
On the Feasibility of Decentralized Grid Scheduling

Marco Fiscato Paolo Costa Guillaume Pierre
Department of Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

mfo300@few.vu.nl costa@cs.vu.nl gpierre@cs.vu.nl

Abstract

Many authors recognize the limitations of hierarchical
Grid scheduling in scalable environments, and proposed
peer-to-peer solutions to this problem. However, most peer-
to-peer grid resource management systems allow only to
discover available resources at the time of the request. We
claim that peer-to-peer techniques have the potential for
actual Grid scheduling, where each resource maintains a
schedule of its future allocation to jobs. We present such a
protocol, which additionally allows users to specify desired
properties about the requested schedules.

1 Introduction

The landscape of utility computing is changing. The
popularity of Grid and Cloud computing paradigms is lead-
ing to an increase of the size of such platforms, the het-
erogeneity of hardware resources and, in the case of Grid
computing, the number of administrative domains. At the
same time, not every organization owns a powerful cluster
computer to contribute to a grid infrastructure, so we should
expect next-generation Grids to be composed of dozens of
thousands of small clusters and even individual machines,
rather than dozens of powerful supercomputers [2].

An essential building block for such systems is job
scheduling. We define scheduling as the process of select-
ing J machines in the infrastructure such that they will be
simultaneously available to execute a job in the near future
for a given duration T . In a Grid computing environment,
relying on a single centralized scheduler is impossible for
scalability and political reasons. Instead, most Grid plat-
forms rely on meta-scheduling, where each cluster is given
its own local scheduler, and global job scheduling is real-

ized by delegating each job to one carefully selected clus-
ter capable of running it [6]. However, in an environment
composed of large numbers of small clusters or individual
machines, scheduling jobs onto resources spanning multi-
ple organizations becomes indispensable as no single clus-
ter may have sufficient resources or the willingness to run a
large job. This has lead a number of authors to propose peer-
to-peer solutions to the Grid scheduling problem [1, 4, 7].
However, such systems focus on discovery of available re-
sources rather than on resource usage scheduling, and the
limited level of control they give to users makes their prac-
tical applicability debatable.

Our position is that peer-to-peer technologies have
the potential for building full-featured decentralized Grid
schedulers. To support this claim, we present an exam-
ple of a peer-to-peer algorithm capable of building efficient
schedules in a scalable fashion. Unlike current peer-to-
peer schedulers, our algorithm plans the future allocation
of tasks to resources rather than simply allocating currently
available resources. It also allows users to specify an op-
timization criterion representing the preferences of the job
with respect to the selection of resources to assign to it. We
expect that many grid jobs will require their jobs to exe-
cute on nodes located close to each other, preferably in the
same cluster. However, other optimization criteria may also
be used. For example, the user of an interactive applica-
tion may prefer his/her job to start as soon as possible, even
if this implies that the selected nodes will not necessarily
be colocated. Jobs that manipulate large amounts of data
may prefer to execute at nodes that have good bandwidth to
the location where the data are stored. Globally distributed
services such as content delivery networks may require re-
sources to be located as far away from each other as possi-
ble, or in as many different countries as possible.

1



The algorithm deliberately ignores the potential structure
of a grid as a collection of clusters. Instead, it lets each com-
pute node be responsible for setting up its own job execution
agenda. Nodes cooperate in a gossip-based fashion in order
to identify a group of nodes that can best accommodate the
needs of each submitted job. A job can be submitted at any
node of the system. An initial schedule is generated out of
an arbitrary sample of J nodes. Of course, this schedule
is unlikely to have a good quality in terms of the optimiza-
tion criterion. It is therefore incrementally improved by ex-
ploring more nodes likely to have better characteristics and
schedules. We show that a random selection of the extra
nodes to explore provides reasonable schedules. However,
the algorithm can be improved by exploiting prior knowl-
edge of typical optimization criteria, leading to much better
schedules being found in less iterations.

This paper is structured as follows. Section 2 presents
related work. Then, Section 3 presents our model, and Sec-
tion 4 shows preliminary performance results. Finally, Sec-
tion 5 ends the paper with brief concluding remarks.

2 Related Work

A number of research efforts have recognized the need
for decentralized Grid scheduling algorithms. However, to
our knowledge no published algorithm simultaneously of-
fers scalability properties and actual scheduling of resources
as opposed to idle resource discovery.

One example of scalable scheduling system is Zo-
rilla [4], which uses dissemination algorithms to locate a
number of idle machines upon a job request. The dissem-
ination infrastructure explores close-by nodes first so the
resulting set of machines is due to exhibit some degree of
geographical locality. However, such an algorithm can work
only in an infrastructure where a sufficient fraction of the re-
sources is idle at the time a job is submitted. In exploitation
systems where the resource utilization approaches 100%,
efficient resource utilization requires advance planning.

