
Global Data Management
R. Baldoni, G. Cortese, F. Davide and A. Melpignano.
IOS Press, 2006

1

From Web Servers to
Ubiquitous Content Delivery

Guillaume Pierre1, Maarten van Steen,
Michał Szymaniak, Swaminathan Sivasubramanian

Vrije Universiteit, Amsterdam, The Netherlands.

Abstract. Hosting a Web site at a single server creates performance and reliability
issues when request load increases, availability is at stake, and, in general, when
quality-of-service demands rise. A common approach to these problems is making
use of a content delivery network (CDN) that supports distribution and replication
of (parts of) a Web site. The nodes of such networks are dispersed across the Inter-
net, allowing clients to be redirected to a nearest copy of a requested document, or
to balance access loads among several servers. Also, if documents are replicated,
availability of a site increases. The design space for constructing a CDN is large
and involves decisions concerning replica placement, client redirection policies,
but also decentralization. We discuss the principles of various types of distributed
Web hosting platforms and show where tradeoffs need to be made when it comes
to supporting robustness, flexibility, and performance.

Keywords. Replication, Mirroring, Content delivery networks, Peer-to-peer.

1. Introduction

Thanks to the expansion of the Internet, an ever-growing number of businesses and end
users decide to publish information using the World-Wide Web. These documents can
range from a set of simple HTML pages to multi-tiered Web-based applications, in which
pages are generated dynamically at the time of a request.

The Web was initially designed with the idea that each page would be hosted by
one server machine [9]. The resulting system model is extremely simple: to obtain a
document, a browser is given a URL which contains the name of the server to contact,
and the document path to request. The browser initiates a TCP connection with the re-
quested server and specifies the required document path, after which the server returns
the document and closes the connection.

Although this approach is extremely simple, taking a closer look at it also quickly
reveals a number of shortcomings. The network connection between the client and the
server can have arbitrarily poor performance, potentially leading to long connection setup
and transfer delays. The server cannot control the rate of incoming requests, so it always
runs the risk of overload when subject to high request rates. This issue can also lead to
increased document retrieval delays, or even to servers refusing incoming connections.

1Correspondence to: Guillaume Pierre, Department of Computer Science, Vrije Universiteit, de Boelelaan
1081, 1081 HV Amsterdam, The Netherlands; E-mail: gpierre@cs.vu.nl.



2 G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery

Finally, a centralized Web server constitutes a single point of failure: it is sufficient that a
server, or the network connection leading to it, fails for the documents it hosts to become
unreachable. This situation is clearly unacceptable to most Internet-based businesses or
even to demanding end users.

The solution to these issues is to decouple a Website(i.e., a collection of documents
related to each other) from the one or moreserver machinesused to host it. For example,
the Google Web site is believed to be hosted by over dozens of thousands of servers [7].
A large number of systems have been built to this aim, using different techniques ranging
from caching or mirroring Web documents, to building high-performance server clus-
ters, and building worldwide replicated hosting platforms known as content delivery net-
works. More recently, worldwide content delivery has witnessed additional development,
with the advent of collaborative and peer-to-peer content delivery networks.

Although distributed Web hosting platforms are very different in their architecture,
most of them follow a common goal, namely to share the burden of delivering the
contents among multiple machines by way of replication. Replication involves creating
copies of a site’s Web documents, and placing these copies at well-chosen locations. In
addition, various measures are taken to ensure consistency when a replicated document
is updated. Finally, effort is put into redirecting a client to a server hosting a document
copy such that the client is optimally served. Replication can lead to reduced client la-
tency and network traffic by redirecting client requests to a replica closest to that client.
It can also improve the availability of the system, as the failure of one server does not
result in entire service outage.

The original nonreplicated system model of the World-Wide Web also imposes a
transparency constraint to any Web hosting system. Since no specific support for repli-
cation is included in the Web protocols, it is a desired property that replication be trans-
parent to the Web browsers. Otherwise, the complexity of the system must be revealed
to the end users by asking them to select a server where requests should be sent to, or by
requiring them to use nonstandard replication-aware browsers to access the information.

This chapter will detail the different types of Web hosting architectures, and discuss
their relative merits and drawbacks. We will show that, although decentralization is a
desirable property, it makes the implementation of advanced features such as latency-
driven client redirection and dynamic Web application hosting more complex, or even
impossible.

2. Content Delivery Networks

The shortcomings of centralized Web site hosting can be addressed by creating copies of
(or replicating) a site’s Web documents at well-chosen locations and redirecting client
requests to a server hosting a document copy such that the client is optimally served.
Replication can lead to reduced client latency and network traffic by redirecting client
requests to a replica closest to that client. It can also improve the availability of the
system, as the failure of one replica does not result in entire service outage.

The simplest form of Web-site replication is mirroring. As discussed in Section 2.1,
mirroring requires very little technical sophistication but presents a number of issues due
to the almost total lack of centralized control over the system.

A number of infrastructures known as content delivery networks have been devel-
oped to address the issues of mirroring by providing worldwide distributed resources



G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery 3

that can be dynamically allocated to Web sites, and by advanced automation of system
administration. Section 2.2 presents the general design of content delivery networks.

Many CDNs focus on replicating static Web pages only. However, an increasing
fraction of Web contents are generated dynamically at the time of a request by applica-
tions that take, for example, individual user profile and request parameters into account
when producing the content. Hosting such applications, and their associated databases,
requires entirely different techniques than for hosting static contents. We present them in
Section 2.3.

Finally, even though CDNs distribute Web contents at a worldwide scale, the man-
agement of these resources remains fundamentally centralized. Section 2.4 discusses the
advantages and limitations of such an approach.

