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Abstract. In this paper, we present GlobeCBC, a content-blind query caching
middleware for hosting Web applications in an edge computing infrastructure.
Unlike existing data caching middleware systems, GlobeCBC stores the query
results independently and does not merge different query results. We study the
potential performance of this approach using extensive experimentations on our
prototype implementation and compare it with other systems over an emulated
wide-area network. Our evaluations show that content-blind caching performs
well in terms of client latency for applications that exhibit high locality. It allows
the system to sustain higher throughput by offloading the origin server database.
We also present the design and evaluation of different online cache replacement
algorithms for edge servers that have limited resource capabilities. In our evalua-
tions, we find that the best heuristic must exploit temporal locality and take into
account the query execution cost simultaneously.



1 Introduction

Edge service architectures have become the most widespread platform for distributing
Web content over the Internet. Commercial Content Delivery Networks (CDNs) like
Akamai [4] and Speedera [34] deploy edge servers around the Internet that locally cache
Web pages and deliver them to the clients. By serving Web content from edge servers
located close to the clients, the response time for serving clients is reduced as each
request need not travel across a wide-area network. Typically, edge servers store static
Web pages. A plethora of techniques and commercial systems exist for replicating such
pages [32].

In practice, however, a large amount of Web content is generated dynamically. These
pages are generated upon request using Web applications that take, e.g., individual user
profiles and request parameters into account when producing the content. These appli-
cations tend to run on top of databases. When a request arrives, the application exam-
ines the requests, issues the necessary read or update queries to the database, retrieves
the data, and composes the page that is sent back to the client. Traditional CDNs use
techniques such as fragment caching whereby the static fragments (and sometimes also
certain dynamic parts) of a page are cached at the edge servers [30,?,?,?]. However,
the increasing need for content personalization reduces the temporal locality among
the fragment responses generated for different Web clients. Such applications require
different solutions than fragment caching.

To handle such applications, CDNs employ edge computing infrastructures (e.g.,
Akamai ECI [4], ACDN [29]) where the application code is replicated at all edge
servers and the data are kept in a centralized server. Mere replication of code has two
drawbacks: (i) each data access incurs a wide-area network latency; and (ii) the central
database server (which we call the origin server) becomes a potential bottleneck. This
problem has gained significant interest among the research community, resulting in a
variety of middleware solutions that cache or replicate data.

As seen in figure 1, data access middleware systems can be broadly classified into
two types: (i) Query caching - systems that cache the results of database queries at
the edge servers, and (ii) Data replication systems, which (fully or partially) replicate
the underlyingdatabase tuples. These two approaches are suited for different kinds of
Web applications. Query caching is suited for Web applications whose query workload
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exhibits high temporal locality and contain a small number of updates. If the workload
exhibits poor temporal locality then data replication often proves beneficial [8, 14, 20,
31].

In this paper, we target the first kind of Web applications and explore the potential
performance of a caching technique (that we callcontent-blindquery caching) for host-
ing such Web applications. We present the design and implementation ofGlobeCBC,
a system that accelerates performance of Web applications by caching query results
at the edge server. Unlike existing data caching middleware systems (e.g., [10, 22, 5]),
GlobeCBC does not merge different query results at edge server databases but stores
each query result independently. At the outset, this simple approach may look very
limiting. However, as we show later in the paper, for many Web applications this ap-
proach avoids the overhead of query containment [6], query planning, query execution
and cache management (thereby reducing the server overhead) while maintaining high
cache hit ratio (thereby avoiding wide-area network latencies). We substantiate these
claims with extensive experimentations on an emulated wide-area network test-bed for
different kinds of Web applications.

An important issue in GlobeCBC is to determine which query results to cache (or
rather which item to evict from the cache), when the maximum storage capacity has
been reached. This decision is governed by several factors such as the cost of each
query, temporal locality, and update workload. Instead of making explicit decisions
periodically, we propose the use of online cache replacement algorithms. While on-
line cache replacement and placement algorithms are well researched in the context of
Web pages, those algorithms are not always best suited to query-caching systems. We
present and evaluate the performance of different query-cache replacement algorithms
for GlobeCBC. We show that the best strategy is the one that takes into account both
temporal locality and the execution cost of each query.

The contributions of this paper are twofold. First, we explore and demonstrate the
potential performance benefits of content-blind query caching system for different Web
applications. Second, we propose and evaluate the performance of different cache re-
placement algorithms and show that an algorithm that takes both the query cost and the
temporal locality into account performs the best.

The rest of the paper is organized as follows: Section 2 presents the design issues in
building a query caching system and motivates our design choices. Section 3 presents
the GlobeCBC’s architecture and Section 4 presents the experimentation results that
compare the performance of GlobeCBC with other data caching and replication so-
lutions. Section 5 presents the design and evaluation of different query replacement
algorithms. Finally, Section 6 presents the related work and Section 7 concludes the
paper.

