
Vol. 47 No. 8 IPSJ Journal Aug. 2006

Invited Paper

Latency-Driven Replica Placement

Michal Szymaniak,† Guillaume Pierre†

and Maarten van Steen†

This paper presents HotZone, an algorithm to place replicas in a wide-area network such
that the client-to-replica latency is minimized. Similar to the previously proposed HotSpot
algorithm, HotZone places replicas on nodes that along with their neighboring nodes generate
the highest load. In contrast to HotSpot, however, HotZone provides nearly-optimal results
by considering overlapping neighborhoods. HotZone relies on a geometric model of Internet
latencies, which effectively reduces the cost of placing K replicas among N potential replica
locations from O(N2) to O(N · max(log N, K)).

1. Introduction

Replication is commonly employed by mod-
ern distributed systems to improve the com-
munication delay experienced by their clients.
Such systems typically deploy several replicas
of their service in different parts of the Inter-
net and automatically redirect each client to
its proximal replica 1). Doing that can signif-
icantly improve the communication delay be-
tween the client and the service, resulting in a
better client experience.

An important issue that must be addressed
before a service can be replicated is where to
place replicas. Different replica placements are
likely to result in different client-experienced
communication delay, hence this decision is cru-
cial for the performance of the entire system.

Several algorithms have been proposed to ad-
dress the replica placement problem 2). The
Greedy algorithm, for example, places replicas
one-by-one, each time exhaustively evaluating
all the possible replica locations. It has been
shown to produce very good placements, yet its
computational cost is quite large: O(K · N2),
where K is the number of replicas, and N is the
number of potential replica locations. Another
algorithm, called HotSpot, places replicas on
nodes that along with their neighbors generate
the greatest load. It has a slightly lower com-
putational cost: O(N2+min(N ·log N+K ·N)).
On the other hand, its produced placements are
not as good as those of Greedy. The high com-
putational cost of these two algorithms prevents
them from scaling for systems with more than
104 potential replica locations 2). This bound is

† Vrije Universiteit Amsterdam Department of Com-
puter Science Amsterdam, The Netherlands

unacceptable for current worldwide replicated
systems, as they need to consider at least 105

of such locations 1).
We propose to reduce the time needed for

placement computation by taking a two-step
approach. The first step is to select network
regions where replicas should be placed. A net-
work region is a group of nodes whose laten-
cies to each other are relatively low. Other
properties of nodes, such as the available stor-
age space, network connection bandwidth, and
availability, are irrelevant at this stage. This
simplification is likely to accelerate the corre-
sponding region-selection algorithm, especially
if the latencies are modeled efficiently.

Once the network regions have been iden-
tified, the second step is to choose individ-
ual replica-holding nodes in different regions.
This time, however, it is possible to consider
all the factors ignored during the first step,
as the number of nodes in a region is much
smaller. Note that this two-step approach pri-
oritizes client-to-replica latency over the other
metrics. Since these metrics tend to be node-
specific, we believe that it is not necessary to
consider them at the global level.

This paper proposes HotZone, an algorithm
that addresses the first step, that is the iden-
tification of the regions where replicas should
be placed. For evaluation purposes, we assume
that the second-step algorithm simply selects
the node with minimal average distance to all
other nodes in the region.

HotZone relies on the fact that Internet la-
tencies can be modeled in an M -dimensional
geometric space 3). In this model, nodes are
assigned M -dimensional coordinates. The la-
tencies between any two nodes are modeled as
the distance between their corresponding coor-

1

2 IPSJ Journal Aug. 2006

dinates. HotZone identifies network regions as
groups of nodes with proximal coordinates and
places replicas in the most active regions. In
this way, it avoids the costly pairwise latency
estimations between all potential replica loca-
tions. This reduces the computational cost of
HotZone to O(N ·max(log N, K)), which is sig-
nificantly lower than those of the previously
proposed algorithms.

We compare HotZone with four other algo-
rithms, including Greedy and HotSpot. We
show that the placement quality offered by Hot-
Zone is on average off by 5% from that of
Greedy. We also show that HotSpot does not
produce satisfactory results when directly ap-
plied to node coordinate sets, and discuss how
a simple modification can make this algorithm
achieve the performance close to that of Hot-
Zone, although its computation cost remains
unsatisfactory. Finally, we demonstrate that
the lower complexity of HotZone leads to sig-
nificant gains in placement computation times,
up to 3 orders of magnitude when placing 20
replicas.

The rest of this paper is structured as fol-
lows. Section 2 discusses relevant research ef-
forts. Section 3 describes the details of our
replica placement algorithm, and analyzes its
computational complexity. Section 4 evaluates
the algorithm performance. Finally, Section 5
concludes.

2. Related Work

2.1 Replica Placement
Many replica placement algorithms have been

proposed in the literature 2). In general, their
goal is to either optimize the client performance
given an existing infrastructure, or minimize
the infrastructure cost while achieving given
client performance at the same time. This
performance goal can be expressed by means
of many different metrics, but placement al-
gorithms typically optimize only one of them:
client-to-replica latency. Since it corresponds
to the actual communication delay experienced
by the client, it is also likely to determine the
client-observed performance.

