveness of the linear regression predictor, as de-
picted in Figure 5.9. Prediction system with smaller windows generates many false positive alarms,
whereas large windows have great impact on the number of false negatives issued. Selecting a larger
prediction window also helps to ignore bursts, which is the consequence of reducing the overall num-
ber of false positives. This general rule is confirmed by the U-shape of the respective curves from
Figure 5.8, as false positives and false negatives sum to the final number of errors.

Low Watermark Hp

As can be observed in Figure 5.8 the minimum for most of the curves moves towards larger Wp values
when the low watermark Hp is set smaller. For the already chosen safe Wp settings there is, however,
no clear difference when the results for 0.95*H and 0.90*H are compared. We therefore set it simply
to 0.90*H rps. The only exception is the Worldcup trace where the minimum is reached for smaller
window sizes and optimal settings can be found for Hp = 0.95 ∗ H rps.

Selecting the right value for the low watermark Hp is again a trade-off between the number of false
positives and false negatives. Recall that the low watermark reduces the number of false negatives,
as the prediction alarms are issued preventingly at the time the predictor reaches Hp. Setting the low
watermark too low, however, might greatly increase the number of false positives, as illustrated in
Figure 5.10.

Note how distinctly higher this parameter is set in comparison to the low watermark used in the
detector (typically Hd = 0.6 ∗ H or Hd = 0.7 ∗ H rps).

Resampling interval ρp

Figure 5.8 suggests that for Wp between 420 and 600 seconds and Hp = 0.90 ∗ H rps it is safe to
select the ρp parameter at 45 seconds.

38

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 180 240 300 360 420 480 540 600 660 720

N
um

be
r

of
 e

rr
or

s

Prediction window Wp [s]

ρp = 15 s
ρp = 30 s
ρp = 45 s
ρp = 60 s

(a) Worldcup Hp = 0.95 ∗ H rps

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 180 240 300 360 420 480 540 600 660 720

N
um

be
r

of
 e

rr
or

s

Prediction window Wp [s]

ρp = 15 s
ρp = 30 s
ρp = 45 s
ρp = 60 s

(b) Worldcup Hp = 0.90 ∗ H rps

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 180 240 300 360 420 480 540 600 660 720

N
um

be
r

of
 e

rr
or

s

Prediction window Wp [s]

ρp = 15 s
ρp = 30 s
ρp = 45 s
ρp = 60 s

(c) Minix Hp = 0.95 ∗ H rps

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 180 240 300 360 420 480 540 600 660 720

N
um

be
r

of
 e

rr
or

s

Prediction window Wp [s]

ρp = 15 s
ρp = 30 s
ρp = 45 s
ρp = 60 s

(d) Minix Hp = 0.90 ∗ H rps

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 180 240 300 360 420 480 540 600 660 720

N
um

be
r

of
 e

rr
or

s

Prediction window Wp [s]

ρp = 15 s
ρp = 30 s
ρp = 45 s
ρp = 60 s

(e) AST Hp = 0.95 ∗ H rps

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 180 240 300 360 420 480 540 600 660 720

N
um

be
r

of
 e

rr
or

s

Prediction window Wp [s]

ρp = 15 s
ρp = 30 s
ρp = 45 s
ρp = 60 s

(f) AST Hp = 0.90 ∗ H rps

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 180 240 300 360 420 480 540 600 660 720

N
um

be
r

of
 e

rr
or

s

Prediction window Wp [s]

ρp = 15 s
ρp = 30 s
ρp = 45 s
ρp = 60 s

(g) Fractal Hp = 0.95 ∗ H rps

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 180 240 300 360 420 480 540 600 660 720

N
um

be
r

of
 e

rr
or

s

Prediction window Wp [s]

ρp = 15 s
ρp = 30 s
ρp = 45 s
ρp = 60 s

(h) Fractal Hp = 0.90 ∗ H rps

Figure 5.8: Prediction results.

39

 0

 2

 4

 6

 8

 10

 180 240 300 360 420 480 540 600 660 720N
um

be
r

of
 fa

ls
e

ne
ga

tiv
es

/p
os

iti
ve

s

Prediction window Wp [s]

false negatives
false positives

Figure 5.9: Correlation between the window size Wp and the number of false negatives and false
positives (AST trace: Hp = 0.9 ∗ H rps, ρp = 45 s).

