
Globule: a User-Centric Content Delivery Network

Swaminathan Sivasubramanian Berry van Halderen Guillaume Pierre

Dept. of Computer Science, Vrije Universiteit, Amsterdam
{swami,berry,gpierre}@cs.vu.nl

1 Introduction

Web users often experience slow document transfers caused
by poorly performing servers and overloaded network links.
A classical solution to this problem is to replicate doc-
uments across the Internet and serve client requests at
a nearby replica. Content Delivery Networks (CDNs),
such as Akamai, offer such replication services to content
providers by offering them a worldwide distributed platform
to host their content.

This poster presentsGlobule, a content delivery network
to be operated by end-users themselves. Instead of del-
egating content delivery to an external company, content
providers can organize together to trade their (relatively
cheap) local resources against (valuable) remote resources.
As a result, a user participating in the Globule network is of-
fered a distributed set of servers in which his/her Web con-
tent can be replicated.

Globule is designed in the form of an add-on module for
the Apache Web server. To replicate their content, con-
tent providers only need to compile an extra module into
their Apache server and edit a simple configuration file.
Globule automatically replicates the site’s content and redi-
rects clients to a nearby replica. Servers also monitor each
other’s availability, so that client requests are not redirected
to a failing replica. Future versions will allow automatic
replica placement, replication of dynamic content and se-
curity measures. Globule prototypes are available under an
open-source licence athttp://www.globule.org/ .

2 Replica Placement

The current prototype of Globule requires that content
providers manually configure the list of servers where doc-
uments should be replicated. In future versions, however,
replica placement will be realized automatically in order to
maintain client-to-replica latencies as low as possible.

Automatic replica placement is realized in three stages:
first, servers passively evaluate their latency to each client.
This operation is completely transparent to the client:
round-trip delays are measured by the servers upon estab-
lishing incoming TCP connections as the delay between the
emission of the SYN/ACK packet and the reception of the
corresponding ACK. These latency estimates allow servers
to position each client in an N-dimensional space [7]. The
second step consists of dividing this N-dimensional space
into network regions and selecting a set of regions where
replicas must be placed. The third step requires to choose
the best-suited replica server(s) in each selected network re-

gion, and dynamically create replicas. For more details on
automatic replica placement, please refer to [6].

3 Dynamic Adaptation of Replication Strate-
gies

Replicating Web documents permits to balance the load
among multiple servers as well as reducing the client-to-
server latencies. However, it introduces consistency prob-
lems when a document is updated. To prevent client from
accessing stale information, whenever a document is up-
dated all existing copies of that document should be updated
or destroyed. There exists a wide range of replication strate-
gies which are able to maintain consistent replicas. In our
earlier research, however, we showed that there is no single
best performing strategy [1]. The best performing strategy
must be decided on per-document basis based on its unique
access and update patterns.

Globule servers support four different strategies. Based
on analysis of past access pattern, the system decides which
policy performs best for each individual document. To ac-
count for changes in access patterns, replication strategies
are evaluated periodically. If necessary, the replication strat-
egy of a document is switched dynamically. For more de-
tails, please refer to [3].

4 Client Redirection

Replicating Web content is useless if clients do not access
it from a replica close to them. However, we consider it
unacceptable to require clients to manually select their best
replica. Instead, Globule automatically redirects clients to
the best possible replica server that has a replica of the re-
quested content.

Automatically redirecting clients requires to select aredi-
rection policyand aredirection mechanism. The former dic-
tates the choice of a server among all the replica servers to
serve a client, while the latter is the means by which the
client is informed of the choice. We have implemented two
different redirection policies:round-robinredirects requests
to replica servers in a round-robin fashion;AS-path length
redirects requests to the closest replica server, with the prox-
imity between the Web clients and the servers defined in
terms of number of Autonomous System (AS) hops be-
tween them. Clients can be redirected to the selected replica
using any of two mechanisms: one uses HTTP redirection
to instruct browsers fro which server each particular docu-
ment should be fetched; the other one uses a custom DNS
server to resolve the name of a Web site into the IP address



of the replica closest to that client. All aspects of client redi-
rection (including the custom DNS server) are implemented
as part of the Globule module for Apache [5].

5 Disconnected operations

Globule allows replica servers to be operated by end-users.
A consequence is that these machines cannot be considered
as highly available. Unavailable replica servers may create
problems when combined with automatic client redirection
because clients cannot override the automatic replica selec-
tion in case something goes wrong. In such cases requests
will fail, even though there may have been other available
replicas capable of serving the request correctly. Dealing
with unavailable servers is not only relevant when a server
fails, but also to allow for replica server maintenance, soft-
ware upgrades, network outages, etc.

