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Abstract

Content Delivery Networks must adapt their configura-
tion continuously to maintain acceptable performance in
the presence of large variations in their request load char-
acteristics. To automate and systematize these necessary
continuous adaptations, we propose to structure a CDN
along a grid service-oriented architecture. Two techniques
can be used to simplify the development and maintenance
of such a system: first, present a group of machines offer-
ing a given service as a single stable node, even though the
concerned servers may be located worldwide and the mem-
bership change often; second, modeling the performance of
internal elements of a web service allows to make informed
decisions on the dimensioning of the platform to host it. We
expect that these two techniques will allow us to build ser-
vices that continuously adapt their capacity to the demand
that they are facing.

1. Introduction

The goal of any content delivery network is to deliver
Web content with guaranteed quality of service regarding
client-perceived download performance, operational costs
and service availability. To reach this goal in the presence
of large variations in the request load issued by the clients,
CDNs must continuously measure their own performance
and adapt their configuration when necessary. Such adapta-
tion may take several forms: change the placement of repli-
cas holding the content to have sufficient serving capacity
located close to the clients requesting it; change the way
replicas are created and maintained consistent in the pres-
ence of updates; and change the way clients are redirected
to one of the replicas [11].

In a certain sense, CDNs share many characteristics with
Grid services. Grid services are defined as Web services
that make full use of Grid computing technology to man-
age transient service instances. For example,“in a Web
serving environment, service instances might be instanti-
ated dynamically to provide for consistent user response

time by managing application workload through dynami-
cally added capacity. [. . . ] Transience has significant im-
plications for how services are managed, named, discov-
ered, and used”[4]. This shared vision that services can
dynamically change the set of servers on which they run
motivates this paper. More precisely, we investigate the po-
tential benefits and issues that would arise from structuring
a content delivery network as a number of Grid services in-
teracting with each other.

Structuring a CDN as a Grid service can provide multiple
benefits. First, such a system could make use of standard-
ized features that Grids usually provide such as system and
application monitoring, dynamically allocating or releasing
machines within the Grid to match the demand, and security
features such as authentication and authorization for the use
of resources. Importantly, hosting a CDN on a Grid infras-
tructure would allow any user who has access to a Grid to
deploy a content delivery service on resources contributed
by external partners, while retaining full control on the sys-
tem. This could alleviate the trust and security difficulties
which originate from building collaborative content deliv-
ery networks where multiple people or organizations share
their resources for everyone’s benefit [3, 8]. Finally, struc-
turing a CDN as a number of Web services requesting each
other can simplify the task of adapting the system configu-
ration, as we will discuss later in this paper.

Reaching this goal requires that a number of tasks are
carried out. First, one needs to design a CDN as a group of
services interacting with each other. Second, each of these
services must be built such that it can dynamically adapt its
own configuration to the demand that it receives. Third, as
each service would be hosted on a potentially large and fre-
quently changing set of servers, establishing bindings be-
tween servers in different layers can become increasingly
difficult.

We propose two different techniques to deal with these
issues. First, we show how a service can be implemented
such that it continuously determines the best number of
servers to reach the expected quality of service. Second,
we propose to use TCP handoff techniques based on mo-
bile IPv6 to give each layer a single abstract IP address.
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Figure 1. Modeling a CDN as a Service-
Oriented Application (call graph)

Regardless of changes in the servers taking part in a given
layer, this single contact address can be built such that it al-
ways allows to reach one of the servers taking part in the
addressed group of machines.

The remaining of this paper is structured as follows. Sec-
tion 2 briefly presents a CDN architecture based on a service
oriented design. Section 3 shows how each service can be
made adaptive to changes in its workload. Section 4 ex-
plains how Mobile IPv6 can be exploited to give a single
IP address to a frequently changing set of servers. Finally,
Section 5 draws conclusions of this paper.