2 Design Issues
2.1 Data granularity

The first and foremost design issue is to determinewhatdata to cache andhow to store
them. The two possible design alternatives arecontent-aware cachingandcontent-blind
caching. The working of these two caching systems is pictorially described in Figure 2.

Content-aware caching systems run a DBMS at each edge server. As shown in Fig-
ure 2(a), each query received by the edge server is first checked to determine if it can
be answered with the locally cached tuples (using aquery containmentprocedure). If
so, the query is executed locally. Otherwise, the query is executed on the origin server
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and the returned result tuples are inserted into the local database. This approach is stor-
age efficient for queries that span a single database table as it does not store redundant
tuples. Results of queries spanning multiple tables are usually stored separately.

In this paper, we pursue the relatively less explored content-blind caching approach
(notably, a similar approach was explored [25]; we discuss it in detail in Section 6).
The key difference between content-aware and content-blind caching is that the latter
does not merge different query results and stores each result separately. Each query
can be answered from the cache only if the result of the same query has been cached.
There are several advantages to this approach. First, the process of checking if a query
is cached or not becomes trivial and scales very well even for high loads (whereas query
containment approaches are relatively expensive). Second, by caching results directly,
the edge servers avoid the overhead of database query planning and query execution. In
fact, edge servers do not even need to run a DBMS at all. This is especially beneficial
under high load. Finally, cache replacement is quite simple as each result is stored
independently.

The content-blind caching approach also has some shortcomings. First, by storing
query results independently it possibly stores redundant data. This drawback also exists
to a lesser extent in content-aware caching systems, as they also need to store the re-
sults of queries spanning multiple tables independently. Second, by skipping the query
containment procedures, certain queries may not not be answered locally even if all the
required tuples are available locally. However, as we show later in our experiments, this
approach performs better than its caching counterparts for different Web applications.

2.2 Cache control and placement

Another design issue that needs to be addressed is to decide who selects which queries
to cache (cache control) and how the selection is made (cache placement). Cache con-
trol can becentralized, where a central server collects query access patterns and de-
cides which queries must be cached in which edge server ordistributed, where each
edge server independently decides which items to cache (or to evict from the cache).
We choose the second option because it scales naturally with the addition of new edge
servers and reduces the control overhead in the origin server.

Cache placement decides which set of query results to cache. This is important if
the edge server does not have enough resources to cache all query results. Moreover,
the problem of determining which results to keep in the cache gains significance, if the
cached results are always kept in main memory instead of disk. Cache placement has



direct impact on the cache hit ratio and thus also on client latency and throughput, as
well as the network traffic between the edge server(s) and the origin server. We choose
an online caching algorithm by which an edge server caches the results of all queries it
receives (unless explicitly specified). When the maximum storage capacity is reached,
each edge server will run a cache replacement algorithm to determine the least benefi-
cial cached query to evict from the cache. Although cache replacement algorithms are
well researched in the context of static Web pages, only few efforts have been conducted
to explore them in the context of database query caching [16, 7].

2.3 Consistency
Cached query results need to be updated or invalidated when the underlying database
is updated. The problem of maintaining cache consistency has been extensively studied
in the context of caching static Web pages [32]. However, consistency maintenance in
query result caching is different from Web page caching for two reasons. First, an update
to a single database record can affect multiple query results while at the same time it
is more difficult to determine which cached result must be invalidated. In contrast, an
update to a Web page usually affects only a single object. Second, the ratio of number
of updates to number of reads is much higher when dealing with database-driven Web
applications.

These two issues make the problem of maintaining consistency in a query-caching
system challenging. To address them, we assume that the query workload consists of
a fixed set of read and write query templates. A query template is a parameterized
SQL query whose parameter values are passed to the system at runtime. This scheme
is deployed, for example, using Java’s prepared statement. In our system, we expect the
developer to specify a priori which query template conflicts with which update template.
Based on this, whenever an origin server receives an update query, it invalidates all
results belonging to the conflicting templates. Although this assumption of data access
through pre-defined query templates curtails the flexibility of the system in being able
to handle new query types, it suits Web applications well.

Template-based invalidation prevents from invalidating all cached results upon each
database update. However, there can still be a problem if the number of updates to
the database is high or if there exists a significant number of conflicts between the
query templates and update templates. In such cases, massive invalidations will lead
to a low cache hit ratio, increased network traffic and increased server load, thereby
leading to high client latencies. Typically, this problem is addressed by adoption ofweak
consistency. In this paper, we explore how different forms of weak consistency can be
easily integrated into our system and show the potential scalability benefits obtained by
them. We explain the consistency properties of our system in detail in the next section.

3 System Architecture

The architecture of our system is presented in Figure 3. An application is hosted by
edge servers located across different regions in the Internet. Communication between
edge servers usually traverses the wide-area network incurring wide-area latency. Each
client is assumed to be redirected to its closest edge server using enhanced DNS-based
redirection [18,?]. For each session, a client is assumed to be served by only one edge
server. We assume that the application code is replicated at all edge servers. Further-
more, for each application, one of the edge servers acts as theorigin server. The origin
server hosts the complete database of the application.
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Fig. 3.System Architecture - Edge servers serving clients close to them and interactions between
edge server and origin server goes through Wide-area network.

