Grid Services for Adaptive Content Delivery

Guillaume Pierre

Computer Science Dept., Vrije Universiteit, Amsterdam
gpierre@cs.vu.nl

Abstract time by managing application workload through dynami-

cally added capacity. [...] Transience has significant im-
Content Delivery Networks must adapt their configura- plications for how services are managed, named, discov-

tion continuously to maintain acceptable performance in ered, and used(4]. This shared vision that services can
the presence of large variations in their request load char- dynamically change the set of servers on which they run
acteristics. To automate and systematize these necessargotivates this paper. More precisely, we investigate the po-
continuous adaptations, we propose to structure a CDN tential benefits and issues that would arise from structuring
along a grid service-oriented architecture. Two techniques a content delivery network as a number of Grid services in-

can be used to simplify the development and maintenancderacting with each other.

of such a system: first, present a group of machines offer- strycturing a CDN as a Grid service can provide multiple
ing a given service as a single stable node, even though theyenefits. First, such a system could make use of standard-
concerned servers may be located worldwide and the memized features that Grids usually provide such as system and
bership change often; second, modeling the performance ofyppjication monitoring, dynamically allocating or releasing
internal elements of a web service allows to make informed machines within the Grid to match the demand, and security
decisions on the dimensioning of the platform to host it. We features such as authentication and authorization for the use
expect that these two techniques will allow us to build ser- of resources. Importantly, hosting a CDN on a Grid infras-
vices that continuously adapt their capacity to the demand rycture would allow any user who has access to a Grid to
that they are facing. deploy a content delivery service on resources contributed

by external partners, while retaining full control on the sys-

tem. This could alleviate the trust and security difficulties
1. Introduction which originate from building collaborative content deliv-
ery networks where multiple people or organizations share
their resources for everyone’s benefit [3, 8]. Finally, struc-
turing a CDN as a number of Web services requesting each
other can simplify the task of adapting the system configu-
ration, as we will discuss later in this paper.

The goal of any content delivery network is to deliver
Web content with guaranteed quality of service regarding
client-perceived download performance, operational costs
and service availability. To reach this goal in the presence
of large variations in the request load issued by the clients, Reaching this goal requires that a number of tasks are
CDNSs must continuously measure their own performance carried out. First, one needs to design a CDN as a group of
and adapt their configuration when necessary. Such adaptaservices interacting with each other. Second, each of these
tion may take several forms: change the placement of rep|i_services must be built such that it can dynamically adapt its
cas h0|d|ng the content to have Sufﬁcient Serving Capacity own Conﬁguration to the demand that |t receiVeS. Th|rd, as
located close to the clients requesting it; change the way€ach service would be hosted on a potentially large and fre-
replicas are created and maintained consistent in the presduently changing set of servers, establishing bindings be-
ence of updates; and change the way clients are redirecte@veen servers in different layers can become increasingly
to one of the replicas [11]. difficult.

In a certain sense, CDNs share many characteristics with We propose two different techniques to deal with these
Grid services. Grid services are defined as Web servicedssues. First, we show how a service can be implemented
that make full use of Grid computing technology to man- such that it continuously determines the best number of
age transient service instances. For examfitea Web servers to reach the expected quality of service. Second,
serving environment, service instances might be instanti-we propose to use TCP handoff techniques based on mo-
ated dynamically to provide for consistent user responsebile IPv6 to give each layer a single abstract IP address.

S H Redirection Server status icy service, which in turn needs information about the iden-
frontend Potey (availebility, load) tity, availability and load of the HTTP frontend servers, and
client about the localization of the client. The server status collec-
localization tion is in charge of receiving information about the identity
clent \ of servers taking part in the system, and continuously mon-
HTTP Static document Static document . . . " . . .
{ frontend replication itoring their availability and load status. Finally, the client

localization service is used to convert a client’s IP address
into a location that can be used for placement. This service
can for example be implemented following the principles
.) . discussed in [13].
Figure 1. Modeling a CDN as a Service- The HTTP frontend is in charge of distributing the in-
Oriented Application (call graph) coming requests to the relevant components: requests for
dynamically-generated documents should be forwarded to
the appropriate application servers; requests for static doc-
Regardless of changes in the servers taking part in a giveriments should be forwarded to the static document repli-
layer, this single contact address can be built such that it al-cation service; finally, if the CDN wants to use HTTP-
ways allows to reach one of the servers taking part in the based redirection, then redirection requests require calling
addressed group of machines. the redirection policy to obtain the identity of the frontend
The remaining of this paper is structured as follows. Sec- to Which the requests should be redirected.
tion 2 briefly presents a CDN architecture based on aservice The static document replication is the heart of the sys-
oriented design. Section 3 shows how each service can bdem. Itis implemented by any number of servers which are
made adaptive to changes in its workload. Section 4 ex-in charge of creating copies of the documents present in the
plains how Mobile IPv6 can be exploited to give a single origin server, and maintain them consistent as the original
IP address to a frequently changing set of servers. Finally,documents get updated. Any replication policy can be used

Application server
(dynamic documents)

Section 5 draws conclusions of this paper. here. We expect that simple policies such as caching with
leases or invalidation can easily be implemented in the pro-
2. Modeling a CDN as a Grid Service posed architecture.

