
High Availability and Scalability Support for Web Applications

Louis Rilling1, Swaminathan Sivasubramanian2, Guillaume Pierre2

IRISA1 Vrije Universiteit2

Rennes, France Amsterdam, The Netherlands
Email: louis.rilling@irisa.fr, {swami,gpierre}@cs.vu.nl

Abstract

A database query caching technique, GlobeCBC, can be
used to improve the scalability of Web applications. This
paper addresses the availability issues in GlobeCBC. Even
though high availability is achieved by adding more re-
sources, proper algorithms must be designed to ensure that
the clients receive consistent responses amidst failures of
the edge and origin servers. We present lightweight algo-
rithms to detect and correct server failures while provid-
ing read-your-writes consistency. They exploit the fact that
the query workload of Web applications is based on a fixed
set of read and write templates. We show that these algo-
rithms incur very low overhead using several microbench-
marks and a complete Web application benchmark.

1 Introduction

Thanks to the expansion of the Internet, an ever-growing
number of businesses and individuals rely on the World-
Wide Web for their daily activity. As a consequence, the
Web has evolved from a simple information repository into
a support for complex applications. The contents to be re-
turned to the clients are often generated dynamically each
time a request is received. Dynamic Web content genera-
tion allows servers to deliver personalized contents to each
user, and to take action when specific requests are issued,
such as ordering an item from an e-commerce site.

Dynamic Web applications are often organized along a
three-tiered architecture. When a request is issued, the Web
server invokes application-specific code, which generates
the content to be delivered to the client. This code, in turn,
issues queries to a database where the state is preserved.

The importance that Web applications have taken in our
lives raise the level of expectation that they should meet.
In particular, we claim that Web application support should
be both scalable enough to provide good performance un-
der high load, and highly available even in the presence of
server failures. Indeed, a highly available but unscalable

application is equally useless to its users as a theoretically
scalable but rarely functioning one.

Most solutions for providing scalability or availability in
such context involve data caching or replication. However,
different forms of replication are used for scalability and
availability purposes. In particular, the virtual synchrony or
transaction-based mechanisms used for fault-tolerance are
considered to scale badly over large networks such as the
Internet, and therefore cannot be used for Web applications.

Very few research has been conducted on providing both
scalability and high availability to dynamic Web applica-
tions. A notable exception is [7], which proposes to tailor
the replication to the specific data access patterns of the ap-
plication. Although this approach allows to provide good
scalability and availability, it requires significant expertise
from application programmers.

We propose a different approach which does not re-
quire specific knowledge from the programmers. Our work
is based on a database query caching system which has
been shown to provide good scalability for Web applica-
tions [13]. Query caching allows edge servers to store the
results of previous database queries, thereby improving the
performance of future identical queries. When an update is
issued on the database, invalidations are issued to the caches
so that consistency is preserved.

We must address two questions. First, when an edge
server fails and its clients are redirected to another edge
server, we must make sure that the failover remains transpa-
rent to the clients. This requires to provide read-your-write
consistency guarantees. Second, when the origin database
server fails, another one must be ready to take over. While
maintaining the availability of the origin database can be
reduced to a classical replicated database problem, we must
also make sure that no cache invalidation is lost so that ap-
plication consistency is preserved. We show that these two
questions can be answered with few changes in GlobeCBC,
and that the resulting performance cost is minimal.

This paper is organized as follows. Section 2 presents
GlobeCBC and its availability issues. Sections 3 and 4
present our solutions to maintain read-your-writes consis-

1

Module
Caching

-itory
Repos
Cache

Web ClientsWeb Clients

Requests/Responses

Server
Origin

Server
Edge

Server
Edge

Updates
Query misses/

Updates
Query misses/

Invalidations
/Updates
Query misses

Database Invalidator

Requests/Responses

Module
Caching

-itory
Repos
Cache

 Internet

���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

���
���
���
���

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Figure 1. System Architecture.

tency during edge server and origin server failures. Finally,
Section 5 presents the related work and Section 6 concludes.