A different approach consists of letting applications be in
control of the allocation of resources to them [1]. Although
this approach potentially allows to fine-tune the resource
selection to the precise needs of individual applications, it
again relies on resource discovery rather than scheduling.

One approach similar to ours is [7], which uses genetic
algorithms to build efficient schedules in an open environ-
ment. Although this approach has been shown to have very
good performance in small-scale environments, it relies on
global knowledge about the Grid condition. We consider

that large-scale next-generation grids will make the collec-
tion of such information infeasible. Our approach, in con-
trast, uses similar genetic algorithms but requires only very
partial knowledge about the Grid as a whole.

3 Protocol Description

Hereafter we outline our approach to build schedules in
a fully decentralized fashion. For illustration purposes, af-
ter discussing our reference model, we start introducing a
basic version of our protocol, which we will use as bottom
line in our experiments, and then we describe how we can
efficiently improve the quality of the schedules and acceler-
ate the scheduling process, by proactively maintaining ad-
ditional information about other nodes in the system.

3.1 Model

We assume that all nodes of the Grid, despite their het-
erogeneity, are equally capable to run any job1. We expect
users to formulate job submission queries in the form of
a triplet 〈J, T,Opt〉 where J is the requested number of
nodes, T is the requested duration where these nodes should
be simultaneously available, and Opt is a cost function rep-
resenting the job-specific optimization criterion. The pre-
ferred schedule, out of any number of functionally correct
ones, is defined as the one which minimizes function Opt.
Standard optimization functions may be provided such as
“find nodes as close to each other as possible” or “start the
job as soon as possible.” However, users may also provide
custom optimization functions as a combination of several
standard functions (“select nodes located as close to each
other as possible, such that the job starts in at most 1 hour”).

In our system, each node maintains its own schedule, de-
fined as a list of 〈time interval, job id〉 pairs representing
the reservations that this node has already committed to re-
garding its future utilization. We assume a model based on
exclusive reservations, which means that the time intervals
of two reservations may not overlap.

3.2 Basic Protocol

In our algorithm, all nodes are considered as equal so
there is no designated “scheduler” nodes nor node directory.
Instead, all nodes take part in a randomly structured overlay

1In practice, this assumption can be easily satisfied by performing a
first selection of nodes based on their hardware and software attributes
(e.g., using the approach described in [3]).

2



network, based on the CYCLON gossip protocol [9]. Ev-
ery node maintains a small list of Kc random links to other
nodes in the system (with Kc � N ). Every node peri-
odically selects one neighbor among these Kc nodes and
exchanges a few of its links with those from its neighbor’s
list. This way, all nodes are periodically provided with a
refreshed set of links to other randomly chosen nodes. As a
consequence, the resulting overlay closely resembles a ran-
dom graph. Failing nodes are quickly replaced and removed
from the lists of other nodes. Such overlays have been
shown to be extremely robust against partitioning, even in
the presence of churn and massive node failures.

A basic, naive version of our algorithm works as follows.
A job submission query can be issued at any Grid node,
possibly after a number of authentication and authorization
checks have been made by that node. This node recursively
explores the CYCLON until it discovers α×J nodes, where
α is a parameter of the algorithm2. A first schedule can be
generated by selecting J nodes out of α × J such that the
optimization function Opt is minimized.

In practice, exploring all permutations of J nodes out of
α × J is computationally infeasible unless α ≈ 1 or J is
very small. However, having α � 1 is essential to identify
good schedules, as it gives the algorithm more opportunity
to ignore unsuitable nodes. To this end, we implemented
the selection process using a genetic algorithm [5] to obtain
nearly optimal results in polynomial time.

The overall quality of the resulting schedules, however,
strictly depends on the random nodes found in the CYCLON

caches. To minimize the impact of randomness and to in-
crease the chances to find better schedules, the above pro-
cess is iterated a number of times, stopping either after τ it-
erations or at the time when the current best schedule is due
to start. Each iteration is computed out of nodes found start-
ing from a different node of the CYCLON overlay3. Each
time a new better tentative schedule is found, the old one
is discarded, the resources of the previous one are released
and the new ones locked via 2-phase commit.

3.3 Proactive Protocol

While the above protocol is effective in providing correct
schedules, it suffers from one major drawback: since nodes
are selected on a random basis, there is a high chance that
even the best set found will barely match the user expecta-

2In our experiments we find that α = 2 exhibits a good tradeoff in
terms of cost and performance.

3Note that since iterations are completely independent from each other,
they can be run in parallel by concurrent threads to improve performance.

tions. For example, if we consider the proximity optimiza-
tion criterion (“nodes located close to each other, preferably
in the same cluster”), it is easy to see how unlikely is to
find good candidates if nodes are selected randomly. The
schedule obtained is functionally correct but its quality will
generally be far from the optimum.