 0

 2

 4

 6

 8

 10

 180 240 300 360 420 480 540 600 660 720

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

Prediction window Wp

H1=0.95
H1=0.90

Figure 5.10: Correlation between setting the low watermark and the respective number of false posi-
tive alarms (Worldcup trace: ρp = 30 s).

40

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 180 240 300 360 420 480 540 600 660 720

N
um

be
r

of
 e

rr
or

s
Prediction window Wp [s]

ρp = 15 s
ρp = 60 s

Figure 5.11: Correlation between ρp and the number of generated errors (Minix trace: Hp = 0.9 ∗ H

rps).

The ρp parameter is mainly responsible for smoothing the data, thereby allowing the predictor
to more easily discover trends in the request rate. The burstiness of the trace has a great impact on
setting ρp, as the more bursty traces need to be aggregated with larger ρp values. On the other hand,
if we expect the prediction system to be rather reactive it might be better to choose a smaller value
for ρp. In general, the results of prediction system with larger ρp are more stable (the U-shape of the
curves flattens; the Wp is less important), but it might be hard to find the optimal prediction values for
a given trace. Figure 5.11 illustrates more clearly this dependency, already noticeable in Figure 5.8.

We treat the above remarks as guidelines, since we have not defined how to measure the trace
burstiness precisely. One of the possible solutions to determine this property could be the autocorre-
lation function. However, we leave this issue for future work.

Maximum Advance Notice τmax

In general, it turns out that the influence of τmax on the prediction process is negligible (we compared
τmax = 5 and τmax = 10 minutes). As one could expect, the prediction system with a larger τmax

generates more false positive alarms, but only when the prediction window is extremely small. We
explain this loss of influence by the fact that the majority of the prediction alarms is issued due to
grey zone crossing.

Discussion

Obviously, the prediction system with default parameters (as presented in Table 5.4) cannot be optimal
for each and every trace. In order to improve its performance, the prediction settings can be tuned if
additional trace characteristics are available. We therefore discuss the possible improvements based
on the results obtained for the four example traces.

Worldcup: an example of a low bursty trace With the generally safe parameter settings, the
prediction system clearly does not perform optimally. The reason is that the trace has very low bursti-
ness. In order to improve the performance we need to change the safe values for all the parameters.
First, recall the difference in number of false positives for the two low watermarks presented in Fig-
ure 5.10. It is clear that especially for the Worldcup trace it is better to set Hp = 0.95 ∗ H . Second,
note that smaller resampling interval ρp is more suitable for this trace (especially for Hp = 0.95∗H).

41

Trace H [rps]
Detector Predictor

Hd [rps] ρd [s] Wd [s] Hp [rps] ρp [s] Wp [s]
Worldcup 10000 0.6*H 15 90 0.90*H 45 480
Minix 20 0.6*H 15 90 0.90*H 45 480
AST 150 0.6*H 15 90 0.90*H 45 480
Fractal 250 0.6*H 15 120 0.90*H 45 480

Table 5.4: Traces summary: safe parameter settings (rps denotes requests per second).

Third, notice that the overall trend of the different ρp curves has opposite properties to the generally
observed. More precisely, the best performance is observed for the window sizes smaller than 360
seconds. We therefore advise the following settings: Hp = 0.95 ∗ H rps, ρp = 30 s and Wp = 300 s.

The reason for such changes from safe to optimal settings is the low burstiness of the Worldcup
trace. Since the request rate growth is stable, the prediction system returns practically no false neg-
ative predictions. Therefore setting the low watermark too low can only be source for unnecessarily
preventing alarms. Similarly, there is no need to reduce the predictor’s sensitivity by using larger
aggregation and larger prediction window.

Interestingly, it is impossible to find such parameter settings that would allow to ignore the burst
from the beginning of the trace. This is a typical example of a burst, which is a random traffic
fluctuation with an extreme request rate growth, well beyond the capacity threshold. Sooner or later
such sudden traffic surge has to influence the trend of the request rate samples.