2 GlobeCBC: Scalable Query Caching for
Web Applications

For hosting Web applications scalably, several systems
replicate their application code at multiple edge servers
and keep the data centralized [1]. This allows each edge
server to generate content close to the clients and spreads
the computational load across multiple servers. However,
simple code replication leads to the database becoming the
performance bottleneck. To alleviate this bottleneck, we
have built a query caching middleware, GlobeCBC, which
caches the database query responses at the edge servers.
It also ensures the consistency of cached responses when
the underlying database is updated. We provide a brief
overview here and refer the readers to [13] for more details.

2.1 Architecture

As shown in Figure 1, in GlobeCBC an application is
hosted by edge servers located in different regions of the
Internet. Communication between edge servers usually tra-
verses the wide-area network thereby incurring wide-area
latency. Each client is assumed to be redirected to its closest
edge server using DNS-based redirection [5, 6]. We assume
that the application code is replicated at all edge servers.
Furthermore, one edge server acts as the origin server. The
origin server hosts the complete database of the application.

The two key components of our system are the caching
module and the invalidator. We will discuss the design and
implementation of these components below.

2.2 Caching Module

The caching module is the middleware that runs in each
edge server and intercepts all database queries between

the application code and the origin database server. The
caching module component is responsible for managing the
cached query responses. When a read query is issued, it
checks if the result is cached locally (using the query itself
as the identifier). If found, then the result is returned im-
mediately. Otherwise, the query is executed at the origin
server. Upon successful execution, the result is stored in
the local repository. Unlike the traditional database caching
systems such as DBProxy [2] and DBCache [3], the caching
module does not merge the query results but rather stores
them independently. The caching module thus avoids the
overhead of query containment checks and can return query
results immediately upon a cache hit without query plan-
ning and execution overheads.

2.3 Invalidation

Caching database query responses introduces a consis-
tency problem as a cached query response might become
inconsistent when the underlying database of the service is
updated. To simplify the maintenance of consistency, we
assume that the query workload to the database consists of
a fixed set of read and write query templates. A query tem-
plate is a parametrized SQL query whose parameter values
are passed to the system at runtime. This scheme is de-
ployed, for example, using Java’s prepared statement.

GlobeCBC expects the developer to specify which query
template conflicts with which update template. For ex-
ample, consider the template QT 1: “SELECT price,
stock from book where id=?” and its conflicting update
query template UT 1: “Update price=price+1 from books
where id=?”. The invalidator running in the origin server
invalidates stale cached responses in the edge servers by
maintaining such a conflict map for each write query tem-
plate. When the invalidator receives an update query that
is an instance of UT 1, it sends out a message to invalidate
all instances of QT 1. The invalidation messages are sent
asynchronously to reduce the query response time.

We have evaluated the performance of GlobeCBC com-
pared to other data replication and query caching systems
for different kinds of applications over an emulated wide-
area network testbed. Figure 2 shows the results of one
such experiment with the RUBBoS benchmark for one edge
server and one origin server. We studied the client la-
tency of different replication and caching strategies for dif-
ferent client workloads. As seen in the figure, Globe-
CBC(indicated as content-blind) performs the best in terms
of client latency. It can also be seen that GlobeCBC sus-
tains higher load than other systems. We do not include
more results on the performance of GlobeCBC due to space
constraints. For more results with multiple edge servers and
the performance of weak consistency protocols for different
applications, we refer the readers to [13].

2

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 C
lie

nt
 L

at
en

cy
 (

m
s)

Number of active client sessions

Edge Computing

Content-aware

Full Replication

Content-blind

Figure 2. Effect of load on RUBBoS

2.4 Availability Issues

Two types of servers failures need to be addressed1. The
first one is an edge server failure. When an edge server fails,
its clients must be re-directed to another available server,
and the failover must be transparent to the clients. While
DNS-based highly available request routing is relatively
well understood [5, 6], ensuring that the clients experience
the same level of data consistency across all edge servers
is harder. Since invalidations are sent asynchronously to
the edge servers, it is possible that the results cached across
different edge servers are temporarily inconsistent at any
given time. In such cases, simply employing a fault-tolerant
redirection system can lead to a scenario where clients are
redirected to a server whose cached query responses are
stale compared to those seen by them in the past. This
can result in situations where the latest updates issued by
the client seem to have mysteriously disappeared. To pre-
vent such scenarios, the system must provide “read-your-
writes” (RYW) consistency. This consistency model guar-
antees that when a client performs an update, any subse-
quent reads from the same client will return the effects of
its update (and also possibly others) [15].