The two key components of our system are thecaching moduleand theinvalidator.
The caching module is the middleware that runs in each edge server and intercepts all
query execution requests between the application code and the origin server database.
It is responsible for (i) determining if the requested read query’s result is available
in the local cache repository, (ii) returning query results (either from the local cache
repository or by executing the query at the origin server) and (iii) adding/replacing new
query results into the cache.

The invalidator is a stand-alone service that runs at the origin server. It is responsible
for monitoring all update queries addressed to the database server, determining the list
of query templates to invalidate and issuing invalidations. We will discuss the design
and implementation of these components below.

3.1 Caching Module
The caching module is implemented as a PHP driver and can be added as a module
to the Apache Web Server [9]. As said earlier, we assume that the application’s query
workload consists of a fixed set of read and write templates. Each query is identified by
the module using the structure:< template-id, query parameters > as key.

When a read query is issued, the caching module checks if the query result is cached
in the local repository (using its key as the unique identifier). If found, then the result is
returned immediately. Note that this is different from traditional edge database caching
systems as the cached units are not the result tuples but the result structures. This allows
the caching module to return the query result immediately without query planning and
execution overheads.

If the incoming query is not found in the cache, then the query is executed at the
origin server. Upon successful execution, the result is stored in the local repository. Note
that the local cache repository does not use a DBMS to store query results. Instead, in
our system, we store the result of each query as a separate file in the local file system.
Of course, to improve performance it can also be kept in main memory. The caching
module subscribes at the invalidator to the invalidation channels corresponding to the
cached template-id (if it had not subscribed already). This allows the edge server to be
informed of the updates to the underlying database that canpossiblyaffect the cached
results. This process of invalidation is described in detail in the next section.



When the caching module receives a write query (i.e., update/insert/delete), it is
executed on the origin server’s database. Subsequently, it sends a message (asynchro-
nously) to the invalidator with the template identifier and the parameter (if applicable)
of the write query. Note that since invalidation messages are sent asynchronously to
the edge servers, the system does not provide strong consistency. We assume that this
is acceptable for the hosted Web application. However, if a particular query template
can not tolerate any staleness in its result, then the application developer can disable
caching for the concerned query template.

3.2 Invalidator
The invalidator is a stand-alone service that runs in the origin server and is responsi-
ble for invalidating the cached results at edge servers when they become stale due to
updates. As noted earlier, we assume that the Web application’s workload consists of a
fixed set of read and write query templates. Furthermore, we assume that the conflicts
between read and write templates are marked offhand either manually by the developer
or using automated code parsers. For example, a query template whose instances add
a new book to the book table (e.g., “INSERT into books VALUES(..)”) conflicts with
query instances that find the newly added books.

The invalidator maintains such a conflict map for all the write query templates.
For each write template, the invalidator maintains a publish-subscribe channel. Edge
servers that cache a query result of template instanceid subscribe to the channels of
write template(s) thatid conflicts with.

When a write query is performed on the origin server’s database, the invalidator
receives a message from the edge server’s caching module. Upon its receipt, the in-
validator sends the write query key (and the query parameter, if applicable) to all the
subscribers in the channel corresponding to the write identifier. Upon receipt of the
invalidation message, the caching module in each edge server invalidates instances of
the query templates that conflicts with the write template. We discuss the process of
template-based invalidation in detail in the next section.

3.3 Fine-grained Invalidation

Template-based invalidation helps in reducing the number of invalidations performed,
provided there is no conflict between a result and update query even though they operate
on the same database table(s). For example, in a bookstore application, the cached result
of a query to find the best selling books is not affected by an update query to the book
table for changing the price of a book. However, the cached result should be invalidated
if a new book order is placed.

Such a simple coarse-grained template-based invalidation is sometimes too conser-
vative as it invalidates all instances of a conflicting query template. For example, con-
sider the following template: QT1:“SELECT price, stock, details from book where
id=?” and update query template UT1:“Update price=price+1 from books where
id=?”. Using a simple coarse-grained invalidation scheme, an update to even a single
book (e.g.,< UT1, 100 >) will invalidate all cached instances of QT1.

To avoid this conservative invalidation, a simple extension is to take into account
the parameter of the updated item and invalidate only those cached queries that are af-
fected by the updated item. However, the system can determine which cached queries
are affected by an update, without examining the content, only for simple queries (i.e.,
SQL queries which access information based on primary key). So, in the above exam-
ple, when the system receives an update query with key:<UT1,100 >, the invalidator



invalidates only the cached item whose key is<QT1, 100>, provided QT1 is a simple
query. As shown later, this simple extension improves the performance of applications
whose workload has lots of simple queries, such as the TPC-W benchmark.