2.1. Mirroring vs. Content Delivery Networks

The simplest form of Web document replication is mirroring. Mirroring consists of cre-
ating copies of (a part of) a Web site at multiple servers. The servers hosting a mirror of
a given site are chosen manually, usually by way of server administrators volunteering to
mirror a popular Web site. Setting up replication is also done manually by periodically
copying the files from the origin server to each of its mirrors. The origin server typically
presents a list of mirror servers to its clients, who are expected to select “the best one”
manually.

The popularity of mirroring techniques is certainly due to their extreme simplicity.
However, this simplicity imposes many limitations in terms of server selection, consis-
tency, availability guarantees, client redirection and administration.

The selection of servers hosting the content is constrained by the willingness of Web
server administrators, rather than by the actual needs of the mirrored site. For example,
a site may end up having many mirrors in an area where very few clients access the site,
and on the other hand, lack mirrors in areas where it is most popular.

The consistency of document replicas is ensured by copying documents periodically,
typically once every few hours or days. This limits the effectiveness of mirroring to
sites with slow update rates, or which can tolerate the delivery of outdated content to its
clients.

A mirrored site does very little to guarantee its availability in the presence of server
or network failures. There is no automatic failover mechanism, so when a client notices
the unavailability of one mirror, (s)he is expected to select another mirror manually.
Furthermore, a failure of the origin server typically means that new clients cannot access
the list of mirrors. The whole site then becomes unreachable, even though many mirrors
may still work correctly.

Presenting a list of mirrors to a client requires the client to select “the best server”
manually. Mirror lists are usually annotated with the geographical location, in the hope
that a server geographically close to a client will deliver acceptable performance. How-
ever, it is notoriously difficult for a user to predict which server will deliver best per-
formance, as geographical distance is a poor predictor of the performance of an Internet
client-to-server network path [37]. In addition, geographical distance says nothing about
the current load of the server. In some cases, it may be wise to (temporarily) switch to a
farther, but better performing server.

Finally, the decentralization of control of a mirrored site can lead to a number of dif-
ficulties. Each mirror server is usually administrated by a different person, who needs to



4 G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery

Adaptation
triggering

Replica
placement

Metric
estimation

system condition
Observed

Consistency
enforcement

Request
routing

System (F)
+/−

+/−
+/−

Initial configuration

Triggers

Request traffic & network performance

Figure 1. Abstract architecture of a content delivery network.

be contacted and convinced before any administrative task such as a change in configu-
ration can take place. Similarly, each mirror maintains its own access log. Most mirrored
sites do not require mirror servers to report their access logs to the origin server, which
prevents the site owner from exploiting these logs for understanding the needs of clients
or claiming revenue from advertisements embedded in the pages.

Most of the limitations of mirroring can be addressed by centralizing the control
of replication, and automating a number of tasks. In particular, a popular Web site may
buy servers, install them at well-chosen locations, and manage consistency maintenance
itself across these servers. Additionally, a number of solutions can be implemented to
automate the redirection of clients to one of the available servers. However, building such
a worldwide system is very expensive, so from an economical point of view it often does
not make sense to deploy a separate infrastructure for each Web site. This observation
leads to the development of Content Delivery Networks (CDNs). A CDN provides many
resources that can be dynamically allocated to the sites it is hosting, which allows to
share the same infrastructure to host multiple unrelated sites. The next section describes
the general design and architecture of most content delivery networks.

2.2. Content Delivery Networks Architecture

The best well-known commercial content delivery network is Akamai [4], but recent
years have witnessed the development of many more [17]. Their detailed architecture is
often considered a trade secret, but their general principles are known. Likewise, much
academic research has been conducted in the domain [32,36].

The detailed architecture of content delivery networks is extremely diverse, but in
essence every Web hosting system requires the same types of mechanisms. As illustrated
in Figure 1, any content delivery network faces a continuously changing traffic of re-
quests addressed by its clients and must deliver the requested documents via the Inter-
net, whose performance also fluctuates. The goal of a CDN is to continuously adapt its
configuration to provide a near-optimal quality of service at the lowest possible cost.



G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery 5

Such adaptation can affect the number and placement of replicas, the mechanisms used
to maintain replicas consistent in the presence of updates, and the way client requests are
directed to one of the replicas.

To take correct adaptation decisions, the system must monitor its own performance,
such as the rate of requests addressed to each document and the location of clients. Al-
though certain performance metrics are trivial to measure, others such as the inter-host
network distance require specialized mechanisms [21,24,38].

Another issue is to decide when the system should adapt its configuration to main-
tain an acceptable level of performance. Adapting the configuration at regular time inter-
vals allows the system to take into account long-term changes in the request traffic [30].
However, this technique does not allow a timely response to sudden changes in the re-
quest traffic. Large and abrupt changes in request rates do happen, and are known as flash
crowds. To handle them, the system needs to quickly detect certain events which suggest
that the situation is changing and that immediate adaptation is needed.

The actual system adaptation can take multiple forms, depending on the nature of the
change in the request traffic and the network condition. The first possibility is to change
the number or location of replicas. Multiple algorithms have been proposed to select
replica placements that minimize the average client-to-replica distance, or to balance the
load across replicas.

Another form of adaptation that a system can use is to change the way clients are
redirected to replicas. Multiple mechanisms can be used to automatically redirect clients
to a given replica, including DNS-based mechanisms [12,18], network-level packet redi-
rection [33], and HTTP redirection. In addition, the system must define a policy to decide
where each client should be redirected to. Many such policies have been defined [3,6,40].