The second type of server failure is that of the origin
server. As noted earlier, an origin server runs the database
server which stores the application data, and the invalida-
tor service which is in charge of issuing invalidations when
the underlying database is updated. The failure of origin
server’s database server can be handled by classical fault-
tolerant replicated database solutions. Database systems
like MySQL and PgSQL have mature cluster solutions to
replicate the data across multiple servers and to keep them
consistent during updates. However, these solutions only
address the availability of the database and do not address
the availability of the invalidator. An invalidator failure can
result in lost invalidations, thereby leading to stale query re-
sults being used to build client pages. Similar to databases,
we must therefore replicate the invalidator service across

1Failures due to network outages and partitions are beyond the scope
of this paper.

multiple servers so that the failure of one server does not
result in loss of invalidation messages.

3 Handling Edge Server Failures

3.1 Assumptions

Before presenting our solutions, we first detail our sys-
tem assumptions. First, we assume the presence of a highly
available DNS redirection system to resolve client requests
to an available edge server [5, 6]. Second, we do not ad-
dress the case when a server fails while processing a client
request. In such a scenario, we assume that clients re-issue
the request later and henceforth are redirected to another
edge server. Third, we do not address byzantine failures,
i.e., we assume a fail-stop failure model of edge servers.
We do not consider the case of partial server failures that
lead to returning erroneous responses.

3.2 Solution Overview

When a client is redirected to a new edge server, the edge
servers need to ensure RYW consistency. A simple solution
is to increment a version counter each time the database is
updated, attach the latest database version number to each
generated page, and ensure that the version of pages re-
turned to a given client be higher or equal to the latest one
seen by this client. However, this scheme can be very ex-
pensive as it practically requires edge servers to erase their
entire cache content each time a database update occurs.

The idea behind our proposed solution is to exploit the
fact that the application’s query workload consists of a fixed
set of read and write query templates whose conflicts are
made explicit. Instead of versioning the whole database, we
can maintain a separate version number per write template,
and apply version vector-based cache consistency manage-
ment. Each write query template of the application is then
assigned a clock that identifies versions of the data modified
by invocations of this template. For instance, in the exam-
ple of Section 2.3, a clock will be assigned to the template
UT 1. If an origin server has already processed two queries
of type UT 1, then the clock will be < UT1, 2 >. We then
ensure that each generated page is attached with the clocks
of the queries having lastly modified the data in the page.
When a client issues a request to another edge server, to
provide RYW the server needs to ensure that the clock val-
ues of its cached responses are at least as high as those seen
by the client before. Once a violation is detected, it is suffi-
cient for the edge server to erase the stale response from its
cache, and treat the query as a cache miss.

Clocks are generated by the origin server each time it
runs a write query, and are included in each query response
to edge servers. This guarantees that: (i) edge servers can

3

keep track of the versions stored in their caches; and (ii)
clients can impose minimal versions to ensure RYW con-
sistency. This means that, instead of directly accessing the
origin server database, edge servers access the invalidator
service in the origin server, which forwards the queries to
the database. The invalidator acts as a proxy and is respon-
sible for generating the clocks and the invalidations.

The invalidator maintains a template clock TCw for each
write query template w, and updates TCw to a strictly
greater value after each execution of a write query of tem-
plate w. The new value of TCw is attached to the response.
When the origin receives a read query of template r, it first
collects the values of all the template clocks of write query
templates that conflict with r. The origin executes the query,
and includes the list of (write template id, clock value col-
lected) pairs into the query response. When it receives the
response, the edge server stores this clock list together with
the query result in its cache. For instance, to a read query of
type QT 1 can be attached the clock < UT 1, TCUT1 >.