3.4 Tunable Consistency
Template-based invalidations help in reducing the number of invalidations to an extent.
However, for Web applications that have a large number of read-write conflicts, the sys-
tem will generate large numbers of invalidations. This can cause a poor cache hit ratio,
leading to increased wide-area network traffic, increased origin server load, and there-
fore increased client latency. Applications that have these characteristics can usually
scale only by employing weak consistency.

Traditionally, weak consistency protocols are employed along one of the axes:time,
order of operationsor value[35]. Time-based weak consistency protocols relax consis-
tency by permitting inconsistency between the cached results and the underlying data-
base for a bounded period of time. For example, in an online bookstore application, the
administrator can allow the system to deliver the cached result of a best-sellers query
provided the cached copy is at most one hour old.

Order-based weak consistency models are generally exploited in replicated data-
bases. These models perceive every read/write operation as a transaction and allow the
replicas to operate in a different state if the out-of-order transactions adhere to policy-
specific rules. For example, [21] introduces the concept ofN -ignorant transactions,
where a transaction can be carried out in a replica while it is ignorant ofN prior trans-
actions in other replicas. The rules constraining the execution order of transactions can
also be defined based on dependencies among transactions.

The third axis of expressing consistency is based on the concept ofvalue. Value-
based consistency schemes ensure that the difference between the value of a cached
copy and that of the original data is bound by a given∆. Value-based schemes can be
applied only to objects that have a precise definition of value (e.g., stock quote prices).

In our system, we provide interfaces to the application developers (or system admin-
istrators) totunetheir consistency bounds based ontimeandorder. We do not support
value-based mechanisms as our caching module is content-blind.

For time-based mechanisms, the system expects the application developer (or the
system administrator) to setTTIi (time-to-invalidate) values for each update template,
Ui. Subsequently, if an update query of typeUi is received by the invalidator, the inval-
idator starts a timer forTTIi seconds (unless a timer has already been started). After
TTIi seconds, all queued invalidation messages for conflicting read templates are sent.

For order-based weak consistency mechanisms, we employ a mechanism similar
to N-ignorant transactions. The system requires the application developer (or the ad-
ministrator) to set the bound for each update templateUi, regarding the number of
updates the invalidator can tolerate before invalidating the conflicting read templates
(Max Updsi). To implement this mechanism, the invalidator maintains a counter that
keeps track of the number of updates it has received for each update template (Num Updsi).
WhenNum Updsi ≥ Max Updsi, the invalidator sends out the invalidation messages
and resetsNum Updsi to 0.

The system can also support a combination of both time and order-based weak
consistency mechanisms. Application developers or system administrators who want to
get higher scalability using weak consistency, can simply tune one (or both) of these two
parameters,TTI andMax Upds. We call this means of employing weak consistency
astunable consistency.



4 Performance Evaluation
In this section, we compare the performance of content-blind caching to other so-
lutions. We consider two different applications, a news Web site modellinghttp:
//slashdot.org and TPC-W benchmark, an industry standard e-commerce bench-
mark that models an online bookstore. We chose these two applications for their dif-
ferent data access characteristics. For example, in a typical news forum, most users are
usually interested in the latest news and so the workload will usually exhibit high local-
ity. On the other hand, in a bookstore application, the shopping interests of customers
can be different thereby leading to much lower query locality. This allows us to study
the behavior of content-blind caching for different data access patterns.

4.1 Performance results: Slashdot application
In this section, we present results of experiments performed using the RUBBoS bench-
mark, an open source benchmark that models an online news forum application similar
to slashdot.org [3]. The benchmark is written in PHP. Its database consists of five
tables, storing information regarding users, stories, comments, submissions and moder-
ator activities. The database is filled with500, 000 users, out of which10% have mod-
erator privileges, and200, 000 comments. The size of the database is approximately
1.5 GB.

We deployed the GlobeCBC prototype across3 identical edge servers each with
dual-processor Pentium III 900 Mhz CPU,1 GB of memory and a120 GB IDE hard
disk. Each edge server uses an Apache2.0.49 Web server with PHP4.3.6. We use
PostgreSQL 7.3.4 for our database servers and PgPool for pooling database connec-
tions [27]. The origin server uses an identical configuration as the edge servers except
that it acts just as a backend database and does not run a Web server. We emulate a wide-
area network (WAN) among the servers by directing all the traffic to an intermediate
router which uses the NISTNet network emulator [2]. This router delays packets sent
between the different servers to simulate a realistic wide-area network. In the remaining
discussion, we refer to links via NISTNet with a bandwidth of50Mbps and a latency
of 100ms as WAN links, and100Mbps and0 latency as LAN links. Note that these
bandwidth and latency values are considerably optimistic, as the Internet bandwidth
usually varies a lot and is constantly affected by network congestion. These values are
chosen to model the best network conditions for a CDN built on an Internet backbone
and are theleast favorableconditions to show the best performance of any data caching
or replication system. Any lower bandwidth or higher latency will only boost the per-
formance of caching systems. For example, if the WAN delay in the route is set to a
higher latency, say500ms, then for edge computing infrastructures that do not repli-
cate data, each database query will incur at least500ms round trip latency (and more if
each query is transmitted in multiple TCP packets). This value will therefore boost the
performance of data caching solutions as they can answer queries locally.