Several placement algorithms try to optimize
the client-to-replica latency by minimizing the
hop count between clients and replicas 4),5).
The underlying assumption is that the latency
of a network path mainly depends on the num-
ber of individual links that this path consists
of. Optimizing hop counts is attractive, be-

cause they are relatively stable and easy to mea-
sure 6). On the other hand, the accuracy of hop-
based latency estimation is relatively poor 7).

Since the replica placement problem is NP-
complete, placement algorithms optimize their
chosen metrics by means of heuristics 8). An
example of such a heuristic is the Greedy algo-
rithm, which determines replica locations one-
by-one 9). It starts with exhaustively evaluating
all possible locations for the first replica, and
then choosing the location yielding the best per-
formance. The subsequent replicas are placed
in the same manner, except that starting from
the second replica, all the previously placed
replicas are considered to be fixed during met-
ric calculation. Greedy can be used to optimize
any metric. When optimizing the hop count
metric, the Greedy algorithm produces place-
ments that have been shown to be within a fac-
tor of 1.5 of those yielding optimal client per-
formance.

The computational complexity of the Greedy
algorithm is O(K ·N2), where K is the number
of replicas to be placed and N is the number
of potential replica locations. In a large-scale
distributed system, N can be very large, lead-
ing to long-lasting computations. In such cases,
the value of N can be reduced by clustering 10).
However, even relatively coarse-grained cluster-
ing may be unable to reduce N to a value for
which the Greedy algorithm can be run effi-
ciently. For example, clustering based on Au-
tonomous Systems typically groups nodes into a
few thousands of Autonomous Systems, which
means that the Greedy algorithm still has to
perform millions of latency estimations to place
a single replica.

Another heuristic, called HotSpot, places
replicas on nodes that generate the greatest
load 9). It first orders the nodes according
to the amount of traffic generated jointly by
each node and its neighboring nodes. Then,
it places replicas on the first K nodes with
the most active neighbors. Being a neighbor
node is defined in terms of some network dis-
tance metric. For example, a node can con-
sider all nodes whose latency is less than X
milliseconds to be its neighbors. The place-
ments produced by the HotSpot algorithm have
been shown to be within a factor of 1.6 – 2.0 of
the optimal one when optimizing on the hop
count metric. Compared to the Greedy algo-
rithm, the drop in efficiency is traded for only
a slightly more attractive complexity, which is

Vol. 47 No. 8 Latency-Driven Replica Placement 3

O(N2 + min(N · log N + N ·K)). This can still
be too much for globally-distributed systems.

Since several heuristics are capable of produc-
ing a placement decision, it may be desirable to
dynamically select the one that produces the
best results for a given system topology and
workload 8). A naive solution could be to choose
the best heuristic after simulating all the pos-
sible ones. This is often infeasible, as such a
simulation is costly in terms of time and com-
puting resources. Additionally, heuristic selec-
tion may have to be performed every time the
system workload changes.

A promising alternative for costly heuristic
simulations is model-based heuristic analysis 8).
The authors propose to model each placement
heuristic in terms of an integer programming
formulation of the replica placement problem.
It is then possible to calculate an upper bound
for the performance offered by each heuristic
given a system topology, a workload, and a per-
formance goal. Assuming that the actual per-
formance of a heuristic is close to the upper
bound, one may select the best heuristic as the
one with the highest upper bound.

The model-based heuristic analysis may ac-
celerate the process of heuristic selection by
saving the time otherwise needed for heuris-
tic simulations. However, it is still required
that all the heuristics are modeled and exhaus-
tively evaluated, which can still be too costly,
especially in the case of large systems. More-
over, if the number of constraints that must be
considered by an algorithm is low, we may be
able to identify a heuristic that invariably pro-
duces near-optimal results. In that case, the
two phases required by the model-based analy-
sis may simply turn out to be redundant.

2.2 Latency Estimation
Latency-driven replica placement algorithms

require that latencies between each pair of
nodes can be estimated. A naive approach
could be to let each node measure its latencies
to all the other nodes. However, this may be
infeasible if the number of nodes in the system
is large, or if some of them remain out of the
system’s control. For example, in a Content
Delivery Network, most of the nodes are Web
clients, which typically cannot be controlled by
the CDN operator.

A promising technique for latency estima-
tion has been proposed in GNP, which mod-
els the Internet as an M -dimensional space 11).
GNP estimates the latency between any pair of

nodes as the Euclidean distance between their
corresponding M -dimensional coordinates. A
typical value for M is 6. The coordinates of
node X are calculated based on the measured
latencies between X and Z designated “land-
mark” nodes, where Z is slightly larger than
M . Consequently, estimating pair-wise laten-
cies between N nodes requires much fewer mea-
surements (N · Z) than in the naive approach
(1
2N2). The GNP authors show that, in 90%

of cases, the latency estimations derived from
their system satisfy the following constraint:

2
3
Lobserved ≤ Lestimated ≤ 3

2
Lobserved

where Lobserved and Lestimated denote the ob-
served and estimated latency, respectively. This
relatively large error margin limits the applica-
bility of GNP to systems that can tolerate such
estimation inaccuracies. Since our algorithms
operates on groups of nodes, it does not re-
quire high estimation precision. Consequently,
we can rely on GNP to provide latency estima-
tions at low cost.