This algorithm ensures the following property. Con-
sider an edge server E handling a request from client C,
which results in executing a read query Q of template
r, for which it has a result R stored in the cache. Let
[< w1, c1 >, < w2, c2 >, . . . , < wk, ck >] be the clock
list attached to result R, and q1, q2, . . . , ql be the write
queries resulting from the requests of client C so far. We
note t1, t2, . . . , tl the respective template ids of queries
q1, q2, . . . , ql, and c′1, c

′
2, . . . , c

′
l the respective clocks at-

tached to the responses. If ∀ < w, t >, (ww = tt) ⇒ cw ≥
c′t, that is updates from client C that conflict with queries of
template r have only been performed before cached result
R was read in the origin database, then result R can be re-
turned to query Q without compromising RYW consistency.

An edge server can provide RYW consistency if it knows
the latest clocks of all write query templates that have been
performed on behalf of this client. To maintain such infor-
mation in a scalable and transparent manner, edge servers
maintain a cookie at the clients’ browsers in which they
store the latest template clocks returned by the origin with
the write query results for this client. This is scalable be-
cause neither the edge servers nor the origin have to record
information about individual clients. Besides, clients only
store clocks corresponding to their own requests and whose
number is limited to the number of write query templates
of the application. This is transparent since cookies are a
standard mechanism that all popular web browsers support.

4 Handling Origin Server Failures

4.1 Assumptions

We do not treat the availability of the origin database
itself. Instead, we rely on the fault-tolerance features pro-

vided by existing database replication middlewares. This
makes our solution light-weight and database-agnostic. Our
implementation relies on PgSQL, which ensures the consis-
tency of replicated data across multiple servers in a local
area network. We thus end up with a system model with
multiple origin database and invalidator servers, and orga-
nized into a primary-backup scheme. Note that it is not nec-
essary to run the replicated invalidators and databases on the
same machines. Similarly to the edge-server failures, we as-
sume a fail-stop failure model and do not consider the cases
of requests being processed during a server failure.

4.2 Solution

To make the invalidator service fault-tolerant at a rea-
sonable cost and with a reasonable transparency, we repli-
cate it using a primary-backup scheme. In this scheme, one
invalidator server is elected as the primary. Edge servers
are made to issue all their database updates to the primary
server, which is also responsible for generating the clocks
for each template and propagating the invalidation mes-
sages. When the primary fails, a new primary is chosen
among the existing backup invalidators.

Implementing primary-backup replication requires ad-
dressing the issues of group management and of generating
version numbers consistently (especially during the tran-
sition from one primary to another). Group management
mechanisms are essential as all the replicas need to agree
upon the set of available servers and which one among them
should act as the primary. Consistency-related mechanisms
are required to ensure that version numbers are generated
appropriately and that failure of an invalidator (primary or
backup) does not result in lost invalidations.

4.2.1 Group Management

In our system, each invalidator server is assigned a unique
numerical rank. The live (i.e., available) server having the
lowest rank is always chosen as the primary. The edge
servers have the list of all (alive or not) origins, and moni-
tor them using periodic heart beat messages to identify the
live replica having the lowest rank. This ensures that most
connections from edge servers are addressed to the primary
server. However, it may happen that a server with low rank
has recovered recently, and certain requests are still issued
to the former primary. In this case, the addressed origin
aborts the connection, which triggers the edge server to re-
issue a connection to the new primary origin.

The origin servers use a group membership protocol sim-
ilar to [8]. The live replicas agree on the sequence of views
containing the list of available servers. The initial state of
the view contains all replicas. The view is changed each
time a replica suspects other replicas of having failed or re-
covered. A view change can only be triggered by replica

4

servers present in the current view. After triggering a view
change, all replicas of the current view agree on the next
view, and then install the new view. Subsequently, the repli-
cas present in both views change the recorded set of view
members; failed replicas leaving the view stop participat-
ing in the group management protocol; recovered replicas
joining the view start participating in the protocol.

After installing a new view, the replica having the low-
est rank in the view becomes primary, and the others be-
come backup servers. Since the view is kept consistent by
the group membership algorithm, the primary selection is
consistent across all servers, and only one node can act as
primary in a view. Note that a more sophisticated algorithm
would be necessary to take network partitions into account.