We use three client machines to generate requests addressed to the three edge servers.
The client workload for the system is generated by Emulated Browsers (EBs). The run-
time behavior of an EB models a single active client session. Starting from the home
page of the site, each EB uses a Customer Behavior Graph Model (a Markov chain
with various interactions with the Web pages in a Web site as nodes and transition
probabilities as edges) to navigate among Web pages, performing a sequence of Web
interactions [33]. The behavior model also incorporates a think time parameter that con-
trols the amount of time an EB waits between receiving a response and issuing the next
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request, thereby modelling a human user more accurately. The user workload contains
more than15% interactions that lead to updates.

As shown in Figure??, we evaluated four system architectures using the aforemen-
tioned setup: (i)Edge Computing:the code is replicated in every edge server while the
data remain centralized at the origin server. (ii)Full replication: the code and database
are fully replicated in the edge server. All updates are performed at the origin server
and are propagated asynchronously to the edge servers. (iii)Content-aware caching:
the edge servers run a Web application server and a DBMS. The key difference be-
tween this system and full replication is that the edge servers run the query locally
only if thequery containmentcheck results in a hit. We implemented the algorithm de-
scribed in [5] for query containment. (iv)Content-blind caching:The edge servers run
a Web application server and a cache repository. The origin server runs the database.
Unless stated otherwise, in content-blind caching schemes, the invalidator is configured
with the strongest possible consistency,TTI = 0 andMax Upds = 0. Note that full
replication, content-aware and content-blind caching systems provide the same level of
consistency while only the edge computing architecture provides the stronger level of
consistency.

All experiments are started with a cold cache. The system is warmed up for20
minutes, after which the measurements are taken for a period of90 minutes. We as-
sume the edge server to have infinite cache capacity, i.e., the size of cache repository
was not restricted because we did not want the effect of cache replacement algorithms to
affect the performance of content-aware and content-blind caching systems. We study
the performance of different cache replacement algorithms in the next section. In all
experiments, we measure the end-to-endclient latency, which is the sum of thenet-
work latency(the time spent by the request traversing the WAN) andinternal latency
(the time spent by the request in generating the query responses and composing the
subsequent HTML pages).
Results for WAN experiments We first evaluated the client latency for different archi-
tectures for only1 edge server and the origin server. We studied the client latency for
different client workloads. The results of our experiment are shown in Figure 4.

As seen in the figure, content-blind caching performs the best in terms of client
latency (except for low loads) while edge computing performs the worst in all cases.
It can also be seen that content-blind caching sustains higher load than full replication
and the content-aware caching. This is quite remarkable considering that content-blind
caching provides the same level of consistency. The edge computing infrastructure per-



forms worse than the other architectures. This is due to the fact that all data accesses
incur a WAN latency in addition to the origin server becoming the scalability bottleneck
thereby increasing the internal latency in generating query responses.

Full replication system performs marginally better than content-blind under very
low client loads (up until30 client sessions). This is because in a full replication system
each query is answered locally thereby avoiding any wide-area network latency. During
low workloads, the internal latency incurred in generating a query response is lower
than the network latency incurred in answering a query. Therefore, full replication sys-
tem performs marginally better in such workloads. On the other hand, content-blind
caching outperforms full replication during high workloads for two reasons. First, the
application’s workload exhibits high temporal locality (yielding a cache hit ratio of up
to almost90%) thereby avoiding WAN latency. Second, the internal latency in gener-
ating a query response, for a content-blind caching system, is much lower than that of
full replication as the caching system avoids query planning and execution latency.

Content-blind caching performs better than content-aware caching for all client
workloads. Even though both systems are equally capable of capturing temporal lo-
cality, the former incurs more latency in generating query responses as it incurs the
overhead of query containment, cache management (inserting and invalidating caches),
query planning, and execution. On the other hand, content-blind caching avoids these
overheads by storing the results of query instances separately, thereby resulting in lower
client latency. Furthermore, the internal latency overhead increases with increase in
client load, as we discuss next.
Understanding Internal latencies To better understand the effect of client workloads
on query execution overheads and subsequently on the internal page generation latency,
we isolated a single edge server and studied the latency in generating a page for two
different systems: (i) a Pentium III dual processor machine that runs a vanilla Apache
server and Postgresql7.3.4 (WAS-DB) and (ii) the same setup that runs the content-
blind caching module, in addition to the Web server and database server (WAS-Cache-
DB). For both setups, we evaluated the client latency for read-only client sessions for
different loads. In both setups, the network latency incurred for generating a page is0
as both the Web server and database reside on the same machine. The objective of this
study is to measure the potential gain in internal latency by the use of content-blind
caching which avoids query planning and execution latencies.