Apart from facilitating latency estimation,
the coordinates produced by GNP can also be
used for node clustering 12). Node clustering
reduces the number of nodes that an algorithm
must process as it treats each group as a single
node. Since nodes with similar GNP coordi-
nates are supposed to have minimal latency be-
tween them, coordinate-based clustering is nat-
ural in latency-optimizing systems.

In our earlier work, we have demonstrated
that a system of distributed cooperating Web
servers can employ GNP to locate Web clients
such that the positioning application is com-
pletely transparent to the clients 3). In the next
sections, we show how such a system can effi-
ciently calculate nearly-optimal replica place-
ments.

3. Algorithm

The goal of a replica placement algorithm
is to determine which nodes should host repli-
cas. While choosing these nodes, the algorithm
optimizes on a certain metric, such as client-
to-replica latency. Deciding on replica place-
ment, however, typically requires that other
factors are considered as well, such as the
amount of storage space available at candidate
replica-holding nodes, or their network connec-
tion speed.

To solve this problem, we take a two-step ap-

4 IPSJ Journal Aug. 2006

proach. The first step is to select network re-
gions where replicas should be placed. A net-
work region is a group of nodes whose latencies
to each other are relatively low. Since other
node properties are irrelevant for region selec-
tion, only the relative latencies between nodes
must be analyzed at this stage.

Once the network regions have been identi-
fied, the second step is to choose individual
nodes that shall act as replica servers in differ-
ent regions. During node selection, we consider
various node-specific factors ignored during the
region selection. However, because node selec-
tion takes place inside a region, the number of
nodes that must be considered is much smaller,
which makes the problem easier to solve. Note
that this two-step approach prioritizes client-to-
replica latency over any other metrics that de-
pend on node-specific factors, which is in line
with the overall goal of latency-driven replica
placement.

We discuss in detail the region-selection al-
gorithm, called HotZone, in the following sec-
tions. The complementary algorithm for node
selection within a region is currently under de-
velopment. For evaluation purposes, we assume
that it simply chooses the node with minimal
average distance to all other nodes in the re-
gion.

3.1 Region Selection
HotZone places replicas in network regions

based on the relative latencies between nodes.
Essentially, it works similar to the HotSpot al-
gorithm: it first identifies network regions, then
orders the regions according to the load they
generate, and finally places replicas one-by-one
in subsequent regions starting from the most
active region. Placing a replica inside a heavily-
loaded network region seems to be attractive, as
it should improve the access latency for a large
number of requests.

Identifying network regions means determin-
ing groups of nodes whose latencies to each
other are relatively low. In general, it would re-
quire analyzing all pair-wise latencies between
nodes, which is likely to be computationally ex-
pensive in large-scale systems.

To reduce the computational overhead, we
identify network regions based on node coor-
dinates produced by GNP. Recall that GNP
approximates the latency between two nodes
with the distance between their correspond-
ing coordinates in an M -dimensional Euclidean
space. The main observation we make at this

point is that node coordinates are not uniformly
distributed over the Euclidean space. More-
over, each cluster of node coordinates denotes
a highly concentrated group of nodes whose la-
tencies between each other are very low. It is
therefore natural to identify network regions by
determining clusters of node coordinates in the
Euclidean space.

A question remains how to identify and mea-
sure coordinate clusters. To this end, we split
the entire M -dimensional space into cells of
identical size. A cell is an M -dimensional hy-
percube whose edge length is equal to some
fixed value C. Each cell is uniquely defined by
its center point. Because of the geometric prop-
erties of our space partition, the coordinates of
each center point are(

C.k1 +
1
2
C, .., C.kM +

1
2
C

)

for some values of ki, where i ranges from 1
to M . We identify each cell by means of the
integer-valued vector (k1, .., kM) yielding the
center point of that cell. The density of a cell
is defined as the number of nodes whose co-
ordinates fall within that cell. Note that this
definition can easily be extended to support dif-
ferent node weights depending on the load gen-
erated by each node. To calculate the densi-
ties of all cells, the coordinates of each node
(x1, .., xM) are mapped to their corresponding
cells (k1, .., kM) according to the formula

ki = �xi/C� i = 1, .., M
In this way, N nodes can be mapped into their
corresponding cells in O(N) time.

In a straightforward approach to the cluster
identification problem, we could treat each cell
as a potential cluster, and place replicas in the
most dense cells only. However, a problem that
arises at this point is that clusters may span
multiple cells. This happens when cell bound-
aries divide a coordinate cluster into several
parts with each part falling into a different cell
(see Fig. 1). A split cluster is less likely to be
given a replica, since each of its parts can be
too little to overweigh smaller, but undivided
clusters. This could lead to suboptimal perfor-
mance of our algorithm.

To alleviate the problem of split clusters, we
introduce the notion of a zone. Each zone is
uniquely defined by a cell, and consists of that
cell plus all the immediate neighboring cells.
Each zone contains therefore 3M cells in total.
In other words, a zone is a group of adjacent
cells, which together form a hypercube with

Vol. 47 No. 8 Latency-Driven Replica Placement 5

Fig. 1 Split and non-split coordinate clusters in a 2-
dimensional space.

edge length 3C. Each zone shares its center
point with the cell that defines that zone. We
define the density of a given zone as the sum
of the densities of all its member cells. Since
zones do overlap, the density of a single cell
contributes to the densities of several zones.