For space reasons we do not detail the application server
part here. However, it should be clear that most dynamic
Web applications are implemented along a client-server that
can easily be mapped to a service-oriented architecture.

Most CDNs are built nowadays following an ad-hoc ar-
chitecture, meaning that the software architecture is tailored
according to the specific demands of the application. We
take here a different approach, and explore to which extent . . L
a CDN can be built following a service-oriented architec- 3. Service Dimensioning
ture. We believe that, although this approach imposes a
number of constraints, it also enables the use of generic To achieve the requested performance, each service may
hosting technologies which simplify the development and need to be deployed across multiple machines. Deploying
allow for automatic adaptation. a service usually involves replicating its code to a num-

At first sight, the only function of a CDN is to repli- ber of application servers and its data to an array of data
cate and deliver content. However, a more detailed analy-store machines. Furthermore, different caching layers such
sis shows that in fact many components can be abstracteds for service response caching and database caching can
and implemented as separate services. Remember that be deployed to improve performance. Although these tech-
Grid service is assumed to be implemented by any numbemiques have been introduced independently from (and often
of physical servers used to process the incoming requestsin opposition to) each other [1, 6, 7, 9, 14], we believe that
Each service is also associated with its own adaptation com-they rather complement each other and may need to co-exist
ponent which monitors the performance of the service andto obtain the best performance. We consider that different
adjusts the number and location of servers taking part in thetechniques are best suited for different kinds of services.
service accordingly. For example, if requests to a service exhibit high request

Figure 1 shows one possible design of a CDN structuredlocality, then service caching might be beneficial. On the
as a service-oriented application. Client requests are re-other hand, if the bottleneck lies in the underlying data re-
ceived by a DNS or HTTP frontend. The DNS frontend is trieval, then database caching or replication might be use-
used to redirect clients to the HTTP frontend most suited to ful depending on the temporal locality of database queries.
answer this client. Deciding which HTTP frontend should Sometimes, a combination of these techniques might be
treat each client’s requests is done by the redirection pol-needed to achieve a certain quality of service.

Client service

p—. componen.t to select the right locations where new servers
.,»Exmaj should be introduced to host the concerned setvice
U< o~ f:;vu‘:ts We expect that letting services adapt their own config-
e \ toad | [App | 7Jr uration independently from each other may result in effi-
Balancer Server 4 . .
A > / cient adaptations of the CDN as a whole. For example,
ﬂH' *>DH v ‘\ Pkl N\ gt if the HTTP frontend service notices a drop in the qual-
N ,/ ™ App j;D\ ’ cache :D\ Data ity of service that it offers to its clients, this may be due
= to an inadequate location of its servers, which influences
Server side BusinessLogic Database Data the average network latency between the clients and the
e e Tier 1 Tier 2° Tier 3 frontend servers. The frontend service may then decide to
add servers in locations from which many requests origi-
Figure 2. Internal Organization of a Service nate. It then simply needs to inform the server status collec-

tion service of the newly introduced frontend servers such
that clients get redirected to these new servers. In turn, the
static document replication service may notice that, to effi-
In a previous paper, we have presented the internal archiciently respond to queries originating from the new frontend
tecture of an adaptive system to host service-oriented appli-servers, it also needs to add more servers in the same vicin-
cations [10]. We describe the proposed architecture brieflyity. As a result of these cascading effects, we believe that
here; readers are invited to refer to this paper for more in-the CDN as a whole can soon find a new equilibrium point,
formation. until the next time that a change in workload is detected.

As shown in Figure 2, one given service can be imple-)
mented as a series of tiers. The most important tiers are thé- Ad-Hoc Servers for Transparent and Highly
business logic tier where the application code is executed, Available Services
and the data tier where the data are stored. In addition, a
number of caching tiers can be introduced: a server-side Structuring a CDN as a group of grid services request-
service cache can store the responses generated by the seng each other can create a new problem, as we can expect
vice for future reuse; a database cache can be used to reduahigh churn of servers frequently joining and leaving each
the number of queries addressed to the database tier; finallyservice. In this context, it may become difficult to establish
client-side service caches can be introduced to store the rethe necessary bindings between different layers in the sys-
sponses received in response to external service calls. Eactem. For example, if the list of servers taking part in the
of these tiers can be implemented by O or more servers (1 oHTTP frontend and the static document replication service
more for the business logic and data tiers). Finally, load bal- change all the time, how can we make sure that each server
ancers are introduced to distribute requests among serverparticipating in the HTTP frontend knows the identity of
belonging to a given tier. We discuss a possible implemen-at least one server taking part in the document replication
tation of these load balancers in Section 4. service at all times?