Finally, the last type of adaptation is to change the way replicas are kept consistent
in the presence of updates. We have shown that, for static Web documents, near-optimal
performance can be attained by associating each document with the policy that suits it
best [30]. Dynamic Web applications, which execute arbitrary code to generate docu-
ments upon each client request, clearly require different techniques, in particular when
they access a backend database. Depending on the nature of an application and its client
access pattern, different techniques such as fragment caching [13], database query result
caching [11] and (partial) database replication [34] may be best employed.

Performance Evaluation Metrics

Evaluating the performance of a content delivery network is no easy task. In partic-
ular, there is no one metric that can capture the complexity of such a system. Instead, as
shown in Table 1, there exists a wide range of metrics that can reflect the requirements
of both the system’s clients and the system’s operator. For example, metrics related to
latency, distance, and consistency can help evaluate the client-perceived performance.
Similarly, metrics related to network usage and object hosting cost are required to control
the overall system maintenance cost, which should remain within bounds defined by the
system’s operator.

Different metrics are by nature estimated in different manners. Certain metrics are
trivial to measure in the CDN system itself, such as the amount of traffic generated over
the network or the amount of storage resources currently in use. However, other relevant
metrics such as the client-perceived download latency are much harder to evaluate from
the point of view of the CDN and require dedicated measurement infrastructures. For



6 G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery

Table 1. Five different classes of metrics used to evaluate performance in content delivery networks.

Class Description

Temporal The metric reflects how long a certain action takes.

Spatial The metric is expressed in terms of a distance that is related to the topology of the under-
lying network, or region in which the network lies.

Usage The metric is expressed in terms of usage of resources of the underlying network, notably
consumed bandwidth.

Financial Financial metrics are expressed in terms of a monetary unit, reflecting the monetary costs
of deploying or using services of the replica hosting system.

Consistency The metrics express to what extent a replica’s value may differ from the master copy.

example, metric estimation services are commonly used to measure client latency or
network distance. The consistency-related metrics are not measured by a separate metric
estimation service, but are usually measured by instrumenting client applications.

Replica Placement

The performance of a CDN depends to a large extent on its ability to identify the lo-
cation of its clients and to place replicas close to them. In conjunction with an appropri-
ate request redirection mechanism, this allows to optimize the latency and/or bandwidth
of the client-to-replica network path. For example, the delivery performance of typical
small Web objects is mostly constrained by the network latency [44]. We have shown
that a dozen of well-placed replicas can decrease the median client-to-replica latency by
a ratio around 3 depending on the site’s client population [39], which demonstrates the
potential gain of well-placed replicas.

For a content delivery network, replica placement can be divided into two subprob-
lems. The first one isserver placement, which strives to select a number of locations
where servers should be placed. Setting up a new server in a remote location takes time
and clearly involves a significant financial cost. As a consequence, server placement typ-
ically tries to forecast interesting server locations regardless of the short-term needs of
the currently hosted sites. Such algorithms base their decisions on the general topology
of the Internet and try to optimize some cost metric without taking the location of actual
clients into account.

The second subproblem isreplica placement, which consists of deciding which of
the existing servers should be used to host a particular piece of content [27]. Unlike server
placement algorithms, content placement algorithms take as input fine-grain information
about the localization of clients who access the particular piece of content to be placed.
The cost involved by creating or deleting content replicas in existing servers is relatively
low, so content placement algorithms can be executed often to follow the variations of
request load as closely as possible.

Request Redirection

Placing replicas carefully can be useful only if clients actually access the replica
closest to them. However, manual replica selection falls short of this requirement while
it creates an unnecessary burden to the users. Instead, content delivery networks use a
variety of mechanisms to automatically redirect clients to one of the replicas.

Request redirection first requires a redirection mechanism to instruct Web browsers
of the server where they should issue their requests. Two mechanisms are commonly



G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery 7

used. First, with HTTP redirection a redirector can decide on a per-page basis which
replica server is to handle the request. To this end, the redirector returns the URL of
the replicated page to the client. The drawback of HTTP redirection is the loss of trans-
parency and control: as the client is effectively returned a modified URL, it can decide to
cache that URL for future reference. As a consequence, removing or replacing a replica
may render various cached URLs invalid. Alternatively, a second mechanism is DNS
redirection. In this case, redirection is based entirely on a site’s host name and the client’s
location. When the client resolves the site’s host name, the redirector returns the IP ad-
dress of the replica server closest to the client. In this case, redirection is done on a per-
site basis as the DNS redirector has no means to differentiate between individual pages.
On the other hand, DNS redirection is mostly transparent to the client, allowing for better
control of replica placement. Most CDNs employ DNS redirection.

In addition to a redirection mechanism, one needs to define a redirection policy
which decides where each client should be redirected to. Policies usually try to redirect
clients to a replica server close to them. However, other criteria such as the respective
load of replica servers may also be taken into account when taking this decision [19,26].

Consistency Maintenance

Creating copies of Web documents creates a new problem: when a document is up-
dated, old copies need to be refreshed or destroyed so that no outdated information is
delivered to the clients. A wealth of techniques have been developed to achieve this [42],
but they can essentially be classified along three main dimensions.

The first dimension is the level of consistency that a specific consistency policy pro-
vides. Ideally, one would like no outdated document to be ever delivered to a client.
Techniques to achieve this are however quite expensive in terms of necessary network
traffic. To address this issue, many policies relax the consistency requirement by allow-
ing some bounded level of inconsistency. Such inconsistency bounds are often expressed
as a maximum time during which an outdated version is allowed to remain in the system,
but they can also be expressed in terms of the number of outstanding updates or semantic
distance between versions [43].