4.2.2 Consistency Management

When a primary server fails and a backup takes over, we
need to ensure that the new primary does not miss recent
database updates (and their corresponding invalidations).
Failure to do so could result in generating lower clock val-
ues than the last ones generated by the failed primary server,
therefore violating RYW consistency.

This problem could easily be addressed by syn-
chronously multicasting the updates to all the invalidators
(e.g., using view synchronous multicast algorithms [9]), and
running an agreement algorithm such as two-phase com-
mit for each query of all the invalidators. However, run-
ning a synchronous multicast and agreement protocol for
answering each query can severely impact the system per-
formance as these protocols require several round-trip com-
munications between the replica servers, thereby incurring
significant overhead for both read and write queries. In our
system, we take advantage of the fact that we do not require
such strong consistency guarantees provided by view syn-
chronous multicast algorithms. Instead, we adopt a simpler
approach that incurs zero overhead for read queries and only
one round-trip latency for write queries.

In our scheme, when a read query is received by the pri-
mary, the query is executed by one of the database repli-
cas (as determined by the load balancer algorithms of the
database replicator). Template clocks are always generated
by the primary invalidator. The primary invalidator handles
a write query in four steps: First it runs the query on the
database and waits for the result. Second, it generates and
propagates the new template clock to all invalidators, and
wait for a majority of them to acknowledge receipt. We
refer to this second step as clock stabilization. Third, it re-
turns the query result to the requesting edge server. Fourth,
it issues the necessary invalidations to the edge servers.

In the event of a primary failure, the remaining inval-
idators must be able to rebuild the clocks for each template
to detect if any invalidation may have been lost during the

failure. To this end, each replica server maintains two ar-
rays: rec updates and inv done. The rec updates ar-
ray stores the latest clock values for each write template.
The inv done array stores the last clock values of each
write template for which the invalidations have been sent.
At a given instant if both arrays are identical, it implies
that the invalidator has dispatched invalidation messages for
all updates seen by the origin server till then. Similarly,
for instance where the clock value for UT 1 in inv done
is < UT 1, n > and its clock value in rec updates is
< UT 1, n+1 >, then it implies that the invalidator has not
yet sent out an invalidation message for invalidating read
queries (cached at the edge server) conflicting with the lat-
est write query of type UT 1 processed by the origin server.

When the primary stabilizes a new value for a tem-
plate clock, the primary and the backups update the array
rec updates to store the latest clock value. Once the pri-
mary has performed the corresponding invalidation to all
the edge servers connected, the new clock value is then
stored in the inv done array of the primary. The primary
periodically broadcasts its inv done array to the backups.
Note that it is not necessary to maintain strong consistency
between views of the inv done array.

4.2.3 Failure Handling

When a backup invalidator becomes the new primary,
it executes a preliminary step before accepting to serve
queries. This preliminary step includes an anti-entropy
algorithm [15]. First the new primary retrieves the
rec updates and inv done arrays of at least a majority
of replicas (including itself). These replicas commit them-
selves to not accept any stabilization request from previous
views. Then, for each write query template, the primary
computes the maximum value for each array. Missing in-
validations are detected by comparing the values in the two
arrays: if for a write query template w rec updates[w] is
greater than inv done[w], an invalidation of results conflict-
ing with template w may have been lost, and the new pri-
mary reissues invalidations requests for template w at all
edge servers connected. After this step, the new primary
becomes active and is ready to serve new queries.

Rebuilding the clock arrays and refusing stabilization re-
quests from previous views ensures that clock values for
each template are generated in a strictly increasing order
even in the presence of primary failures. However, view
changes do not necessarily happen immediately at the same
time for each replica (recall that we do not use a syn-
chronous protocol for view maintenance). It is therefore
possible that the former primary thinks it is still the primary,
while new write queries and new values for these clocks are
generated by a new primary. If the former primary accepts
to serve a write query during this transition time, the query

5

will be blocked because stabilization at a majority of repli-
cas is not possible after the new primary becomes active.
To prevent from losing all requests received by the former
primary, the former primary then forwards pending updates
to the new primary when it installs the new view. The new
primary recomputes template clocks for these updates, sta-
bilizes them, and the replicas send back acknowledgments
to the former primary with the new template clock. This
avoids breaking the connection between an edge server and
the origin server because of a view change.