Such bindings between layers must be realized by the
load balancers shown in Figure 1. Good bindings should
ideally exhibit the following properties: (i) it should always
be possible to reach one of the servers taking part in a given

Not shown in the figure is the adaptation component of
the service. This component is in charge of monitoring the
quality of service offered by the service, as well as the per-
formance of each internal component. The adaptation com-

. . service, even if the list of these servers change over time;
ponent executes a performance model of the service which

can infer the performance that the service would have if (i) contacting any server out of the list is usually not good

it was running with a different configuration. When the enough; for performance reasons, we should be akd to

. . rect connections initiating from a given client to the clos-
performance of the service drops below a given acceptable . . L

. ; est available instance of the requested service; (iii) as the
level, the adaptation component decides what needs to be

instances of a given service will be located worldwide ac-
done to restore the performance level back to normal. Adap- . o .
. ; . . cording to the demand, it is not acceptable to implement a
tation usually consists of adding or removing servers from

. load balancer as a frontend machine as is commonly done
one or more tiers. . .)))
in cluster computing [2]: this would imply that traffic must
In a CDN, the location of servers participating in a given follow a triangular route that would seriously impact the
service is crucial to the overall performance. To this end, overall system performance.
th.e adaptat_lon com_ponent of each _serwce should query the 1Wwe assume that functionalities such as dynamically allocating and re-
C||9nt location service for the |Ocat|9n of the component.s leasing servers based on location characteristics are part of the basic fea-
which address requests to them. This allows the adaptationures provided by Grids.

Home Network Home Network

Correspondent Node Correspondent Node

jome Agent

Mobile Node

74 >
- > _
are-of Address

Remote Network Remote Network

(@) (b)

Figure 3. Communication in MIPv6: (a) tunneling, and (b) route optimization

i i Client erver
Ina previous paper, we have proposed anew technique to - Gl | [Tsever) :
build so-called “ad hoc distributed servers” [12]. An ad hoc O ol 7ep _ : :
distributed server is a group of machines potentially located: (xsamentiosaionisa 1O P AE¥ : o O] solmves
[xs currentiocationis A] = clieves

worldwide that cooperate to create the illusion of being a
single high-performance server. Such an ad hoc server ha
a single IP address which can always be used to contact on Tcp
of its members, regardless of changes in the ad hoc serversxs amentsainss Jo g L

H o Client 2
4 O believes
i lam X
' i

INTERNET

M0

Iam connectedto X | (— APP
o

membership. Members of an ad hoc distributed server can
also handoff connections to each other, effectively allow-
ing for implementing location-based bindings between any Figure 4. Using Mobile IPv6 to Bind Software

clientand sgrver’s membernode clo§estt0 that cllept. Italso Layers (the server layer has a single IP ad-

allows for fine-grained load balancing of connections ad- yegs X).

dressed to the ad hoc server by handing off individual client

requests among servers, not only at the moment when the

request is being received, but also while it is being serviced.

Our implementation of ad hoc distributed servers is mization, in turn, consists of revealing the current CoA to
based on the Mobile IPv6 (MIPv6) protocol. MIPv6 con- the MIPv6 layer of the correspondent node so that direct
sists of a set of extensions to the IPv6 protocol [5]. It has communication can take place between the correspondent
been proposed to enable any IRu6bile nodeo be reached and the mobile node.
by any othercorrespondent nodesven if the mobile node In our architecture, an ad hoc distributed server is per-
is temporarily away from its usual location. ceived by its clients as single mobile node This means

To allow one to reach a mobile node while it is away that the ad hoc server’s HoA is shared between all its mem-
from its home network and connected to some visited net-bers. Each member node address, in turn, is considered as
work, MIPv6 distinguishes between two types of addressesa potential CoA of that fictive mobile node. By disclosing
that are assigned to mobile nodes. Tioene addresgHoA) different CoAs to each client, the server can convince dif-
never changes, and identifies a mobile node in its home netferent clients that it has moved to different locations. This
work. The home address defines tHentity of the mobile allows the server to service its clients via its single contact
node. A mobile node can always be reached at its HOA. address using many member nodes, just like a mobile node

A mobile node can also havecare-of addres§CoA), can communicate with its clients using its HoA at many dif-
which is obtained from a visited network when the mobile ferent locations.
node moves to that network. The CoA represents the current The general model of communication between an ad hoc
physical network attachment of the mobile node and candistributed server and its clients is depicted in Figure 4. All
change as the mobile node moves among various networksclients nodes access the server layer using its unique contact

The goal of MIPV6 is to ensure uninterrupted communi- address X. The MIPv6 layers at different clients may have a
cation with mobile nodes via their HoA, independently of different idea about the server location and therefore com-
their current network attachment. To this end, MIPv6 im- municate with different member nodes. Still, the client’s
plements two mechanisms, as shown in Figure 3. Tunnelinghigher (transport and application) layers are unaware of the
allows all traffic to be sent to the HoA of the mobile node, distribution of the server layer and retain the illusion that
from which it is forwarded to its current CoA. Route opti- they communicate with a single server X.