The second dimension is the nature of the update messages that are exchanged in the
system. When a document is updated, the simplest form of update, calledstate shipping,
consists of transferring the whole content of the new version. However, if only a few
changes were applied to a long document, it might be more efficient to propagate those
differences only, leading todelta shipping. Finally, function shippingcarries the identity
and parameters of an operation that must be applied to the outdated version to bring it
up-to-date. Note that the latter two forms require that each replica server has a copy of
the previous version available.

The third dimension is the direction in which updates are propagated. In some sys-
tems, the origin serverpushesupdates to its replicas. Other systems prefer replica servers
to pull updates from their origin. Hybrid schemes also exist, and combine both ap-
proaches depending on the characteristics of the document [10].

An interesting form of document consistency was used in the Akamai CDN [28]. In
this scheme, a hash of the content of a document is embedded in its URL. When a docu-
ment is updated, the new version has a different hash value, so it is stored independently
from the old version at a URL containing the new hash value. All other documents re-
ferring to it merely need to update their references to replace the old URL with the new



8 G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery

one. The old document version can coexist with the new one, as these are in fact imple-
mented as two different documents. The old one, which ceases to be requested, is rapidly
evicted from the system. Although this mechanism is very elegant, it has one drawback:
a document’s URL changes at each update, which makes this technique applicable only
to the replication of embedded contents (images, videos, etc.). HTML documents cannot
be easily replicated using this technique, which perhaps explains why Akamai apparently
does not use this consistency policy any more.

Adaptation Triggering

As mentioned previously, the goal of a CDN is to continuously monitor its own
performance so that it can adapt its configuration to changes in the traffic of requests
it handles, and maintain near-optimal performance over time. This raises the question:
when should a CDN update its configuration? Adaptations usually involve a cost (e.g.,
in terms of performance during the transition or cost of increased network traffic) so an
adaptation should take place only if its anticipated benefits exceed the involved costs.

The simplest adaptation triggering scheme consists of adapting the system on a pe-
riodic basis. We have shown that, provided that the access patterns do not change too
quickly, periodically re-evaluating the configuration of a CDN allows one to maintain
near-optimal performance over time [30]. In such a scheme, the system periodically col-
lects information about its own recent behavior, and evaluates whether a different con-
figuration would have offered a better performance. If so, it then updates its own config-
uration accordingly.

A major drawback of such an approach is that it relies on the assumption that recent
past access patterns allow one to predict the near future with a reasonable accuracy.
Should access patterns change dramatically between two periodic adaptations, such as
upon the occurrence of a flash crowd, the system would be unable to react in a timely
manner. Due to a variety of reasons, a server’s request load can increase by several orders
of magnitude within minutes, and decrease back to normal only after several hours [2].

Figure 2 shows the variation of load of four different Web sites. Figure 2(a) shows
normal variations of load according to a day-and-night pattern. Even though the load
does vary to a large extent, its variations are predictable enough to be efficiently handled
by periodic adaptation. On the other hand, Figures 2(b), 2(c) and 2(d) show abnormal
behavior with harder-to-predict huge load peaks. In such situations, a system cannot
rely on periodic adaptation any more. What is needed is to detect the flash crowd at
its earliest stage,predict its near-future characteristics, and proactively adapt the system
accordingly [8]. Adaptation often consists of increasing the number of replicas of the
concerned documents. However, adapting the consistency and redirection policies may
also help to a certain extent, for example to switch from a proximity-based redirection
policy to a load-balancing-based one.

2.3. Dynamic Document Hosting

With the development of Web forums, e-commerce sites, blogs and many others, an in-
creasing fraction of Web content is not delivered from a static file but generated dy-
namically each time a request is received. Dynamically generating Web contents allows
servers to deliver personalized contents to each user, and to take action when specific
requests are issued, such as ordering an item from an e-commerce site.



G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery 9

(a) NASA Web site (1995) (b) Nagano Winter Olympics (1998)

(c) Soccer World Cup (1998) (d) Slashdotted site (2004)

Figure 2. One normal server load, and three different flash crowds (adapted from [8]).

Dynamic Web applications are often organized along a three-tiered architecture, as
depicted in Figure 3(a). When a request is issued, the Web server invokes application-
specific code, which generates the content to be delivered to the client. This application
code, in turn, issues queries to a database where the application state is preserved.

From the point of view of a content delivery network, it can be tempting to host
such Web applications using similar techniques as for static content. One can indeed
ignore the fact that documents are dynamically generated, and cache the content as it is
generated by the application. However, this technique, called fragment caching, offers
poor performance as it is often unlikely that the exact same request will be issued again
at the same server. Moreover, maintaining the consistency of dynamic document copies
is hard because any update in the underlying database can potentially invalidate a copy.

An improved solution consists of duplicating the application code at all replica
servers while the database remains centralized. This allows each server to execute the
application in reaction to client requests (see Figure 3(b)). Edge server computing, as it
is called, allows servers to generate contents tailored to the specificities of each client
request while distributing the computational load [16]. On the other hand, the central-



10 G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery

Database

Web browser

Appl. code

<xml>

</xml>

HTTP response

records

Database result

Database

HTTP request

Database query

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

Web server

(a) Non replicated

Query
result

<xml>

</xml>

Query
result
<xml>

</xml>

Database
queries

HTTP
response

HTTP
request

HTTP
request

HTTP
response

Web browser Web browser

Database

Edge serverEdge server

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

Appl. code Appl. code

(b) Edge server computing

<xml>

</xml>

Query
result

Query
result
<xml>

</xml>

Database
queries

Web browser

Edge server

Cached
database

query
results

Web browser

Edge server

Database

<xml>

</xml>

<xml>

</xml>
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
Appl. code

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
Appl. code

(c) Database query caching

Database

Web browser

Edge server

database
Replicated

records

Web browser

Edge server

updates
Database record

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
Appl. code

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
Appl. code

(d) Database record replication

Figure 3. Various Web application hosting techniques (adapted from [29]).

ized database often constitutes a performance bottleneck, which limits the scale that such
systems can reach.