The results of our study are given in Figure 5(a). As seen in the figure, the inter-
nal latency of a system that employs content-blind caching (WAS-Cache-DB) is much
lower than that of the traditional WAS-DB. In particular, the difference grows up to an
order of magnitude for high loads. This study thus gives a clear insight into the potential
gains of content-blind caching. It also explains the better performance of content-blind
caching in comparison to full replication and content-aware caching system, which al-
ways incur the query planning and execution overheads.

Study with multiple edge servers As a next experiment, we compared the average
client latency of a content-blind caching system with a single edge server to one with
three edge servers. For the latter case, the client load was equally divided among the3
edge servers. As seen in figure 5(b), the system with3 edge servers performs signifi-
cantly better in terms of client latency (by a factor of2) compared to the single edge
server system. This can of course be easily understood as the edge servers share their
client load. The difference in client latency is negligible during low loads as a single
edge server is able to sustain the client load under these conditions. Under high loads,
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Fig. 5. Comparison of internal and client latency for plain 3-tier architecture with and without
content-blind caching system
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Fig. 6. Effect of TTI andMax Upds

the3-edge server system is able to sustain more load. However, as can be seen from the
figure, the system does not offer a linear improvement and can only sustain50% more
load than the single edge server. This is because in both cases the database in the origin
server remains the central scalability bottleneck.

Tunable Consistency For high workloads when the number of updates increases (re-
call that the fraction of update interactions is around15%), immediate invalidations
increase the system load leading to a higher client latency. If more scalability is de-
sired, such situations demand the use of relaxed consistency models. As noted earlier,
we adopt a tunable consistency model in which the application developer or the system
administrator can specify the limits of weak consistency along the axes of time (TTI)
and order (Max Upds).

In this experiment, we study the potential gains in client latency of relaxing con-
sistency with different values ofTTI andMax Upds in a system with a single edge
server connected to the origin server through a WAN link. In the first set of experiments,
we fixedMax Upds at0 and study the impact ofTTI on client latency for a load of10
and100 client sessions. The results are given in Figure 6(a) and 6(b). As seen in these
figures, for aTTI of 1 minute, we gain a factor of3 in client latency under low load



and30% improvement under high load. The difference in gains of client latency is due
to the increase in internal latency.

In the second set of experiments, we studied the effect ofMax Upds on client
latency. The results are given in Figure 6(c). As seen in the figure, with aMax Upds
value of10, we can gain a factor of2 in client latency.

The objective of this study is not to recommend the best value ofTTI orMax Upds,
as the best values depend on the application needs and system costs. This experiment
is rather meant to demonstrate that, provided the application can support it, controlled
relaxation of consistency can produce significant gains in performance.

4.2 Performance results: TPC-W benchmark
We evaluated the performance of different systems for the TPC-W benchmark, an in-
dustry standard e-commerce benchmark that models an online bookstore like Ama-
zon.com [33]. We used the open source PHP implementation of TPC-W [26]. We mod-
ified the client workload behavior such that the book popularity follows a Zipf distribu-
tion (with alpha = 1), which was found in a study that observed data characteristics of
Amazon online bookstore [11].

For this application, we studied the performance of four systems: edge computing,
content-aware caching, content-blind caching and full replication. For content-blind
caching, we studied the client latency for two kinds of invalidations: coarse-grained and
fine-grained invalidation. The objective is to examine the potential benefits in employ-
ing the finer invalidation. Recall that fine-grained invalidation takes into the account the
parameter of the update template to invalidate conflicting simple queries.

We studied the client latencies of these systems for two kinds of workloads: brows-
ing (which consists of95% browsing and5% ordering interactions) and ordering work-
load (50% browsing and50% shopping interactions). As seen in Figure 7, edge com-
puting performs the worst in client latency while full replication performs the best. In
particular, full replication performs better than content-blind caching because the TPC-
W benchmark workload exhibits poor temporal locality and yields a hit ratio of at most
35% in our experiments. In such cases, data replication helps as each query can be an-
swered locally. However, during high loads, the gain in latency decreases as the internal
latency of full replication increases. These results are in line with our earlier results,
where we demonstrated that applications whose workload exhibit poor temporal local-
ity or has many updates are best hosted using data replication schemes [31].

Content-blind caching performs better than content-aware caching as both are able
to capture temporal locality and the former benefits from reduced internal latency. Note
that the gain in client latency in content-blind caching compared to edge computing
in TPC-W benchmark is only about50%, while it was a factor of3 for the Slashdot
application. This is again due to the poor temporal locality exhibited by the workload.

Between the two invalidation mechanisms of content-blind caching system, the fine-
grained one consistently performs better than its coarse-grained counterpart. In particu-
lar, the difference in latency is especially high for the ordering workload. This is because
the fraction of simple queries in this workload is higher than that of the browsing work-
load (recall that simple queries are queries that access data from a single table using
primary keys). Since fine-grained invalidation performs fewer invalidation for instances
of simple query templates, it improves overall client latency3.