2. Modeling a CDN as a Grid Service

Most CDNs are built nowadays following an ad-hoc ar-
chitecture, meaning that the software architecture is tailored
according to the specific demands of the application. We
take here a different approach, and explore to which extent
a CDN can be built following a service-oriented architec-
ture. We believe that, although this approach imposes a
number of constraints, it also enables the use of generic
hosting technologies which simplify the development and
allow for automatic adaptation.

At first sight, the only function of a CDN is to repli-
cate and deliver content. However, a more detailed analy-
sis shows that in fact many components can be abstracted
and implemented as separate services. Remember that a
Grid service is assumed to be implemented by any number
of physical servers used to process the incoming requests.
Each service is also associated with its own adaptation com-
ponent which monitors the performance of the service and
adjusts the number and location of servers taking part in the
service accordingly.

Figure 1 shows one possible design of a CDN structured
as a service-oriented application. Client requests are re-
ceived by a DNS or HTTP frontend. The DNS frontend is
used to redirect clients to the HTTP frontend most suited to
answer this client. Deciding which HTTP frontend should
treat each client’s requests is done by the redirection pol-

icy service, which in turn needs information about the iden-
tity, availability and load of the HTTP frontend servers, and
about the localization of the client. The server status collec-
tion is in charge of receiving information about the identity
of servers taking part in the system, and continuously mon-
itoring their availability and load status. Finally, the client
localization service is used to convert a client’s IP address
into a location that can be used for placement. This service
can for example be implemented following the principles
discussed in [13].

The HTTP frontend is in charge of distributing the in-
coming requests to the relevant components: requests for
dynamically-generated documents should be forwarded to
the appropriate application servers; requests for static doc-
uments should be forwarded to the static document repli-
cation service; finally, if the CDN wants to use HTTP-
based redirection, then redirection requests require calling
the redirection policy to obtain the identity of the frontend
to which the requests should be redirected.

The static document replication is the heart of the sys-
tem. It is implemented by any number of servers which are
in charge of creating copies of the documents present in the
origin server, and maintain them consistent as the original
documents get updated. Any replication policy can be used
here. We expect that simple policies such as caching with
leases or invalidation can easily be implemented in the pro-
posed architecture.

For space reasons we do not detail the application server
part here. However, it should be clear that most dynamic
Web applications are implemented along a client-server that
can easily be mapped to a service-oriented architecture.

3. Service Dimensioning

To achieve the requested performance, each service may
need to be deployed across multiple machines. Deploying
a service usually involves replicating its code to a num-
ber of application servers and its data to an array of data
store machines. Furthermore, different caching layers such
as for service response caching and database caching can
be deployed to improve performance. Although these tech-
niques have been introduced independently from (and often
in opposition to) each other [1, 6, 7, 9, 14], we believe that
they rather complement each other and may need to co-exist
to obtain the best performance. We consider that different
techniques are best suited for different kinds of services.
For example, if requests to a service exhibit high request
locality, then service caching might be beneficial. On the
other hand, if the bottleneck lies in the underlying data re-
trieval, then database caching or replication might be use-
ful depending on the temporal locality of database queries.
Sometimes, a combination of these techniques might be
needed to achieve a certain quality of service.
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Figure 2. Internal Organization of a Service

In a previous paper, we have presented the internal archi-
tecture of an adaptive system to host service-oriented appli-
cations [10]. We describe the proposed architecture briefly
here; readers are invited to refer to this paper for more in-
formation.

As shown in Figure 2, one given service can be imple-
mented as a series of tiers. The most important tiers are the
business logic tier where the application code is executed,
and the data tier where the data are stored. In addition, a
number of caching tiers can be introduced: a server-side
service cache can store the responses generated by the ser-
vice for future reuse; a database cache can be used to reduce
the number of queries addressed to the database tier; finally,
client-side service caches can be introduced to store the re-
sponses received in response to external service calls. Each
of these tiers can be implemented by 0 or more servers (1 or
more for the business logic and data tiers). Finally, load bal-
ancers are introduced to distribute requests among servers
belonging to a given tier. We discuss a possible implemen-
tation of these load balancers in Section 4.