To overcome these limitations, it is necessary to move the data to the edge servers,
thereby reducing the load of the database. To this end, two types of systems can be dis-
tinguished. First, it is possible to cache the results of database queries at the edge servers
(Figure 3(c)). Content-aware caching requires each edge server to run its own database
server which contains a partial view of the centralized database [5,11]. Each query is
subject to a so-called ‘query containment check’ to determine if it can be answered from
the locally-available data. When this is not the case, the query is issued to the central



G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery 11

database. Results are subsequently inserted in the local database, before being returned
to the application.

A second, simpler alternative to content-aware caching is content-blind caching,
where the edge servers do not need to run a database server nor be aware of the database
structure [35]. Instead, it stores query result structures independently from each other.
This results in storing potentially redundant information at the edge servers. On the other
hand, storing precomputed query results eliminates the database overhead of content-
aware caching.

Finally, database caching techniques work well only for applications which repeat-
edly issue the same queries to their database. For applications which do not exhibit this
behavior, it can be more efficient to replicate the whole database at the edge servers
(Figure 3(d)). This guarantees that edge servers can always query their local database
copy. On the other hand, database replication involves a lot of communication when the
database is updated. One way to deal with this problem is to use partial database replica-
tion [34].

2.4. Discussion

As can be seen, content delivery networks are significantly more sophisticated than mir-
rored environments in terms of automation and control. Many issues that are typically
handled manually in mirrored systems can in fact be best realized in a more automatic
fashion, such as continuously evaluating the system’s performance, selecting appropri-
ate numbers and locations of replicas, redirecting requests and maintaining consistency.
Also, only automatic systems are likely to deal with a flash crowd in a timely manner.

A different set of techniques must be used by CDNs to host dynamic Web applica-
tions. In comparison, mirroring techniques can only host very specific types of applica-
tions (such as an application containing only code, but no database).

CDNs also provide improved control over the system. While the administration of a
mirrored system mostly relies on the good will of a multitude of administrators, CDNs
offer more centralized control based on systematic performance evaluations and well-
defined adaptation strategies. Such centralized control, however, is made possible mostly
by the fact that a single entity (the CDN operator) owns and controls the whole server
infrastructure, which may be dispersed across the Internet. Such an architecture restricts
the operation of a CDN to large companies capable of investing the necessary funds, and
which expect return on investments. In practice, this means that CDNs build commercial
offers for the use of their infrastructure, which in turn limits the use of these technologies
to a restricted class of Web site owners.

3. Collaborative Content Delivery Networks

Deploying CDN technology for only a single Web site is difficult as it requires that the
owner has access to a large collection of machines placed at strategic locations in the
Internet. Moreover, it is highly inefficient not to share this infrastructure as it effectively
amounts to a gross overprovisioning of resources for just a single site.

On the other hand, it is not obvious why Web hosting for increased quality of service
should be outsourced, as in many cases the necessary resources are already available



12 G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery

elsewhere in the system. Certain users or organizations, such as a supermarket chain,
may have multiple computers online, so the extra resources needed are generally already
available in-house. Alternatively, several users can decide to build their own CDN and
join their respective resources in order to average everyone’s resource needs over all the
provided servers. Consider, for example, a retail chain. Assuming that each shop will
always have at least one computer online (most of the time), the extra resources needed
are probably already available in-house. As another example, worldwide nongovernmen-
tal organizations may be able to connect the computers of their local branches and team
up to jointly host a single fully distributed Web site, making effective use of their own
resources. A similar argument holds for other groups of which the members may want to
jointly host a Web site, such as many virtual online communities. We thus come up with
a collaborative model where independent organizations team up their resources for each
other’s benefit.

Collaborative content distribution networks are similar in architecture to noncoop-
erative CDNs as described in the previous section: they need to evaluate performance,
handle replica placement, do request redirection, maintain consistency, and trigger adap-
tations in order to keep the system’s performance as close as possible to the optimum.
We shall not detail these issues here, as they are mostly identical to those discussed in
Section 2. However, the fact that CCDNs are operated by a group of organizations rather
than a single entity creates a number of issues. In a system such as Globule [29] and
DotSlash [45], each Web site ends up being replicated at a collection of servers which
belong to different organizations and may not have the same goals and policies regard-
ing the system. This raises a number of new issues regarding system management and
security.

3.1. Availability

In a CCDN, resources are typically contributed by many organizations independent from
each other, with very few guarantees regarding their availability. Servers may become
unreachable due to voluntary disconnection from their owner, or because of a hardware,
software or network failure. For these reasons, CCDNs should expect any server to be
unreachable a significant fraction of the time. Moreover, when the number of servers
taking part in hosting a given site increases, the probability that at least one server is
unreachable grows quickly. A CCDN therefore needs to make sure that a site will remain
functional even when a fraction of its hosting servers fail.

The first problem to address is the availability of the redirector subsystem at the
time of a client request. When using DNS redirection, this issue is easily solved. A DNS
redirector is simply a DNS server responsible for the site’s host name, and which re-
turns responses customized to each client. The DNS protocol allows multiple redundant
servers to be registered for the same name; if one server fails, then the other ones are
automatically queried instead.