Operating on zones instead of cells does not
completely solve the problem of split coordinate
clusters, because coordinate clusters can still be
large enough to be scattered over several dis-
joint zones. We return to this issue below, when
discussing how to choose the cell edge length C.

When expressed in terms of zones, HotZone
works similar to the Greedy algorithm. In ev-
ery iteration, it identifies the most dense zone,
marks this zone as a “replica holder,” and re-
moves all the node coordinates in this zone so
that they are not considered in the remaining
iterations. In this way, we implicitly assign the
removed nodes to the replica that is currently
being placed. More importantly, however, we
reduce the possibility that replica-holding zones
overlap, as empty cells are unlikely to fall within
a zone considered to be dense. This ensures
that all the replica-holding zones together cover
as many node coordinates as possible, and that
the replicas are ultimately placed in different
parts of the system.

3.2 Cell Size Choice
The notion of zone allows us to reduce the

problem of identifying coordinate clusters to
that of identifying cells that yield dense zones.
Note that there is no one-to-one correspondence
between zones and coordinate clusters. De-
pending on the cell edge length C, a zone can
contain several coordinate clusters, or a coordi-
nate cluster can be scattered over multiple dis-
joint zones. Therefore, selecting the value of C

plays a key role for the efficiency of HotZone.
There are two factors on which the cell edge

length C should intuitively depend. The first
factor that influences it is the number of repli-
cas K. Recall that HotZone effectively splits
the entire space into K parts, and assigns each
part to a different replica. The larger the value
of K, the smaller the parts should be that are
produced by the algorithm. Given how Hot-
Zone works, each such part should ideally be
identified as a separate zone. The cell edge
length C should therefore be inversely propor-
tional to the number of replicas K, which is
given to HotZone as a parameter.

The second factor that should affect the cell
edge length C is the distribution of node coor-
dinates in the space. Since we are using zones
to identify coordinate clusters, it is natural that
the cell size depends on the typical cluster size.
For example, if most node coordinates fall in
a small number of dense clusters, then these
clusters can be identified with a small cell edge
length C. On the other hand, if node coordi-
nates are more evenly dispersed over the en-
tire space, then the cell edge length C must be
longer. This is because the number of nodes
falling in a single zone must be large enough
to ensure that all the zones can be unambigu-
ously ranked according to their density. Only
then can HotZone correctly determine the most
dense zones where replicas should be placed.

Coordinate distribution can be represented in
different manners. We decided to use the aver-
age distance between node coordinates, as it
is easy to calculate. Note that calculating the
average distance typically requires calculating
the distances between the coordinates of each
node pair. This would require O(N2) opera-
tions, which we strive to avoid. In our case,
however, it is enough to compute a good esti-
mate of the average distance, as the positioning
procedure itself is imperfect.

To obtain an estimate of the average distance,
we calculate the average distance between an
incrementally-growing number of node coordi-
nates until the resulting value stabilizes. De-
termining the stabilization point is not trivial,
as the computed value changes up until all the
node coordinates have been considered. How-
ever, as it turns out, if we take node coordinates
in a random order, then the incrementally-
computed values quickly converge to the actual
average distance.

More formally, we iteratively compute the av-

6 IPSJ Journal Aug. 2006

Fig. 2 Incremental calculation of the average inter-
node distance

erage distance DE between an incrementally-
growing number of nodes E:

DE =
2

E2

∑
1≤i≤E

∑
1≤j<i

distance(P (i), P (j))

where P (k) denotes the coordinates of k-th
node in a randomly-ordered table. We de-
termine the stabilization point by checking
whether the value of DE has stabilized over the
last 100 iterations. To do so, every 10 itera-
tions, we calculate the difference between the
maximum and minimum value of DE that has
occurred within the last 100 iterations, and ver-
ify whether it is less than some threshold value
ε:

max(DE−99, .., DE)−min(DE−99, .., DE)<ε
If the threshold is exceeded, then we increase E
and proceed with the next 10 iterations. Other-
wise, we treat DE as our estimate of the average
distance.

We verified this method on a sample data
set that contained 5,728 node coordinates cal-
culated in a 6-dimensional space. The posi-
tioned nodes were the Web clients that accessed
our departmental Web server between the 1st
and 30th of November 2003. The node coor-
dinates were produced by SCoLE, which es-
sentially runs a GNP instance in cooperation
with a number of other hosts, acting as land-
marks 3). We configured SCoLE to cooperate
with landmarks deployed on 12 different Plan-
etLab nodes 13).

According to our experiments, the value of
DE converges after E = 1110 iterations when
estimating the average distance between 5,728
node coordinates with the ε value set to 10 (see
Fig. 2). As we show in Section 4, similar num-
bers of iterations are sufficient to calculate the
average inter-node distance also for significantly
larger sets of node coordinates.

In order to discover how the number of repli-

Fig. 3 The (K,C) observation set and its
approximation.

cas and the average inter-node distance con-
tribute to the cell edge length C, we empirically
determined the optimal values of C in a wide
range of scenarios. We then used non-linear re-
gression to determine a function which outputs
a good value of C for any combination of K
and D. Considering that C is expected to be
inversely proportional to the number of replicas
K, and proportional to the average distance D,
we decided to investigate the following family
of functions:

C = α · D

Kβ

where α and β are the coefficients that we need
to determine.