3 The performance difference between these invalidation schemes in Slashdot application was
negligible. This is because fine-grained invalidation improves performance only in the pres-
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Fig. 7. Performance of our architecture compared to edge computing for TPC-W benchmark

4.3 Discussion
As can be seen with these experiments, content-blind caching performs better than the
other architectures while providing the same level of consistency guarantees, provided
the application’s data workload exhibits high temporal locality. Furthermore, for these
applications, we also showed that our system allows administrators to achieve higher
scalability employing relaxed consistency by simply tuning two variables,TTI and
Max Upds.

On the other hand, for applications that exhibit poor locality (such as the TPC-W
benchmark), data replication schemes perform better than content-blind caching. Our
hypothesis is that there exists no single solution that can perform the best for all Web
applications and workloads. Different techniques are optimal for different applications.
For example, in our earlier research, we demonstrated using a prototype system that
applications with poor temporal locality can be hosted scalably using autonomic data
replication [31]. As shown in this section, applications that exhibit high locality can
benefit to a large extent from content-blind caching and outperform its replication coun-
terparts. We are working on integrating our data replication and caching solutions, so
that the system can dynamically choose the optimal technique for different database
based on the observed workload. The design of such an integrated system is beyond the
scope of this paper.

5 Cache Replacement
An important issue in any caching system is to determine which query results to cache
and which ones to evict from the cache. This is usually a non-issue if the edge server
has unlimited memory and storage resources. However, in CDNs, the edge servers are
usually simple desktop servers with limited memory resources and simple disk access
resources (for example, most of the servers use IDE disks). In such an environment, it
is desirable to keep as many query results in main memory as possible and hence the
problem of which results to keep in the cache gains significance. This issue is especially
relevant in a collaborative CDN environment such as Globule [1] where the edge servers
are usually end-user machines.

ence of simple queries. In the Slashdot application, the majority of the query workload consists
of complex queries.



5.1 Cache Replacement
Cache replacement is simple in content-blind caching compared to content-aware caching.
For example, in the latter, evicting a query result from the cache requires appropriate
checks to ensure that query containment conditions of other query templates are not
violated as results are merged. However, since content-blind caching stores result inde-
pendently, each result can be replaced independently. GlobeCBC uses an online cache
replacement mechanism to determine which results are more beneficial to retain in the
cache when the cache is full. The query result replacement mechanism works as fol-
lows: When the cache is full, it must select one or more cached results to be removed
so that resource constraints are met again.

The performance of the caching system depends to a large extent on the effective-
ness of the cache replacement algorithm. An ideal cache replacement algorithm must
take into account several metrics such as temporal locality, cost of the query, update
characteristics of the database, etc. In this paper, we evaluate the average query latency
of different cache replacement algorithms that operate on one or more of these metrics
to find the one most suited for our system.

We designed and evaluated the performance of the following cache replacement al-
gorithms: (i)Least Recently Used (LRU). LRU always deletes the recently used cached
result with the new result. The intuition is that the most recently accessed queries are
most likely to be accessed again. Previous research on Web page caching suggests that
strategy performs best if all cached items are equal. (ii)Least Cost (LC). Each query
takes different time to execute in the database server. This is usually modelled by a
query costparameter, which is used in the query planning. LC replaces the new result
with the cache item that has the least query cost. The intuition is that a cache hit on a
high cost query is more valuable than hit on a low cost query as it will offload the origin
server to a great extent. (iii)Most Updated (MU). Each edge server counts the number
of invalidations received by each template. The system replaces the result whose parent
template is most invalidated. The intuition is caching the least updated queries might
improve the cache hit ratio. (iv)Greedy-Cost (GC). LC optimizes on internal latency but
does not exploit the locality of requests. On the other hand, LRU exploits the locality
of requests but ignores the individual characteristics of the cached items. Greedy-cost
aims to capture the best properties of these two algorithms. The algorithm associates
a value,Ci, with each cached query resultqi. Initially, when a result is brought into
the cache,Ci is set to be the time incurred in bringing it. When a replacement needs
to be made, the result with the lowestC value,Cmin, is replaced, and then all results
reduce theirC values byCmin. If a query result is accessed, itsC value is restored to
its initial value. Thus, theC values of recently accessed results retain a larger portion of
the original cost than those of results that have not been accessed for a long time. This
way, GC exploits temporal locality and takes query cost into account at the same time.
This algorithm is similar to the Greedy-Dual algorithm used in Web caching [12].

5.2 Evaluation Results
We evaluated the performance of different cache replacement algorithms using trace-
driven simulations. We collected query traces of the RUBBoS and TPC-W benchmark
(shopping mix). Each trace represents two hours of execution with a workload of10
active client sessions. The cost of each query template is assigned as the average query
response time of all query instances of the given template. This was also used as the in-
ternal latency in calculating the overall query response time. We fixed the WAN latency
to be100ms.
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Fig. 8. Performance of different cache replacement algorithms for different cache sizes

We replayed these traces with different replacement algorithms, assuming that the
latency of a cache hit is0 and the latency of a cache miss is the sum of internal latency
and WAN latency (if incurred). Note that the average query latency is different from the
client-perceived latency as each client request may trigger multiple query requests (on
average4 for Slashdot) to generate a page. Our experiments were started with a cold
cache and the measurements were taken for the entire run. We report the average query
latency for various cache sizes.