The second issue is to make sure that at least one server is available at any time, and
has a copy of the contents to be delivered. This advocates some form of full replication,
where a site’s contents is fully replicated at a number of servers. The Web site as a whole
cannot experience a failure as long as one of these servers remains available. Note that
this does not rule out all forms of caching or partial replication. Globule, for example,
supports two forms of replication simultaneously: full replication across a few ‘backup



G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery 13

servers’ guarantees the site’s availability, while partial replication across a potentially
large number of ‘replica servers’ is in charge of optimizing the site’s content delivery
performance.

Finally, it is necessary that the redirector subsystem monitors the availability of the
servers participating in hosting a given site. When one server fails, the redirector should
redirect requests to a ‘second best’ server so that the failure is not perceived by the clients.

3.2. Brokerage

An important goal of a CCDN is to offer Web site owners suitable servers where to host
their contents. However, in a CCDN servers may join or leave the system at any time. In
such conditions, finding good servers where to host a site’s content may prove difficult.

First, the definition of a ‘good’ server is more complex in a CCDN than in a com-
mercial CDN. Clearly, criteria such as a server’s location and network capacity are cru-
cial. But other criteria such as the availability of specific dynamic document generation
software, the identity of a server’s owner and server-specific access right policies may
also influence the choice. In particular, it is very important for server administrators to
keep control over which site is hosted at their server.

One solution is to make administrators negotiate access rights manually, as done
for example in DotSlash [45]. Such a choice is suitable for DotSlash, as this system is
mostly concerned with handling flash crowds. In this system, peer servers are involved in
delivering another site’s content only upon a flash crowd. When this happens, the number
and capacity of servers that take place in the ‘flash-crowd rescue’ are more important
than their location.

However, when content replication is to be realized on a permanent basis and servers
are expected to join and leave the system at will, such manual hosting negotiation is not
practical any more. To address this issue, Globule proposes servers to register to a central
repository so that queries can be issued to find suitable servers. Administrators can also
specify policies to define who is authorized to host content at their server. Finally, they
are proposed a number of servers with compatible access right policies to host replicas
of their content.

3.3. Security

In a CCDN, a server will often host content that does not belong to its own administrator.
In such situations, most administrators would demand guarantees that potentially mali-
cious content cannot damage the server, by means of excessive resource usage, access
to confidential information, or any other type of misbehavior. This threat is particularly
present when hosting dynamic content, where arbitrary code can be executed to gener-
ate documents. This is a well-known problem, however, which is usually addressed by
means of sandboxing techniques [1].

Another more difficult security issue is that a content owner expects guarantees that
replica servers will actually perform their assigned task faithfully. A malicious replica
server could, for example, reject incoming connections (creating a denial-of-service at-
tack) or deliver modified versions of the original content. It is impossible for an origin
server to check directly the content delivered by a replica server to a client without negat-
ing the benefits of replication. Instead, it is necessary to involve (some of) the clients



14 G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery

in checking the contents and reporting misbehaviors to the origin server. When the site
is made of static content, the origin server can sign documents and expect clients or
client-side proxies to check signatures. When dynamically-generated content is involved,
however, more sophisticated techniques become necessary [31].

3.4. Discussion

Collaborative CDNs allow individually contributed servers to team up resources in the
form of storage capacity, bandwidth and processing power. In return, their Web content
is transparently and automatically replicated according to quality-of-service demands re-
garding performance, availability, and reliability. In this way, a collaborative CDN offers
the same service as a commercial CDN, but at virtually no extra costs beyond what a
member is already paying for Internet connectivity.

Most implementation techniques used in CDNs can be used in CCDNs as well. How-
ever, CCDNs experience new issues due to distributed management and security con-
cerns that do not appear in CDNs. Current solutions to these issues introduce some addi-
tional burden to the administrators, who are not necessarily professionals in the domain.
These constraints drive the need for simpler content distribution technologies, even at the
cost of very restricted functionality.

4. Peer-to-Peer Content Delivery Networks

A completely different approach to distributing Web content in a decentralized fashion
is the use of peer-to-peer technologies. Unlike traditional CDNs, peer-to-peer systems
spread the request load across all their members hosts, which makes them extremely
resilient to node failures and load surges.

Although very similar in features to a content delivery network, traditional peer-to-
peer systems such as Gnutella [23] and BitTorrent [14] have not been specifically de-
signed to host Web content. They are only focused at large-scale delivery of large, static
and immutable files such as music or video files. Web content, on the other hand, is much
harder to deliver using this type of overlays because it is made of many small documents
which are potentially updated frequently or even generated dynamically. Moreover, these
systems are designed to be access using specific client applications rather than standard
Web browsers, which breaks the transparency requirement discussed in the introduction.
Finally, the way they route requests through the overlay is often not designed to opti-
mize document access latency but to maximize the throughput and the scalability of the
system.

A number of peer-to-peer-based systems have been built specifically to host Web
content. Systems such as Coral [22] and CoDeeN [41] are in fact made of a (potentially
large) number of Web caches that cooperate with each other by way of peer-to-peer tech-
nologies. This architecture allows to handle large amounts of traffic with significantly
better performance than noncooperative caches. It also enables regular Web browsers to
access them using the standard HTTP protocol.

It must be noted that Web-oriented peer-to-peer CDNs do not involve the browsing
users into the content delivery itself. Instead, both systems mentioned above are actually
operated over a relatively limited number of servers, all of which remain under the con-



G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery 15

trol of their respective programmers [15]. Although their architecture does not clearly
impose such centralized control, peer-to-peer CDNs will need to solve the same issues as
collaborative CDNs before they can really be deployed in a fully decentralized fashion.