Minix: an example of a trace with sudden flash crowds The stability of the error curves for
different prediction windows and resampling intervals allowed us to quickly select safe parameter
settings for this trace. As can be observed in Figure 5.8 the number of errors with optimal settings
could only be reduced by one (with larger resampling interval and smaller prediction window). Note,
however, that even with the optimal parameters selected still three out of five flash crowds would not
be predicted early enough.

In order to explain this issue, we compared the respective outputs of the detector and prediction
system (Wp = 300 s, Hp = 0.90 ∗ H rps, ρp = 60 s). Surprisingly, the prediction system behaves
on this trace as a detector rather than as a real predictor. We identified two reasons responsible for
such situation. First, flash crowds in the Minix trace start fairly suddenly, as the average request
rate computed by the detector crossed from the white into the red zone in only 90 seconds. Second,
the upward trend of the samples before three flash crowds was not clear enough for the prediction
system to raise an alarm on time. Figure 5.12 depicts two different flash crowds in this trace. The
second flash crowd illustrates the problem, as here the majority of the samples during this flash crowd
remains below the capacity threshold.

AST: an example of a typical trace The default settings of the prediction system are practically the
best settings that could be selected for the AST trace. The request rate also increases quite suddenly
before the four flash crowds (as compared for example to the Worldcup trace), but the prediction
system is able to issue an alarm before the flash crowd starts. The only exception is the last flash
crowd, where the average request rate exceeds the high watermark in two minutes (starting from 0).
However, such cases might well be classified as “unpredictable”.

Fractal: an example of a trace from an already overloaded server The final observation refers
to the Fractal trace, by which we tried to simulate a prediction on a server that is already approaching
its maximum capacity before the flash crowds start. Because of the constantly high request rate and

42

Figure 5.12: Early phase of two flash crowds in the Minix trace (duration: 60 hours).

many bursts identified, we already had to increase the size of the detection window. As can be seen in
Figure 5.8, it is equally hard to find the optimal values for the predictor. In order to reduce the number
of false positives, we could set the prediction window larger than for other traces and aggregate the
samples even further. Increasing the low watermark value might seem a good idea as well, as the
results for prediction system with Hp = 0.95 ∗ H are more stable. Note, however, that they stabilize
at such level that practically no flash crowds are predicted on time (three out of four).

Unfortunately, the best our prediction system can do in such circumstances is to turn into a detec-
tor. In case of such a bursty trace, we believe that it is better to rely on a good detector that is able
to ignore as many bursts as possible. Thus, the infrastructure would be allocated late, but only it is
really necessary.

43

Chapter 6

Conclusions

In this thesis we have discussed current flash crowd handling techniques and argued that early adapta-
tion is essential for effective dealing with flash crowds. In principle, timely adaptation is possible only
when flash crowds are predicted. The problem of flash crowd prediction has been already addressed
in a recent paper, which provided theoretical foundations by proposing to predict flash crowds using
linear regression [6]. We have exploited this theory in our flash crowd prediction system.

The improvements over the original solution are twofold. First, we introduced a new flash crowd
definition that allows for efficient resources usage. Our definition solved three main problems when
identifying flash crowds. It detects the situations when the request rate oscillates around the Web
site capacity, which results in more accurate flash crowd detection. Furthermore, it ignores negative
bursts, thereby reducing the number of unnecessary infrastructure activations. Finally, it distinguishes
between flash crowds and bursts so that the prediction system can precisely define when adaptation is
really needed.

The second improvement is related to the prediction algorithm itself. We use the algorithm as
presented in the paper, but we refine the predictor interface so that a special type of warnings can
be issued. When the request rate oscillates just below the capacity threshold, these warnings are
extremely useful, as in that case the linear regression algorithm is of little use. Another consequence
of using such warnings is that our system does not trigger adaptations upon most bursts.