The results of our experiment are given in Figure 8. For both applications, GC per-
forms the best or close to the best. LRU performs the best for the Slashdot application
due to the high temporal locality of the query workload and GC performs almost as
good as LRU. However, LRU performs poorly for the TPC-W application as the query
workload does not exhibit high locality. As a consequence, it constantly replaces high-
cost queries (which form almost the30% of query workload). This leads to an increase
in internal latency of queries.

LC performs poorly for the Slashdot application as it is not capable of exploiting
temporal locality. However, it does well for TPC-W as it retains the high cost queries
and hence is able to optimize on high cost queries which exhibit high locality. MU per-
forms poorly for both applications as it does not exploit locality and also does not take
into account the cost of the queries. MU can be useful only if the workload generates
a significant number of invalidations. However, in the TPC-W application, even though
many updates are issued, the template-based query invalidation does a reasonable job
in reducing the number of invalidations thereby reducing MU’s performance gain.

In summary, among all strategies, GC performs (close to) the best by virtue of being
able to exploit locality and keeping a good balance in managing high-cost queries.

6 Related Work

As shown in Figure 1, a number of systems have been developed to handle Web appli-
cation hosting [4, 13, 29]. These systems replicate code at the replica servers, but do not
replicate the application data. These systems figure in our evaluations as edge comput-
ing system. However, as we have shown, mere replication of code will lead to incurring
WAN latency for each data access and direct all the load to the central database. Hence,
these systems are not suitable only if the applications requires significant interactions
with the backend database.



To address this limitation, commercial database caching systems such as DBCache [10],
MTCache [22] and DBProxy [5] cache the results of selected queries and keep them
consistent with the underlying database. These systems fall in the category ofcontent-
awarecaching systems. They store the database tuples that form the results of queries
in the DBMS running in the edge server (provided the query is on a single table) and
merge different query results. Note that a similar approach known as semantic caching
was proposed for client-server database systems in [16]. These systems are built to be
very flexible and can support different types of applications (i.e., not just to template-
based Web applications).

However, this flexibility comes at a cost. As shown in Figure 2(a), in these sys-
tems, each query needs to be subject to a local query containment check procedure
to determine if the edge database server has all the data required to answer the query
completely. Even if the containment test results in a cache hit, the system incurs query
planning and execution overhead. Moreover, inserting and removing items from the
local cache also is a non-trivial process. On the other hand, GlobeCBC is limited in
flexibility and is suited only for Web applications whose workload usually consists of a
small set of read and write templates. This allows the system to avoid query execution
overheads and achieve better client performance even under heavy loads, provided the
workload exhibits good locality as we have shown in our performance results. Further-
more, content-blind caching also allows the system to add or remove items from the
cache easily as each item is treated and stored separately.

Many middleware systems have been proposed for scalable replication of a database
in a cluster of servers [14, 8, 24, 28]. However, the focus of these works is to improve the
throughput of the backend database within a cluster environment. On the other hand, the
focus of our work is to improve the client-perceived performance in a CDN environment
where edge servers are spread across a wide-area network. Furthermore, as we showed
earlier, data replication is useful if the workload exhibits poor locality and low number
of updates. If the number of updates increases, then autonomic replication solutions can
be envisaged [31].

In [25], the authors investigate the use of a similar query caching system. Compared
to their work, in this paper, we explore the potential performance gains of content-
blind caching systems for different applications through extensive evaluations of differ-
ent edge computing architectures in an emulated wide-area network. We also propose
and evaluate different cache replacement algorithms to address the case of resource-
constrained edge servers. These issues and experiments were not studied in [25].

7 Conclusions and Future Work
In this paper, we presented GlobeCBC, a content-blind query caching middleware for
hosting Web applications in an edge computing infrastructure. Unlike existing data
caching middleware systems, content-blind caching systems do not merge different
query results and store the query results as result structures independently. We stud-
ied the potential performance of this approach using extensive experimentations on our
prototype implementation and compared it with the other systems over an emulated
wide-area network. Our evaluations show that content-blind caching performs well in
terms of client latency for applications that exhibit high locality and is also able to
sustain more load by offloading the origin server database. We also showed that when
applications can support it, the system administrators can still improve performance by
relaxing the data consistency in a simple fashion. We proposed and evaluated different



online query replacement algorithms which will be useful for resource-constrained edge
servers. In our evaluations, we found that the best algorithm must take into account both
the query execution cost and the temporal locality.

Even though GlobeCBC performs very well for applications with high query local-
ity, it is outperformed by database tuple replication when the workload has poor locality.
We are therefore working on integrating GlobeCBC with our data replication solution,
GlobeDB [31]. We believe that such an integrated system will be able to perform well
for all kinds of Web applications, by being able to select the best performing strategy
for a given database based on the observed workloads.
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