5 Performance Evaluations

This section evaluates the overhead of our availability al-
gorithms. First, we demonstrate that during edge server fail-
ures simple database caching techniques can violate RYW
consistency. Subsequently, we demonstrate the low over-
head of our edge server failure handling techniques. Sec-
ond, we demonstrate the efficiency of the techniques to han-
dle the failure of origin server invalidators, and show that
the overhead introduced by the invalidator replication pro-
tocol is negligible.

We implemented a prototype of GlobeCBC, including
its fault-tolerance and RYW consistency management al-
gorithms. The caching module in the edge server is im-
plemented by modifying the Apache PHP driver for Post-
greSQL. The invalidator service is written as a multi-thread
stand-alone server using C. We evaluated the efficiency of
our system using RUBBoS, a benchmark application that
models slashdot.org. RUBBoS application’s database
consists of five tables, storing information regarding users,
stories, comments, submissions and moderator activities.
We filled the database with information of 500, 000 users
and 200, 000 comments. For our experiments, we choose
the open source PHP implementation of these benchmarks2.
The client workload for both benchmarks is generated by
Emulated Browsers (EBs) and conforms to the TPC spec-
ification for clients [14]. The user workload for RUBBoS
contains more than 15% interactions that lead to updates.

5.1 Occurrence of RYW Violations

We first demonstrate that simple asynchronous invalida-
tions used in GlobeCBC can lead to RYW violations, inde-
pendent of edge server failures. To this end, we plotted the
progression of the data versions obtained by a single RUB-
BoS client only for a single template clock. In Figure 3,
the continuous line represents the minimal version needed
to respect RYW consistency (that is all results must have
clocks above the line), and the slanting crosses represent
the versions of stale cached results that would have been

2http://jmob.objectweb.org/rubbos.html

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 3000 3500 4000 4500 5000

T
em

pl
at

e
cl

oc
ks

Time (s)

Template version found in cache

RYW violations
detected at the
edge server

Minimum version to satisfy RYW

Figure 3. Version numbers of query results
received by one client for one template clock.

returned by the edge server without our clock handling al-
gorithm (these results would have been below the line). We
can see that there were 3 stale cached results detected and
which required fetching new query results from the origin
server. This is due to the fact that invalidations are sent
to the edge server asynchronously. We also observed that
there were 22 queries of the same templates for which up-
to-date results were found in the cache. So, without our
clock handling mechanisms a significant fraction of the re-
sponses would have violated the RYW consistency.

5.2 Overhead in Edge Server Failures

To study the effect of edge server failover on clients, we
ran a synthetic experiment with the RUBBoS benchmark.
We made 100 clients access the application through 2 edge
servers. The edge servers access the database at one ori-
gin server, which was not replicated in the experiment. To
emulate a WAN configuration, we used the NIST Net net-
work emulator to insert 0 ms latencies between the RUB-
BoS clients and the edge servers, and 100 ms latencies be-
tween the edge servers and the origin server. All the nodes
were bi-processor 1 GHz Pentium III.

We started the experiment with the two edge servers E1

and E2, each being accessed by a pool of 50 clients. After
1800 seconds, we made edge server E1 fail and redirected
E1’s clients to E2. Figures 4 and 5 show the request laten-
cies perceived by the two pools of clients across time. We
marked the periods before, during and after the failure.