Not shown in the figure is the adaptation component of
the service. This component is in charge of monitoring the
quality of service offered by the service, as well as the per-
formance of each internal component. The adaptation com-
ponent executes a performance model of the service which
can infer the performance that the service would have if
it was running with a different configuration. When the
performance of the service drops below a given acceptable
level, the adaptation component decides what needs to be
done to restore the performance level back to normal. Adap-
tation usually consists of adding or removing servers from
one or more tiers.

In a CDN, the location of servers participating in a given
service is crucial to the overall performance. To this end,
the adaptation component of each service should query the
client location service for the location of the components
which address requests to them. This allows the adaptation

component to select the right locations where new servers
should be introduced to host the concerned service1.

We expect that letting services adapt their own config-
uration independently from each other may result in effi-
cient adaptations of the CDN as a whole. For example,
if the HTTP frontend service notices a drop in the qual-
ity of service that it offers to its clients, this may be due
to an inadequate location of its servers, which influences
the average network latency between the clients and the
frontend servers. The frontend service may then decide to
add servers in locations from which many requests origi-
nate. It then simply needs to inform the server status collec-
tion service of the newly introduced frontend servers such
that clients get redirected to these new servers. In turn, the
static document replication service may notice that, to effi-
ciently respond to queries originating from the new frontend
servers, it also needs to add more servers in the same vicin-
ity. As a result of these cascading effects, we believe that
the CDN as a whole can soon find a new equilibrium point,
until the next time that a change in workload is detected.

4. Ad-Hoc Servers for Transparent and Highly
Available Services

Structuring a CDN as a group of grid services request-
ing each other can create a new problem, as we can expect
a high churn of servers frequently joining and leaving each
service. In this context, it may become difficult to establish
the necessary bindings between different layers in the sys-
tem. For example, if the list of servers taking part in the
HTTP frontend and the static document replication service
change all the time, how can we make sure that each server
participating in the HTTP frontend knows the identity of
at least one server taking part in the document replication
service at all times?

Such bindings between layers must be realized by the
load balancers shown in Figure 1. Good bindings should
ideally exhibit the following properties: (i) it should always
be possible to reach one of the servers taking part in a given
service, even if the list of these servers change over time;
(ii) contacting any server out of the list is usually not good
enough; for performance reasons, we should be able todi-
rect connections initiating from a given client to the clos-
est available instance of the requested service; (iii) as the
instances of a given service will be located worldwide ac-
cording to the demand, it is not acceptable to implement a
load balancer as a frontend machine as is commonly done
in cluster computing [2]: this would imply that traffic must
follow a triangular route that would seriously impact the
overall system performance.

1We assume that functionalities such as dynamically allocating and re-
leasing servers based on location characteristics are part of the basic fea-
tures provided by Grids.
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Figure 3. Communication in MIPv6: (a) tunneling, and (b) route optimization

In a previous paper, we have proposed a new technique to
build so-called “ad hoc distributed servers” [12]. An ad hoc
distributed server is a group of machines potentially located
worldwide that cooperate to create the illusion of being a
single high-performance server. Such an ad hoc server has
a single IP address which can always be used to contact one
of its members, regardless of changes in the ad hoc server’s
membership. Members of an ad hoc distributed server can
also handoff connections to each other, effectively allow-
ing for implementing location-based bindings between any
client and server’s member node closest to that client. It also
allows for fine-grained load balancing of connections ad-
dressed to the ad hoc server by handing off individual client
requests among servers, not only at the moment when the
request is being received, but also while it is being serviced.