In Globule, the origin server (i.e., owner) of a document
periodically checks the availability of its replica servers.
When it detects that one of them is unavailable or miscon-
figured, it stops redirecting clients to this replica until the
replica has recovered. This simple scheme allows to support
disconnected operation of replica servers, but not that of the
origin server of a given document. We plan to address the
disconnection of origin servers by splitting the client redi-
rection mechanisms from the origin server. This allows for
the construction of highly available redirectors, for example
based on redundant redirecting DNS servers. Such mecha-
nisms will allow a site to function correctly, even in the case
where its origin server is unreachable.

6 Dynamic document support

The past few years have seen a tremendous increase in the
usage of dynamic document technologies by Web content
providers. Such documents are generated on the fly by arbi-
trary code written in languages such as PHP of JSP, which
in turn may access relevant data stored in files or databases.
Replicating dynamic documents requires to replicate both
the code and the data, so that documents can be generated
at any replica server.

Replicating dynamic document’s code and data is rela-
tively straightforward provided that the code does not mod-
ify the underlying data. However, if it does, then the system
must maintain consistency among the replicated data. This
problem is harder than maintaining consistency of static
documents because concurrent updates can originate from
any replica. In addition, traditional consistency strategies
incur a large performance overhead due to synchronization
between replicas.

We propose to reduce replication overhead by not repli-
cating all data at all replica servers. Instead, data should be
replicated only at servers that access them often. Simula-
tions have shown that this provides important performance
gains in document generation time, while reducing the data
update traffic exchanged between the replicas. For more in-
formation, please refer to [4].

7 Security

Replicating content on unknown and untrusted hosts cre-
ates a security problem, as for example a malicious replica
server may serve modified versions of documents. How-
ever, traditional techniques such as digitally signing docu-
ments do not suffice because most existing Web browsers
would not check these signatures.

Globule addresses this challenge by taking both preven-
tive and punitive measures. First, it defines a trust metric
amonst servers. A given server will only replicate its con-
tent at servers that it trusts. Second, random checks are per-
formed on the replica servers, by comparing secure hashes
(e.g., SHA-1) of documents delivered by the replicas to that
of the origin server. If the hashes are found to be differ-
ent, then the owner of document is informed of the incident
and the malicious server can be banned from the network of
trusted servers. For more information, please refer [2].

8 Conclusion

We presented Globule, an open source content delivery net-
work formed out of a distributed set of co-operating replica
servers. Globule aims to allow Web content providers to
organize together and operate their own world-wide host-
ing platform. It handles replication, consistency, client
redirection, and disconnected operation automatically. Fu-
ture versions will incorporate automatic replica place-
ment, dynamic document support and security. Globule is
available under an open-source license athttp://www.
globule.org/ .

References
[1] G. Pierre, M. van Steen, and A.S. Tanenbaum. Dynamically

selecting optimal distribution strategies for Web documents.
IEEE Transactions on Computers, 51(6):637–651, June 2002.

[2] B. Popescu, B. Crispo, and A.S. Tanenbaum. Secure data
replication over untrusted hosts. InProceedings of the 9th
Workshop on Hot Topics in Operating Systems (HotOS 2003),
2003.

[3] S. Sivasubramanian, G. Pierre, and M. van Steen. A case
for dynamic selection of replication and caching strategies.
In Proceedings of the Eighth International Workshop on Web
Content Caching and Distribution (WCW’03), Hawthorne,
NY, USA, September 2003.

[4] S. Sivasubramanian, G. Pierre, and M. van Steen. Repli-
cating web applications on-demand. Submitted for publica-
tion, April 2004. http://www.globule.org/publi/
RWAOD_draft.html .

[5] M. Szymaniak, G. Pierre, and M. van Steen. Netairt: A DNS-
based redirection system for Apache. InProceedings of the
IADIS International Conference on WWW/Internet, Algarve,
Portugal, November 2003.

[6] M. Szymaniak, G. Pierre, and M. van Steen. Latency-
driven replica placement. Submitted for publication, May
2004. http://www.globule.org/publi/LDRP_
draft.html .

[7] M. Szymaniak, G. Pierre, and M. van Steen. Scalable co-
operative latency estimation. InProceedings of the 10th In-
ternational Conference on Parallel and Distributed Systems
(ICPADS), Newport Beach, CA, USA, July 2004.