In our technical report [12] we show how the ad hoc
server can carefully mimics the signaling of a mobile node
performing route optimization to convince clients that is
has moved to the location where the client is supposed to
send its requests. This technique also allows to transfer en-
tire TCP connections from one member node of the ad hoc
server to another such that the handoff is totally transpar-
ent to the client-side application. We expect that this can
be useful for load balancing or when a member node must
be removed from the ad hoc server. It can then handoff its

remaining connections to another server to be treated there, [6]

without disturbing the client.

5. Conclusion

Structuring a CDN as a group of Grid services is at-
tractive because it allows to use standard Grid features to
dynamically adapt the system to varying client request de-
mands. We have shown how such a system could potentially
be built. First, one should structure a CDN as a group of

vices should be built such that it can dynamically adapt its
configuration to the demand it receives, by way of adding
and removing servers. Finally, to take the expected high

churn into account, we propose to give each layer of the [10]

system a single IP address that can always be used to con-
tact a member of the addressed layer. This organization pro-
vides separation of concerns as the client layers can remai
totally unaware of the internal organization of the service

they request, while benefiting from the performance of di- [12]

rect communication with the requested service.

Building such a system will certainly still require a lot
of work. First, building an adaptive service hosting archi-
tecture as discussed in Section 3 constitutes a non-trivial

piece of engineering. Second, building adaptive Grid ser- [13]

vices also requires to build good performance models of dis-
tributed service architectures such that the adaptation com-
ponents can predict the performance that would result from
any given change of configuration. Finally, our implemen-
tation of ad hoc distributed servers currently supports only
relatively simple applications. More developments will be
needed to support feature-rich applications such as a Grid
service.

References

[1] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.
DBProxy: a dynamic data cache for web applications. In
Proc. Intl. Conf. on Data Engineeringpages 821-831,
2003.

[2] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu. The
State of the Art in Locally Distributed Web-Server Systems.
ACM Computing Survey84(2), June 2002.

[3] CoralCDN frequently asked questions.

(4]

(5]

Can | run a
CoralCDN node? http://wiki.coralcdn.org/wiki.php/Main/
FAQ#runnode.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
physiology of the grid: An open grid services archi-
tecture for distributed systems integration. @pen
Grid Service Infrastructure WG, Global Grid Forym
June 2002. http://www.globus.org/alliance/
publications/papers/ogsa.pdf .

D. Johnson, C. Perkins, and J. Arkko. Mobility Support in
IPv6. RFC 3775, June 2004.

B. Kemme and G. Alonso. A suite of database replica-
tion protocols based on group communication primitives.
In Proc. 18th Intl. Conf. on Distributed Computing Systems
(ICDCS) page 156, Washington, DC, USA, 1998.

[7] J.Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,

8]
adaptive services requesting each other. Each of these ser- 9]

D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells,
and B. Zhao. Oceanstore: an architecture for global-scale
persistent storage. IRroc. 9th Intl. conf. on Architectural
support for programming languages and operating systems
pages 190-201, 2000.

G. Pierre and M. van Steen. Globule: a collaborative content
delivery network. Submitted for publication, Nov. 2005.

S. Sivasubramanian, G. Alonso, G. Pierre, and M. van Steen.
GlobeDB: Autonomic data replication for web applications.
In Proc. 14th Intl. World-Wide Web Conferenc€hiba,
Japan, may 2005.

S. Sivasubramanian, G. Pierre, and M. van Steen. Towards
autonomic hosting of multi-tier internet applications. Sub-
mitted for publication, Mar. 2006.

r{11] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van

Steen. Replication for web hosting systetA&M Comput-

ing Surveys36(3):291-334, 2004.

M. Szymaniak, G. Pierre, M. Simons-Nikolova, and M. van
Steen. A single-homed ad hoc distributed server. Techni-
cal Report IR-CS-013, Vrije Universiteit, Amsterdam, The
Netherlands, Mar. 2005http://www.globule.org/
publi/ASHAHDS_ircs013.html

M. Szymaniak, G. Pierre, and M. van Steen. Scalable coop-
erative latency estimation. Newport Beach, CA, July 2004.

4] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and

G. Alonso. Database replication techniques: a three parame-
ter classification. IfProc. 19th IEEE Symposium on Reliable
Distributed System£000.