To obtain the optimal values of C, we repet-
itively applied HotZone to the sample data set
for each number of replicas 2 ≤ K ≤ 20. We ig-
nored the case when K = 1, as the best location
is obviously the node whose average distance to
all the other nodes is minimal. For each value
of K, we repetitively ran HotZone with values
of C ranging from 5 to D, taken in steps of 5.
For each value of C, we evaluated the result-
ing placement by calculating the median dis-
tance between all nodes and their closest repli-
cas. The C value yielding the shortest median
distance was considered to be the best for the
given number of replicas K. The outcome of
this experiment was a set of observations, each
being a pair of (K, best value of C). This set
is depicted in Fig. 3.

To obtain a closed function formula, we ap-
plied the non-linear regression algorithm imple-
mented in Gnuplot to our set of observations.
The resulting values of α and β were 0.126
(≈ 1

8) and 0.329 (≈ 1
3), respectively, which gave

us the following closed formula for the cell edge
length C:

Vol. 47 No. 8 Latency-Driven Replica Placement 7

Fig. 4 Theoretical even replica distribution.

C ≈ 1
8
· D

3
√

K
where D is the average distance between nodes,
and K is the number of replicas. The corre-
sponding function is plotted in Fig. 3. Note that
since we computed the set of observations based
on a single data set, we used the set-specific
value of the average inter-node distance D equal
to 670. As we show below, however, the result-
ing closed function formula works also for other
data sets, for which the value of D is completely
different.

Interpreting the values of α and β is difficult.
As for the value of α, we believe that it is deter-
mined by the uneven distribution of nodes over
the space. The value of β, however, required
a more detailed investigation. Before running
the experiments, we expected β to be 1

6 (rather
than 1

3), which would correspond to the space
dimensionality. Our intuition was that, if the
replicas are distributed more-or-less evenly over
the space, then they will probably themselves
form a regular structure similar to a hypercube.
For example, if we evenly divided a square (2D)
space among 4 replicas, then the replicas would
form a square. Similarly, if we were placing 8
replicas in a cubic (3D) space, then the replicas
would form a cube (see Fig. 4). In both cases,
the zone edge length would be the space edge
length divided by M

√
K, where K is the number

of replicas, and M is the space dimension.
The reason why this intuition is wrong is that

spaces produced by our GNP implementations
have dimensions of very different “width.” By
the width of the i-th dimension we mean the
span of node coordinates along the i-th coor-
dinate. Wide dimensions contribute to the ac-
tual distance between nodes, as they allow for
large differences between node positions. Nar-
row dimensions, in turn, only slightly change
node positions, but are important for the accu-
racy of latency estimation. However, because

HotZone groups nodes that have similar node
coordinates, it ignores narrow dimensions and
benefits only from wide ones. As it turns out,
the space from which we derived the observa-
tion set contained only 3 broad dimensions with
widths of 4,920, 3,840, and 1,855 milliseconds
(and 3 narrow ones withs widths of 320, 310,
and 10 milliseconds). This may indicate why
the value of β is approximately 1

3 instead of the
expected 1

6 .
3.3 Complexity Analysis
In this section, we analyze the computational

complexity of HotZone. Similar to the nota-
tion used in the previous sections, we use N to
denote the number of nodes, K to denote the
number of replicas, and M to denote the GNP
space dimension.

The computational cost of HotZone consists
of three parts, each corresponding to a single
step. The first step is to determine the average
distance between nodes. As we show in Sec-
tion 4, HotZone obtains a good estimate of this
distance by calculating the distance between a
fixed number of randomly-selected nodes. The
cost of this operation is constant.

The second step is to construct the set of
zones. HotZone first assigns nodes to their cor-
responding cells, which costs O(N) operations.
Then, the set of non-empty cells is translated
to the set of zones. To do that, HotZone identi-
fies the neighboring cells of each cell, and sums
their densities. Given that each zone contains
a constant (3M) number of cells, and that the
number of cells cannot exceed N , this opera-
tion costs O(N) cell-accesses. In our implemen-
tation, we sort all the cells according to their
center points right after all the nodes have been
assigned to their cells. We do so using Radix
sort, which costs O(N ·M) = O(N) operations.
Then, we access individual cells using binary
search, which yields the cost of O(log N) per a
cell access. This results in the total cost of the
second step being O(N · log N).

The third step is to iteratively place repli-
cas. For each replica, we identify the most
dense zone, which requires inspecting all the
zones. Since the number of zones cannot ex-
ceed N , the identification of the most dense
zone costs O(N) operations in the worst case,
as we process all the cells in our cell table di-
rectly, and without using binary search this
time. Given that the same operations are per-
formed for each replica, the total cost of the

8 IPSJ Journal Aug. 2006

Table 1 Dataset statistics.

Dataset Web Site Description Unique Clients Client Profile
Andy Andrew Tanenbaum’s home page 5,758 Universities all around the world

Cartoon Looney TunesTM fan site 14,682 US schools and broadband users
MP3 Dutch MP3 fan site 64,041 European broadband users

Andy: Cartoon: MP3:

Fig. 5 Incremental calculation of the average inter-node distance.