Interestingly, the clients accessing E2 from the begin-
ning do not perceive any change in performance. This is due
to the fact that one edge server is powerful enough to serve
the two client populations without any drop in performance.
A similar observation can be made for E1’s client popula-
tion when comparing the requests well before and well after
the failure. However, the queries that were already started
on E1 but not yet completed at the time of the failure show

6

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1300 1400 1500 1600 1700 1800 1900 2000 2100

R
eq

ue
st

 la
te

nc
y

(m
s)

Time from beginning of measures (s)

server 2 after the failure
Queries issued to edgeQueries issued to edge

server 1 before the failure

(re−issued to edge server 2)

Queries being processed
at the time of the failure

Figure 4. Request latencies of E1’s clients.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1300 1400 1500 1600 1700 1800 1900 2000 2100

R
eq

ue
st

 la
te

nc
y

(m
s)

Time from beginning of measures (s)

Queries issued to edge
server 2 before the
failure of edge server 1

server 2 after the
failure of edge server 1

Queries issued to edge

Figure 5. Request latencies of E2’s clients

a somewhat greater latency. This is due to the fact that,
upon detection of the failure of E1, clients had to re-issue
their connections to E2. We conclude that, provided that the
surviving edge servers have sufficient capacity to serve the
whole client population, no significant delay is added by the
RYW consistency enforcement at the time of a failure.

5.3 Scalability of Invalidator Replication

To evaluate the overhead of invalidator replication, we
first ran microbenchmarks to measure the overhead of ex-
ecuting a write and read query. In the first microbench-
mark, we generated a series of write queries from three edge
servers concurrently. Each edge server performs a sequence
of write queries (insert a record in a small database table) at
maximal rate, that is a new write query is performed as soon
as the result of the previous one is received. To separate the
impact of query execution on our results, we do not execute
the queries on the database. In this experiment, the edge
servers and the invalidators are located on a same switched
LAN (with round trip time lower than 1 ms), which makes
edge servers issue queries at high rate. Each server runs a
bi-processor 1 GHz Pentium III.

The cumulative distributions of the times to serve write
queries at the primary invalidator are shown on figure 6. All
distributions are closely gathered around their median. With

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5

Latency (ms)

1 origin / 3 edges
3 origins / 3 edges
5 origins / 3 edges
7 origins / 3 edges

Figure 6. Impact of the number of invalidators
on the latency of write queries.

only one invalidator replica, the median is 192µs, whereas
the medians are 496µs, 544µs, and 607µs for 3, 5, and 7
invalidator replicas respectively. The difference in latency
between one and more than one replicas (albeit only small)
is due to the LAN round trip latency incurred in the clock
stabilization protocol. In all cases, the latencies are very
low compared to WAN latencies (which is in the order of
10s of milliseconds) and suggest that invalidator replication
can support heavy client workloads. Moreover, we observe
that the increase in number of replicas (of the invalidator)
does not affect the performance.

The second microbenchmark consists of only read
queries. The distributions obtained are not shown due to
space constraints, but we observe that the median latency is
in the order of 200µs. In other words, we observe that the
replication of invalidator does not induce any overhead on
read queries as read queries are never blocked in our repli-
cation protocol.

To confirm that invalidator replication induces only neg-
ligible overhead for a real application, we ran the RUBBoS
benchmark for 20 and 100 active clients with a single edge
server and 1 to 5 invalidator replicas. The database and in-
validators are run on different servers and the configuration
of servers are the same as the one used in our previous ex-
periments. The cumulative distribution of client request la-
tencies measured for 20 clients is shown on figure 7. From
this results, it can be seen that the distributions are very
close to each other and this shows that invalidator replica-
tion has only a negligible overhead. The results with 100
clients are similar, except that the latencies are higher be-
cause of the increase in query load.

6 Related Work

In replicated systems, there is a constant tradeoff be-
tween scalability and availability. Various systems have
been built to host Web applications [1, 2, 3, 4, 7, 10, 11, 12,

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Client Latency (s)

1 invalidator, 20 clients
3 invalidators, 20 clients
5 invalidators, 20 clients

Figure 7. The impact of invalidator replication
on RUBBoS performance.

13]. However, most of these systems focus on scalability
only and do not address availability issues (or vice versa).
For example, database caching systems such as [2] only aim
at improving the scalability of Web applications and do not
address the problem of edge server or origin server fail-
ures. As described earlier, replicating the origin database
for fault-tolerance is not sufficient to guarantee RYW con-
sistency amidst failures. On the other extreme, systems such
as [1] employ highly-available database replication tech-
niques at the origin server only and provide excellent con-
sistency guarantees. However, such solutions come at a cost
of reduced performance as each database query from the
application needs to traverse the wide-area network to the
origin server thereby incurring a WAN latency.