The architectures of Coral and CoDeeN as Web caches have another important con-
sequence: the origin server does not actively participate in these systems. Building a
CDN independent from the origin servers allows the replication of any Web site with
no intervention of the site owner. However, it also prevents the CDN from hosting dy-
namically generated content as all techniques described in Section 2.3 except fragment
caching require specific support at the origin server. Dynamically-generated content is
typically considered not cacheable, which is the reason why current peer-to-peer CDNs
are effective at hosting static content only.

It must be noted that, although existing peer-to-peer CDNs cannot host dynamically
generated content efficiently, there is no fundamental reason why this would be impos-
sible. However, one would need to host both application code and data in a peer-to-peer
network, and provide a rich interface to access and modify the data. A number of re-
search efforts is being conducted in this direction [20,25] which might in the future allow
peer-to-peer CDNs to efficiently host dynamic Web applications.

5. Conclusion

Replicating a Web site over a collection of servers can improve the site’s access perfor-
mance and availability. The simplest form of Web replication is mirroring in which all
replication-related issues are handled manually. However, mirroring falls short in terms
of systematic performance improvement, availability guarantees and ease of administra-
tion.

Content delivery networks provide Web sites with advanced replication techniques.
Most aspects of replication are handled automatically, such as replica placement, con-
sistency maintenance, request redirection, etc. CDNs also continuously evaluate their
own performance to automatically adapt their configuration upon changes in the request
traffic.

Collaborative content distribution networks allow independent people or organiza-
tions to cooperate in order to build their own content delivery network. If done right,
such a system can provide the same features as a commercial CDN, but at virtually no
extra cost beyond what each member is already paying for Internet connectivity. CCDNs
use similar techniques to CDNs, but they also face additional specific issues regarding
management and trust, which make them harder to operate.

Finally, a next step toward decentralization is represented by peer-to-peer content
delivery systems. These systems have the advantage of spreading the request load across
all their members hosts, which makes them extremely resilient to node failures and load
surges. On the other hand, their architecture currently limits them to hosting static Web
content. More complex data types such as dynamic Web applications are currently be-
yond the reach of these systems.

Decentralized Web site replication is very appealing for reasons of cost, robustness
and reactiveness to flash crowds. However, the more decentralized the hosting platform,
the more difficult it is to provide rich features such as dynamic document replication.
Very active research is being conducted in this area, so we can expect future Web hosting
systems to approach the goal of a true ubiquitous content delivery infrastructure.



16 G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery

References

[1] M. Achour, F. Betz, A. Dovgal, N. Lopes, P. Olson, G. Richter, D. Seguy, J. Vrana, and
several others.PHP Manual, chapter 42: Safe Mode. PHP Documentation Group, 2005.
http://www.php.net/features.safe-mode.

[2] S. Adler. The Slashdot effect: An analysis of three Internet publications.http://ssadler.phy.
bnl.gov/adler/SDE/SlashDotEffect.html.

[3] A. Aggarwal and M. Rabinovich. Performance of replication schemes for an Internet hosting
service. Technical Report HA6177000-981030-01-TM, AT&T Research Labs, Florham Park,
NJ, October 1998.

[4] Akamai. http://www.akamai.com/.
[5] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: A dynamic data cache for

Web applications. InProc. 19th Intl. Conf. on Data Engineering (ICDE), pages 821–831,
Bangalore, India, March 2003.

[6] M. Andrews, B. Shepherd, A. Srinivasan, P. Winkler, and F. Zane. Clustering and server
selection using passive monitoring. InProc. 21st INFOCOM Conference, pages 1717–1725,
New York, USA, June 2002.

[7] L.A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The Google cluster architec-
ture. IEEE Micro, 23(2):22–28, March-April 2003.

[8] Y. Baryshnikov, E.G. Coffman, G. Pierre, D. Rubenstein, M. Squillante, and T. Yimwadsana.
Predictability of web-server traffic congestion. InProc. 10th Intl. Workshop on Web Content
Caching and Distribution, pages 97–103, Sophia Antipolis, France, September 2005.

[9] T. Berners-Lee, R. Cailliau, A. Luotonen, H.F. Nielsen, and A. Secret. The World-Wide Web.
Communications of the ACM, 37(8):76–82, August 1994.

[10] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy. Adaptive
push-pull: Disseminating dynamic Web data.IEEE Transactions on Computers, 51(6):652–
668, June 2002.

[11] C. Bornhövd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald. Adaptive database
caching with DBCache.Data Engineering, 27(2):11–18, June 2004.

[12] V. Cardellini, M. Colajanni, and P.S. Yu. Request redirection algorithms for distributed web
systems.IEEE Transactions on Parallel and Distributed Systems, 14(4):355–368, April 2003.

[13] J. Challenger, P. Dantzig, A. Iyengar, and K. Witting. A fragment-based approach for
efficiently creating dynamic Web content.ACM Transactions on Internet Technologies,
5(2):359–389, May 2005.

[14] B. Cohen. Incentives build robustness in BitTorrent. InProc. Workshop on Economics of
Peer-to-Peer Systems, Berkeley, CA, USA, June 2003.

[15] Coral frequently asked questions. Can I run a CoralCDN node?http://wiki.coralcdn.org/
wiki.php/Main/FAQ#runnode.

[16] A. Davis, J. Parikh, and W.E. Weihl. EdgeComputing: Extending enterprise applications to
the edge of the Internet. InProc. Intl. World Wide Web Conference, pages 180–187, New
York, USA, May 2004.