Table 2 Incremental calculation of the average inter-node distance – Statistics.

Dataset Nodes Total Nodes Used DReal DCalc Calc. Time
Andy 5,758 740 (12.85%) 602 580 92msec

Cartoon 14,682 650 (4.42%) 385 393 71msec
MP3 64,041 820 (1.28%) 290 290 113msec

third step is O(K · N).
A potential source of overhead can be the

update of zones. Recall that, in every itera-
tion, once a replica has been placed in the most
dense zone, we have to prevent the nodes in that
zone from being considered in the subsequent
algorithm iterations. This means updating not
only all the 3M cells that belong to the most
dense zone, but also all the neighboring cells of
these cells, as the density of zones yielded by
the neighbors must be updated as well. This
leads to the update of up to 32M cells. Al-
though this constant is large, it makes Hot-
Zone independent of the number of nodes. This
makes HotZone particularly efficient in large
systems. In our implementation, each update
costs O(log N) operations, as we access the cell
in question using binary search. Still, however,
the cost of placing a single replica is O(N).

The total computational cost of HotZone is
the sum of the costs of the above three steps:

O(1) + O(N · log N) + O(K · N)
= O(N · max(log N, K))

This cost is significantly lower than that of the
previously proposed algorithms, such as greedy
(O(K · N2)) and HotSpot (O(N2 + min(N ·
log N + N · K)).

4. Evaluation

We evaluate HotZone based on three data

sets produced by SCoLE, a GNP-like system
that we operate using 12 landmarks deployed
worldwide 3). SCoLE positions Web clients in
a 6-dimensional space based on latencies be-
tween these clients and a number of Web servers
acting as landmarks. Latencies are measured
while Web clients open HTTP connections to
the Web servers in order to retrieve small im-
ages. We embedded references to these images
in the Web documents constituting the three
Web sites participating in our node-positioning
experiment. In this way, SCoLE is able to po-
sition Web clients visiting three independent
Web sites, which we treat as three different
data sets (see Table 1). All the measurements
used to produce these data sets were performed
between the 1st of February and the 31st of
March, 2004.

4.1 Average Distance Calculation
Determining the right cell size is crucial to

good behavior of HotZone. Since the cell size
depends on the average distance between nodes,
we first investigated how the incremental calcu-
lation method performs on our data sets. The
results are presented in Fig. 5 and Table 2.

As can be observed, irrespective of the size of
the data set, a similar number of nodes is neces-
sary to calculate a good estimate of the average
distance. This observation confirms that this
cost should be treated as a constant in the eval-
uation of the computational complexity of Hot-

Vol. 47 No. 8 Latency-Driven Replica Placement 9

Table 3 The values of the α and β coefficients.

Dataset α value β value
Sample 0.126 0.329
Andy 0.154 0.310

Cartoon 0.363 0.651
MP3 0.130 0.373

Zone. Furthermore, this constant time is very
small compared to the overall time of replica
placement computation (about 100 milliseconds
vs. several seconds).

4.2 Closed Formula Verification
HotZone calculates the cell size using a for-

mula that depends on two parameters, α and
β. Recall that in Section 3, we determined α
and β by applying non-linear regression to a set
of optimal cell sizes, which we computed based
on a single sample data set. In this experiment,
we verify how general these α and β values are
by computing them for each of the other three
data sets. The results are presented in Table 3.

As can be observed, the values of α and β
computed for the Andy and MP3 data sets are
very similar to their counterparts derived from
the sample data set. However, it is clearly not
so for the Cartoon data set, where the values of
α and β are significantly different. We believe
that this is because of the fact that nodes in the
Cartoon data set are more evenly distributed
over the space. In that case, clients barely form
any clusters, which leads to an optimal cell size
significantly larger than expected. However, as
we show in Section 4.3, even sub-optimal α and
β parameters lead to placements almost as good
as those produced by Greedy.

According to our calculations, using the data
set-specific parameters to compute placements
for the Cartoon data set would improve the
placement quality by at most 10%. This could
indicate that the quality of placements is quite
resilient to changes in the values of α and β, or
even in the value of C itself.

To verify this claim, we checked by how much
imperfect values of C influence the quality of
placements. We again analysed the results of
the experiment where we repetitively placed
replicas using all possible C values between 5
and 100. Previously, we only used the C value
yielding the minimal median latency. This
time, however, we also checked how fast this
median latency increases as the C value drifts
away from the optimal one. Figure 6 shows
median latencies computed for different C val-
ues. For sake of clearance, we only show the

Fig. 6 Changes in placement quality vs. C values.

results for placing 5, 10, and 20 replicas based
on the Andy data set. Other data sets exhibit
similar behavior.

As can be observed, the optimal C value be-
longs to a relatively-long interval, where each
value yields a median latency within 10% of the
minimal one. According to our experiments,
the C values calculated by HotZone belong to
that interval. This explains why HotZone pro-
duces nearly-optimal placements even though
the C values themselves may be imperfect.