To our knowledge, only one system focuses on both scal-
ability and availability of Web applications [7]. The authors
propose to tailor the replication strategies to the data ac-
cess patterns of the hosted application. This allows to ex-
ploit detailed knowledge of the application semantics and
choose the right balance between availability and scalabil-
ity. However, even though this approach can provide good
scalability and availability, it requires significant expertise
from the application developers to understand the impact of
different data replication and fault tolerance protocols, and
to choose the optimal tradeoff point. In contrast, our system
does not require any application-specific knowledge from
the developer other than defining query template conflicts.
The availability techniques themselves are totally transpar-
ent to the developer.

7 Conclusions

This article demonstrates that Web application hosting
can be both scalable and highly available. Many database
caching systems exploit the fact that Web applications are
composed of a fixed set of query templates. We used this
property to devise lightweight algorithms that provide read-

your-writes consistency even across edge server and origin
server failures. We showed that RYW violations do occur
relatively frequently, and that the fault-tolerant algorithms
to detect and correct them imposes a very low overhead
compared to the cost of a database query execution.

Our work relies on off-the-shelf fault-tolerant database
replication features. However, we believe that the perfor-
mance of the generic replication algorithms used in these
systems can be improved by once again exploiting knowl-
edge about query templates used by the applications. We
are therefore currently working on Web application specific
database replication protocols that will allow even more
scalability without compromising high availability.

References

[1] Akamai Inc. Edge Computing Infrastructure.
[2] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.

DBProxy: A dynamic data cache for web applications. In
Proc. ICDE, Mar. 2003.

[3] C. Bornhvd, M. Altinel, C. Mohan, H. Pirahesh, and B. Rein-
wald. Adaptive database caching with DBCache. Data En-
gineering, 27(2):11–18, June 2004.

[4] E. Cecchet. C-JDBC: a middleware framework for database
clustering. Data Engineering, 27(2):19–26, June 2004.

[5] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and
B. Weihl. Globally distributed content delivery. IEEE Inter-
net Computing, 6(5):50–58, 2002.

[6] Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar. A
novel server selection technique for improving the response
time of a replicated service. In Proc. INFOCOM, Mar. 1998.

[7] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar.
Application specific data replication for edge services. In
Proc. Intl. WWW conf., May 2003.

[8] F. Greve, M. Hurfin, M. Raynal, and F. Tronel. Primary com-
ponent asynchronous group membership as an instance of a
generic agreement framework. Technical Report RR-3856,
INRIA, Rennes, France, 2000.

[9] R. Guerraoui and A. Schiper. Software-based replication for
fault tolerance. IEEE Computer, 30(4):68–74, Apr. 1997.

[10] C. Plattner and G. Alonso. Ganymed: Scalable replication
for transactional web applications. In Proc. Middleware,
Toronto, Canada, Oct. 2004.

[11] M. Rabinovich, Z. Xiao, and A. Agarwal. Computing on
the edge: A platform for replicating internet applications. In
Proc. WCW Workshop, Hawthorne, NY, USA, Sept. 2003.

[12] S. Sivasubramanian, G. Alonso, G. Pierre, and M. van Steen.
GlobeDB: autonomic data replication for web applications.
In Proc. Intl. WWW Conf., New York, NY, USA, 2005.

[13] S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso.
GlobeCBC: Content-blind result caching for dynamic web
applications. Technical Report IR-CS-022, Vrije Univer-
siteit, Amsterdam, The Netherlands, June 2006.

[14] W. Smith. TPC-W: Benchmarking an e-commerce solution.
http://www.tpc.org/tpcw/tpcw ex.asp.

[15] D. Terry, A. Demers, K. Petersen, M. Spreitzer, M. Theimer,
and B. Welsh. Session Guarantees for Weakly Consistent
Replicated Data. In Proc. Intl. PDIS Conf., Austin, TX, Sept.
1994.

8