Our implementation of ad hoc distributed servers is
based on the Mobile IPv6 (MIPv6) protocol. MIPv6 con-
sists of a set of extensions to the IPv6 protocol [5]. It has
been proposed to enable any IPv6mobile nodeto be reached
by any othercorrespondent nodes, even if the mobile node
is temporarily away from its usual location.

To allow one to reach a mobile node while it is away
from its home network and connected to some visited net-
work, MIPv6 distinguishes between two types of addresses
that are assigned to mobile nodes. Thehome address(HoA)
never changes, and identifies a mobile node in its home net-
work. The home address defines theidentityof the mobile
node. A mobile node can always be reached at its HoA.

A mobile node can also have acare-of address(CoA),
which is obtained from a visited network when the mobile
node moves to that network. The CoA represents the current
physical network attachment of the mobile node and can
change as the mobile node moves among various networks.

The goal of MIPv6 is to ensure uninterrupted communi-
cation with mobile nodes via their HoA, independently of
their current network attachment. To this end, MIPv6 im-
plements two mechanisms, as shown in Figure 3. Tunneling
allows all traffic to be sent to the HoA of the mobile node,
from which it is forwarded to its current CoA. Route opti-
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Figure 4. Using Mobile IPv6 to Bind Software
Layers (the server layer has a single IP ad-
dress X).

mization, in turn, consists of revealing the current CoA to
the MIPv6 layer of the correspondent node so that direct
communication can take place between the correspondent
and the mobile node.

In our architecture, an ad hoc distributed server is per-
ceived by its clients as asingle mobile node. This means
that the ad hoc server’s HoA is shared between all its mem-
bers. Each member node address, in turn, is considered as
a potential CoA of that fictive mobile node. By disclosing
different CoAs to each client, the server can convince dif-
ferent clients that it has moved to different locations. This
allows the server to service its clients via its single contact
address using many member nodes, just like a mobile node
can communicate with its clients using its HoA at many dif-
ferent locations.

The general model of communication between an ad hoc
distributed server and its clients is depicted in Figure 4. All
clients nodes access the server layer using its unique contact
address X. The MIPv6 layers at different clients may have a
different idea about the server location and therefore com-
municate with different member nodes. Still, the client’s
higher (transport and application) layers are unaware of the
distribution of the server layer and retain the illusion that
they communicate with a single server X.
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In our technical report [12] we show how the ad hoc
server can carefully mimics the signaling of a mobile node
performing route optimization to convince clients that is
has moved to the location where the client is supposed to
send its requests. This technique also allows to transfer en-
tire TCP connections from one member node of the ad hoc
server to another such that the handoff is totally transpar-
ent to the client-side application. We expect that this can
be useful for load balancing or when a member node must
be removed from the ad hoc server. It can then handoff its
remaining connections to another server to be treated there,
without disturbing the client.

5. Conclusion

Structuring a CDN as a group of Grid services is at-
tractive because it allows to use standard Grid features to
dynamically adapt the system to varying client request de-
mands. We have shown how such a system could potentially
be built. First, one should structure a CDN as a group of
adaptive services requesting each other. Each of these ser-
vices should be built such that it can dynamically adapt its
configuration to the demand it receives, by way of adding
and removing servers. Finally, to take the expected high
churn into account, we propose to give each layer of the
system a single IP address that can always be used to con-
tact a member of the addressed layer. This organization pro-
vides separation of concerns as the client layers can remain
totally unaware of the internal organization of the service
they request, while benefiting from the performance of di-
rect communication with the requested service.

Building such a system will certainly still require a lot
of work. First, building an adaptive service hosting archi-
tecture as discussed in Section 3 constitutes a non-trivial
piece of engineering. Second, building adaptive Grid ser-
vices also requires to build good performance models of dis-
tributed service architectures such that the adaptation com-
ponents can predict the performance that would result from
any given change of configuration. Finally, our implemen-
tation of ad hoc distributed servers currently supports only
relatively simple applications. More developments will be
needed to support feature-rich applications such as a Grid
service.
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