4.3 Placement Quality Comparison
A popular method of evaluating replica place-

ments is calculation of the average latency be-
tween nodes and their closest replicas. How-
ever, the results produced by this method very
much depend on outliers, which are nodes
whose latencies to any other nodes are very
high. Outliers typically use slow network con-
nections, such as modems, and do not tend to
form clusters. Because of these two factors, it
is hard to improve the replica-access latencies
of outliers without placing replicas specifically
on them. We therefore decided to concentrate
on the remaining nodes by evaluating place-
ments with the median latency between nodes
and their closest replicas.

We evaluated HotZone against the Greedy
and HotSpot algorithms described in Section 2.
Recall that HotSpot needs to know how to de-
termine whether two given nodes are neighbors
or not. We configured HotSpot to consider
nodes to be neighbors only if the distance be-
tween them is less than some threshold value.
To ensure the fairness of comparison, we tried
various threshold values and report only the
best result.

We also considered a variant of HotSpot,
which we call “HotClear.” After placing a
replica on a given node, HotClear removes all
the nodes from the neighborhood of this node so

10 IPSJ Journal Aug. 2006

Andy: Cartoon: MP3:

Fig. 7 Placement quality comparison.

that they are not considered in the subsequent
iterations. Also in this case, we tried several
threshold values and report only the best re-
sult.

Ideally, we should also compare HotSpot
against placements yielding optimal median
node-to-replica distance. However, since com-
puting optimal placements is unfeasible, we
decided to approximate them using Simplex-
downhill, which is a multi-dimensional opti-
mization algorithm 14). When applied to the
placements produced by HotZone, Simplex-
downhill investigates similar replica locations,
and tries to move replicas so that the median
node-to-replica latency is reduced. We refer to
this method as “Refined.” Simplex-downhill
is computationally expensive, so it is unlikely
that Refined can be used in practical applica-
tions. Nevertheless, the comparison between
HotZone and Refined enables us to estimate by
how much the original placement can be im-
proved.

We apply the five evaluated algorithms to
each of the three data sets. We iteratively place
K replicas, for K between 1 and 20, and calcu-
late the median node-to-replica latency for each
value of K. The results are presented in Fig. 7.

As can be observed, the original HotSpot al-
gorithm performs significantly worse than all
the others. This is not surprising: as it turns
out, HotSpot places replicas on nodes whose co-
ordinates are close to the centers of a few very
active neighborhoods. Although these neigh-
borhoods may change depending on the thresh-
old value, the replicas are ultimately placed
close to each other, which results in poor perfor-
mance. This is exactly the effect that HotZone
tries to avoid by using overlapping network re-
gions.

The remaining four algorithms produce com-
parable results. Compared with Greedy, Hot-
Zone offers median latency that remains within
13%, 14% and 9% of that offered by Greedy for

the Andy, Cartoon, and MP3 data set, respec-
tively. The average difference between latencies
offered by these two algorithms, however, is be-
tween 3% and 5% in all the data sets. Note
that HotZone sometimes slightly outperforms
Greedy, which can be seen in the graph depict-
ing the replica placement based on the MP3
data set.

HotZone usually performs better than Hot-
Clear. In this case, however, the average dif-
ference in latencies is very small (between 5%
and 7%) for the two smaller data sets, but
it increases to 16% for the biggest data set.
The case of HotClear shows that the original
HotSpot algorithm can easily be improved to
work effectively on node coordinate sets, but
even then it still cannot outperform HotZone.

In comparison with Refined, HotZone obvi-
ously performs worse. However, the difference
in the offered median latency is not large and
on average equals 8%, 12% and 5% (in the re-
spective data sets). This may indicate that the
placements produced by HotZone cannot be im-
proved much, especially that they are already
comparable in terms of quality to those pro-
duced by Greedy.

4.4 Placement Computation Times
The main advantage of HotZone over other

algorithms is its low computational cost. In
this experiment, we show how the differences
in computational complexities of different al-
gorithms translate into placement computation
times. We measured the execution times of the
five evaluated algorithms for each number of
replicas K between 1 and 20, based on all the
three data sets. The tests were performed on
an idle PC equipped with a Pentium III 1GHz.
The results are depicted in Fig. 8 (note the log-
arithmic time scale).

As can be observed, the time needed by Hot-
Zone to compute its placements up to 3 orders
of magnitude lower than the time needed by
Greedy. As for Refined, the unpredictable na-

Vol. 47 No. 8 Latency-Driven Replica Placement 11

Andy: Cartoon: MP3:

Fig. 8 Placement computation times.

ture of Simplex-downhill resulted in irregular
execution times. Still, it is interesting to see
that Refined is consistently faster than Greedy,
even though Refined nearly always produces
better results than Greedy.

In comparison with HotSpot and HotClear,
the computation time of HotZone is better only
for the two larger data sets, and the advantage
of HotZone over these two algorithms increases
with the number of nodes in a data set. For
the smallest data set, however, the computa-
tion time of HotZone is comparable to these
of HotSpot and HotClear. This indicates that
HotZone is particularly suitable for large-scale
systems, where the number of nodes is very
high.