[17] B.D. Davison. Web caching and content delivery resources.http://www.web-caching.com/.
[18] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Globally distributed

content delivery.IEEE Internet Computing, 6(5):50–58, September 2002.
[19] C. Ferdean and M. Makpangou. A response time-driven replica server selection substrate

for application replica hosting systems. InProc. Intl. Symposium on Applications and the
Internet, Phoenix, Arizona, USA, January 2006.

[20] W. Fontijn and P. A. Boncz. AmbientDB: P2P data management middleware for ambient
intelligence. InProc. Workshop on Middleware Support for Pervasive Computing, pages
203–208, Orlando, FL, USA, March 2004.

[21] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. IDMaps: A global
Internet host distance estimation service.IEEE/ACM Transaction on Networking, 9(5):525–



G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery 17

540, October 2001.
[22] M.J. Freedman, E. Freudenthal, and D. Mazières. Democratizing content publication with

Coral. In Proc. 1st Symposium on Networked Systems Design and Implementation, pages
239–252, San Francisco, CA, March 2004.

[23] Gnutella.http://www.gnutella.com/.
[24] K.P. Gummadi, S. Saroiu, and S.D. Gribble. King: Estimating latency between arbitrary

Internet end hosts. InProc. 2nd SIGCOMM Internet Measurement Workshop, pages 5–18,
Marseille, France, November 2002.

[25] R. Huebsch, B. Chun, J.M. Hellerstein, B.T. Loo, P. Maniatis, T. Roscoe, S. Shenker, I. Stoica,
and A.R. Yumerefendi. The architecture of PIER: an Internet-scale query processor. InProc.
Conference on Innovative Data Systems Research, pages 28–43, Asilomar, CA, USA, January
2005.

[26] K.L. Johnson, J.F. Carr, M.S. Day, and M.F. Kaashoek. The measured performance of content
distribution networks.Computer Communications, 24(2):202–206, February 2001.

[27] M. Karlsson and C. Karamanolis. Choosing replica placement heuristics for wide-area sys-
tems. InProc. Intl. Conference on Distributed Computing Systems, pages 350–359, Tokyo,
Japan, March 2004.

[28] F. Thomson Leighton and Daniel M. Lewis. Global hosting system. United States Patent,
Number US6108703, August 2000.

[29] G. Pierre and M. van Steen. Globule: a collaborative content delivery network. Submitted for
publication, November 2005.

[30] G. Pierre, M. van Steen, and A.S. Tanenbaum. Dynamically selecting optimal distribution
strategies for Web documents.IEEE Transactions on Computers, 51(6):637–651, June 2002.

[31] B.C. Popescu, J. Sacha, M. van Steen, B. Crispo, A.S. Tanenbaum, and I. Kuz. Securely repli-
cated web documents. InProc. 19th Intl. Parallel and Distributed Processing Symposium,
Denver, CO, USA, April 2005.

[32] M. Rabinovich and O. Spatscheck.Web Caching and Replication. Addison Wesley, Reading,
MA, USA, 2002. ISBN: 0201615703.

[33] P. Rodriguez and S. Sibal. SPREAD: Scalable platform for reliable and efficient automated
distribution.Computer Network, 33(1–6):33–46, 2000.

[34] S. Sivasubramanian, G. Alonso, G. Pierre, and M. van Steen. GlobeDB: Autonomic data
replication for Web applications. InProc. 14th Intl. World-Wide Web Conference, pages
33–42, Chiba, Japan, May 2005.

[35] S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso. GlobeCBC: Content-blind result
caching for dynamic Web applications. Submitted for publication, October 2005.

[36] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van Steen. Replication for web hosting
systems.ACM Computing Surveys, 36(3):291–334, 2004.

[37] L. Subramanian, V.N. Padmanabhan, and R.H. Katz. Geographic properties of Internet rout-
ing. In Proc. Usenix Annual Technical Conference, pages 243–259, Monterey, CA, USA,
June 2002.

[38] M. Szymaniak, G. Pierre, and M. van Steen. Scalable cooperative latency estimation. InProc.
10th Intl. Conference on Parallel and Distributed Systems, pages 367-376, Newport Beach,
CA, USA, July 2004.

[39] M. Szymaniak, G. Pierre, and M. van Steen. Latency-driven replica placement. InProc. Intl.
Symposium on Applications and the Internet, pages 399-405, Trento, Italy, February 2005.

[40] L. Wang, V. Pai, and L. Peterson. The effectiveness of request redirection on CDN robustness.
In Proc. 5th Symposium on Operating System Design and Implementation, pages 345–360,
Boston, MA, December 2002.

[41] L. Wang, K. Park, R. Pang, V.S. Pai, and L. Peterson. Reliability and security in the CoDeeN
content distribution network. InProc. Usenix Annual Technical Conference, pages 171–184,
Boston, MA, June 2004.

[42] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering Web cache consistency.ACM



18 G. Pierre et al. / From Web Servers to Ubiquitous Content Delivery

Transactions on Internet Technologies, 2(3):224–259, August 2002.
[43] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consistency model

for replicated services.ACM Transactions on Computer Systems, 20(3):239–282, August
2002.

[44] M. Zari, H. Saiedian, and M. Naeem. Understanding and reducing Web delays.IEEE Com-
puter, 34(12):30–37, December 2001.

[45] W. Zhao and H. Schulzrinne. DotSlash: A self-configuring and scalable rescue system for
handling web hotspots effectively. InProc. Intl. Workshop on Web Caching and Content
Distribution, pages 1–18, Beijing, China, October 2004.