We have evaluated our prediction system by computing the number of errorenous decisions it
produces based on a number of real-world flash crowd traces. In principle, these errors can be of two
types. Either the prediction system recommends an unnecessary adaptation (false positive) or such
a recommendation is issued too late (false negative). We have demonstrated that the performance
of our system greatly depends on a number of configuration parameters, and that the system can be
configured in such a way that it achieves reasonably good results on all the studied traces. In other
words, the number of errors made by the prediction system with such settings is, although not optimal,
rather low. Finally, we have shown that the system performance can be improved if additional trace
characteristics are available.

We identify two main fields for exploitation in order to increase usability of our prediction system.
First, trace classification with respect to its burstiness would allow to identify safe configuration
parameters settings for each group of bursty traces separately, thereby improving performance of our
prediction system. We believe that autocorrelation function could be used to that end.

Another field for exploitation we see in distributed environment, for example the prediction sys-
tem could be deployed in a RaDaR-like architecture. We envision a solution where the prediction
system runs on each server separately and sends reports about the current flash crowd situation to
a special meta-prediction component deployed inside the replicator. The replicator can then decide
how to change the redirection policy or whether to deploy new replicas.

45

Bibliography

[1] First Statement of the Food Agency in Belgium (AFSCA). http://www.influenza.
be/fr/persberichten/2005-10-27_afsca_obligation_de_confinement.
doc.

[2] Second Statement of the Food Agency in Belgium (AFSCA). http://www.influenza.
be/fr/persberichten/2005-10-28_afsca_obligation_de_confinement.
doc.

[3] ADLER, S. The Slashdot Effect: An Analysis of Three Internet Publications.
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html, 1999.

[4] AKAMAI. http://www.akamai.com/.

[5] ARLITT, M., AND JIN, T. A Workload Characterization Study of the 1998 World Cup Web
Site. IEEE Network 14, 3 (May 2000), 30–37.

[6] BARYSHNIKOV, Y., COFFMAN, E. G., PIERRE, G., RUBENSTEIN, D., SQUILLANTE, M.,
AND YIMWADSANA, T. Predictability of Web-Server Traffic Congestion. In Proceedings of
the Tenth IEEE International Workshop on Web Content Caching and Distribution (September
2005), pp. 97–103.

[7] BOURKE, P. Googleblatted and SlashDotted, Feb. 2004. http://astronomy.swin.edu.
au/~pbourke/fractals/quatjulia/google.html.

[8] FELBER, P., KALDEWEY, T., AND WEISS, S. Proactive Hot Spot Avoidance for Web Server
Dependability. In 23rd International Symposium on Reliable Distributed Systems (SRDS 2004),
18-20 October 2004, Florianpolis, Brazil (October 2004), pp. 309–318.

[9] JUNG, J., KRISHNAMURTHY, B., AND RABINOVICH, M. Flash Crowds and Denial of Service
Attacks: Characterization and Implications for CDNs and Web Sites. In Proceedings of the
International World Wide Web Conference (May 2002), IEEE, pp. 252–262.

[10] RABINOVICH, M., AND AGGARWAL, A. RaDaR: A Scalable Architecture for a Global Web
Hosting Service. Computer Networks (Amsterdam, The Netherlands: 1999) 31, 11–16 (1999),
1545–1561.

[11] RABINOVICH, M., XIAO, Z., AND AGGARWAL, A. Computing on the Edge: A Platform
for Replicating Internet Applications. In International Workshop on Web Caching and Content
Distribution, Norwell, MA, USA (2004), pp. 57–77.

[12] SLASHDOT. http://slashdot.org.

[13] SLASHDOT.ORG. Tanenbaum Rebuts Ken Brown, June 2004. http://linux.slashdot.
org/article.pl?sid=04/06/08/1657256.

47

[14] SLASHDOT.ORG. Andy Tanenbaum Releases Minix 3, Oct. 2005. http://linux.
slashdot.org/article.pl?sid=05/10/24/1049200.

[15] ZHAO, W., AND SCHULZRINNE, H. DotSlash: A Self-Configuring and Scalable Rescue Sys-
tem for Handling Web Hotspots Effectively. In International Workshop on Web Caching and
Content Distribution (WCW’04), Beijing, China (October 2004), pp. 1–18.

[16] ZIPF, G. K. Human Behaviour and the Principle of Least-Effort: An Introduction to Human
Ecology. Addison-Wesley, 1949.

48