5. Conclusion

We have presented HotZone, a novel replica
placement algorithm that optimizes node-to-
replica latency based on node coordinates pro-
duced by SCoLE. Similar to the previously
proposed HotSpot algorithm, HotZone places
replicas on nodes that along with their neigh-
boring nodes generate the highest load. In con-
trast to HotSpot, however, HotZone does not
require that O(N2) operations are performed
to determine the neighborhood composition for
all the N nodes in a given system. Instead,
it exploits the properties of node coordinates
to determine the composition of all neighbor-
hoods faster. We have demonstrated that the
computational cost of placing K replicas using
HotZone is O(N ·max(log N, K)), which is sig-
nificantly lower than that of any previously pro-
posed algorithm. This makes HotZone attrac-
tive for use in large-scale distributed systems.

HotZone produces results of comparable
quality to those of Greedy. Furthermore, for
large data sets, the computation time of Hot-
Zone is significantly lower than those of the
other evaluated algorithms. In particular, it is
up to 3 orders of magnitude lower than the com-

putation time of Greedy.
We plan to use HotZone in Globule, a peer-to-

peer Content Delivery Network that our group
is developing 15). We believe that it will help us
efficiently place replicas among a large number
of Globule nodes.

Acknowledgments We would like to
thank Andrew Tanenbaum, Jennie Zhang, and
Johan Pouwelse for enabling us to deploy our
client positioning software on their Web sites.

References

1) Dilley, J., Maggs, B., Parikh, J., Prokop,
H., Sitaraman, R. and Weihl, B.: Globally
Distributed Content Delivery, IEEE Internet
Computing, Vol.6, No.5 (Sep. 2002).

2) Karlsson, M., Karamanolis, C. and
Mahalingam, M.: A Framework for Evaluat-
ing Replica Placement Algorithms, Technical
report, HP Laboratories, Palo Alto, CA (2002).

3) Szymaniak, M., Pierre, G. and van Steen, M.:
Scalable Cooperative Latency Estimation, 10th
International Conference on Parallel and Dis-
tributed Systems (July 2004).

4) Radoslavov, P., Govindan, R. and Estrin,
D.: Topology-Informed Internet Replica Place-
ment, 6th Web Caching Workshop (June 2001).

5) Jamin, S., Jin, C., Kurc, A.R., Raz, D. and
Shavitt, Y.: Constrained Mirror Placement on
the Internet, 20th IEEE INFOCOM Confer-
ence (Apr. 2001).

6) Paxson, V.: Measurements and Analysis of
End-to-End Internet Dynamics. Technical Re-
port UCB/CSD-97-945, University of Califor-
nia at Berkeley (Apr. 1997).

7) Huffaker, B., Fomenkov, M., Plummer, D.J.,
Moore, D. and Claffy, K.: Distance Metrics
in the Internet, International Telecommunica-
tions Symposium (Sep. 2002).

8) Karlsson, M. and Karamanolis, C.: Choos-
ing Replica Placement Heuristics for Wide-
Area Systems, 24th International Conference
on Distributed Computing Systems (Mar.2004).

9) Qiu, L., Padmanabhan, V.N. and Voelker,
G.M.: On the Placement of Web Server Repli-

12 IPSJ Journal Aug. 2006

cas, 20th IEEE INFOCOM Conference (Apr.
2001).

10) Krishnamurthy, B. and Wang, J.: On
Network-Aware Clustering of Web Clients.
ACM SIGCOMM (Aug. 2000).

11) Eugene Ng, T.S. and Zhang, H.: Predicting
Internet Network Distance with Coordinates-
Based Approaches, 21st IEEE INFOCOM
Conference (June 2002).

12) Amini, L. and Schulzrinne, H.: Client Cluster-
ing for Traffic and Location Estimation, 24th
International Conference on Distributed Com-
puting Systems (Mar. 2004).

13) The PlanetLab Project.
http://www.planet-lab.org/

14) Nelder, J.A. and Mead, R.: A Simplex Method
for Function Minimization. The Computer
Journal, Vol.4, No.7 (1965).

15) Pierre, G. and van Steen, M.: Design and Im-
plementation of a User-Centered Content De-
livery Network, The 3rd IEEE Workshop on
Internet Applications (June 2003).

(Received February 22, 2006)
(Accepted July 4, 2006)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.2, pp.000–000.)

Michal Szymaniak is a
Ph.D. candidate in the Com-
puter Systems group at the Vrije
Universiteit Amsterdam. His re-
search focuses on large-scale dis-
tributed systems for content de-
livery in the Internet. He is a

student member of the IEEE and the ACM.
Szymaniak holds a double MSc in Computer
Science from Warsaw University (Poland) and
from the Vrije Universiteit Amsterdam.

Guillaume Pierre is an as-
sistant professor in the Com-
puter Systems group at the Vrije
Universiteit Amsterdam. He has
been working in the field of Web-
based systems for many years.
He is a member of the IEEE and

an editorial board member of IEEE DSonline.
Pierre holds an M.Sc. and a Ph.D. in Com-
puter Science from the University of d’Evry-val
d’Essonne (France).

Maarten van Steen is a full
professor in the Computer Sys-
tems group at the Vrije Uni-
versiteit Amsterdam. He is
head of a research team devel-
oping large-scale distributed sys-
tems. Besides Web-based sys-

tems, his research interests include peer-to-peer
and gossip-based distributed systems. He is
senior member of the IEEE and member of
the ACM. Van Steen holds an M.Sc. in Ap-
plied Mathematics from Twente University and
a Ph.D. in Computer Science from Leiden Uni-
versity.