Clearly, the bigger the system is, the more critical this is-
sue will be because the chances to find the optimal schedule
will decrease at large scale. Increasing the value of τ and α
may improve the quality of the solutions, but at the cost of
increasing the computational overhead.

We alleviate this problem by constructing extra overlays
on top of CYCLON. While CYCLON aims at maintaining
a random graph, these extra overlays aim at linking to-
gether nodes that are likely to produce good schedules if
allocated together. Multiple such overlays can be built to
cluster nodes according to different metrics. For example,
to support queries for nodes located close to each other, we
should build an overlay that links nearby nodes together. To
support scheduling requests for jobs to start as soon as pos-
sible, we should build an overlay that links nodes whose
first available time slots largely overlap.

Building and maintaining such “helper overlays” that
link together nodes which share a certain characteristic
can be realized using a second gossip layer, called VICIN-
ITY [10], on top of the CYCLON overlay network. Simi-
larly to the CYCLON protocol, VICINITY keeps another set
of Kv links to other nodes, and periodically exchanges in-
formation about a subset of its links Kv with its neighbors.
Differently from CYCLON, however, in VICINITY nodes do
not randomly select links to keep in their list but always
keep the best according to the overlay metric (e.g., proxim-
ity or time of the first available slot). One may thus con-
struct custom overlays on demand by simply defining a dis-
tance function representing the metric whose value should
be optimized. One may build an overlay linking nodes with
largely overlapping first available time slot by using the size
of this overlap as the optimization criterion. Similarly, one
may link nearby nodes by using the inter-node latency, for
example as predicted by a network coordinate system [8].
Note that maintaining several such overlays does not imply
major overhead: each overlay generates a constant back-
ground traffic in the order of a few hundred bytes per sec-
ond.

The maintenance of helper overlays can be considered
as a proactive, though lightweight, way to to maintain sets
of nodes likely to produce good schedules if used together.
When a query is issued, at each iteration the node process-
ing the query can select one (random) node of out its CY-

3



CLON cache and α×J −1 nodes out of that random node’s
relevant helper overlay. For instance, if proximity among
nodes is required, then each iteration will evaluate α × J

nodes located close to a randomly selected node. Using
helper overlays as a lightweight way to group nodes that
share certain characteristics significantly improves the qual-
ity of the obtained schedules and reduces the number of nec-
essary iterations, as shown in the next section.

4 Evaluation

To assess the performance of our protocol we emulate
a whole Grid system by running N instances of our im-
plementation on a single machine. We study the cases
N = 800 and N = 10, 000. Due to space constraints, we
focus only on the proximity metric (“find nodes as close to
each other as possible”) as this is arguably required by many
grid application developers. Nevertheless, similar trends are
also exhibited by the other functions we tested.

To replicate a realistic situation, we assigned each emu-
lated node with the network coordinates of a real node po-
sitioned during a previous study [8]. Latency between two
nodes is estimated as the Euclidean distance between their
respective coordinates. Note that this setup is more chal-
lenging than most Grid systems, in that it is composed only
of individual machines rather than entire clusters.

To measure the quality of the solution found, we de-
fine the optimization function as: Opt(n1, n2, . . . , nJ) =∑J

i=1 d(ni, n̄) where d(a, b) is the Euclidean distance be-
tween the coordinates of node a and node b and n̄ represents
the geometric center of the set of nodes {n1, n2, . . . , nJ}.
The goal of our protocol is to minimize this function.

Figure 1 plots the value of the optimization function re-
lated to the best schedule at a given iteration using respec-
tively the basic protocol and the proactive one, in four dif-
ferent scenarios requesting J = 64 (resp. J = 128) nodes
among a Grid of N = 800 (resp. N = 10, 000) nodes.
The schedule performances are expressed as the quality ra-
tio versus an “Centralized” schedule obtained by running
our genetic algorithm through the entire set of nodes, as a
centralized scheduler would.

In all cases, the proactive protocol clearly outperforms
the basic one both in terms of the quality of the sched-
ule found and in terms of required number of iterations.
Quality-wise, the schedules found by the proactive proto-
col closely approach those of the centralized scheduler. The
proactive protocol also finds good schedules in very few it-
erations. By exploiting the information provided in the up-
per layer overlay, it can immediately start with a reasonably

good schedule and then improve on it by exploring other
close groups of nodes.

Arguably, the proactive protocol improves the schedul-
ing performance at the cost of extra network traffic. Each
metric that users may want to optimize against requires a
specialize overlay. The implied traffic, however, remains
extremely low, with each node exchanging around 1,280
bytes per proactive overlay at every gossip cycle. Given
gossip periodicities around 10 seconds, we consider these
costs as negligible.

5 Conclusions

The recent trends in distributed computing are leading
to a scenario in which many organizations will collabo-
rate to offer virtually unlimited resources to run users’ jobs.
Traditional scheduling approaches are inadequate to cope
with the new scalability challenges that this scenario brings
along and many researchers agree on the need to explore
decentralized and autonomous solutions.

To support this claim, as a proof-of-concept, we de-
signed and evaluated a fully decentralized protocol to
schedule jobs in a large-scale multi-domain system. The
protocol relies on gossiping to evenly spread the overhead
across the entire set of nodes and to ensure high robustness,
thus preventing bottlenecks or single points of failures typ-
ical of centralized systems. Differently from existing peer-
to-peer solutions, our protocol empowers users with fine-
grained control over the resource allocation by allowing for
job-specific optimization criteria. It also enables planning
the allocation of resources in the future and not only at the
time of the request.

Despite the encouraging results, we are well aware that
this is just a preliminary step towards the development
of a fully-fledged decentralized scheduling solution. Sev-
eral key features are still lacking like an effective charg-
ing model and the support for execution policies (e.g., “user
from organization X cannot run jobs on hosts of company
Y ”). Especially policies nowadays play a major role in
mainstream systems and their relevance is likely to grow
in the future due to the explosion of administrative do-
mains. Beside, another missing functionality is a decen-
tralized monitoring service to track job executions and to
timely replace failed nodes.

Investigating these issues as well as running a large-scale
deployment of our protocol is in our immediate research
agenda.

4



 0

 2

 4

 6

 8

 10

 12

 0  20  40  60  80  100

S
co

re
 r

at
io

 v
s.

 C
en

tr
al

iz
ed

Iterations

Random Overlay
Proximity Overlay

(a) Requesting 64 nodes among 800

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  20  40  60  80  100

S
co

re
 r

at
io

 v
s.

 C
en

tr
al

iz
ed

Iterations

Random Overlay
Proximity Overlay

1

(b) Requesting 128 nodes among 800

 0

 5

 10

 15

 20

 25

 30

 35

 0  20  40  60  80  100

S
co

re
 r

at
io

 v
s.

 C
en

tr
al

iz
ed

Iterations

Random Overlay
Proximity Overlay

(c) Requesting 64 nodes among 10,000

 0

 5

 10

 15

 20

 25

 30

 35

 0  20  40  60  80  100

S
co

re
 r

at
io

 v
s.

 C
en

tr
al

iz
ed

Iterations

Random Overlay
Proximity Overlay

(d) Requesting 128 nodes among 10,000

Figure 1. Quality of the schedule found against the number of iterations

Acknowledgements

This work has been funded by the XtreemOS FP6
project [2].

References

[1] A. Chakravarti, G. Baumgartner, and M. Lauria. The Or-
ganic Grid: Self-Organizing Computation on a Peer-to-Peer
Network. In IEEE Transactions on Systems, Man, and Cy-
bernetics, volume 35, May 2005.

[2] T. Cortes, C. Franke, Y. Jégou, T. Kielmann, D. Laforenza,
B. Matthews, C. Morin, L. P. Prieto, and A. Reine-
feld. XtreemOS: a Vision for a Grid Operating Sys-
tem. XtreemOS technical report #4, May 2008. www.
xtreemos.eu.

[3] P. Costa, G. Pierre, and M. van Steen. Autonomous Re-
source Selection for Utility Computing. Submitted for pub-
lication, 2008.

[4] N. Drost, R. V. van Nieuwpoort, and H. E. Bal. Simple
Locality-Aware Co-allocation in Peer-to-Peer Supercomput-

ing. In Proc. Intl. Workshop on Global and Peer-2-Peer
Computing, May 2006.

[5] A. Eiben and J. Smith. Introduction to Evolutionary Com-
puting. Natural Computing Series. Springer, 2003.

[6] E. Huedo, R. Montero, and I. Llorente. The GridWay Frame-
work for Adaptive Scheduling and Execution on Grids. Scal-
able Computing - Practice and Experience, 6(3):1–8, 2005.

[7] G. Iordache, M. Boboila, F. Pop, C. Stratan, and V. Cristea.
A Decentralized Strategy for Genetic Scheduling in Hetero-
geneous Environments. In Proc. Intl. Conf. on Grid Comput-
ing, High-Performance and Distributed Applications, 2006.

[8] M. Szymaniak, D. Presotto, G. Pierre, and M. van Steen.
Practical Large-Scale Latency Estimation. Elsevier Com-
puter Networks, 52(7):1343–1364, May 2008.

[9] S. Voulgaris, D. Gavidia, and M. van Steen. CYCLON: In-
expensive Membership Management for Unstructured P2P
Overlays. Journal of Network and Systems Management,
13(2), 2005.

[10] S. Voulgaris and M. van Steen. Epidemic-Style Management
of Semantic Overlays for Content-Based Searching. In Proc.
Euro-Par Conf., Aug. 2005.

5


