
Latency-Driven Replica Placement

Michal Szymaniak Guillaume Pierre Maarten van Steen
Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081HV Amsterdam, The Netherlands
{michal,gpierre,steen}@cs.vu.nl

Abstract

This paper presents HotZone, an algorithm to place
replicas in a wide-area network such that the client-to-
replica latency is minimized. Similar to the previously
proposed HotSpot algorithm, HotZone places replicas on
nodes that along with their neighboring nodes generate the
highest load. In contrast to HotSpot, however, HotZone
provides nearly-optimal results by considering overlapping
neighborhoods. HotZone relies on a geometric model of In-
ternet latencies, which effectively reduces the cost of plac-
ing K replicas among N potential replica locations from
O(N2) to O(N · max(logN, K)).

1 Introduction

Replication is commonly employed by modern dis-
tributed systems to improve the communication delay ex-
perienced by their clients. Such systems typically deploy
several replicas of their service in different parts of the In-
ternet and automatically redirect each client to its proximal
replica, which results in a better client experience [2].

An important issue that must be addressed before a ser-
vice can be replicated is where to place replicas. Different
replica placements are likely to result in different client-
experienced communication delay, hence this decision is
crucial for the performance of the entire system.

Several algorithms have been proposed to address the
replica placement problem [4]. The Greedy algorithm, for
example, places replicas one-by-one, each time exhaus-
tively evaluating all the possible replica locations. It has
been shown to produce very good placements, yet its com-
putational cost is quite large. Another algorithm, called
HotSpot, places replicas on nodes that along with their
neighbors generate the greatest load. It has a slightly lower
computational cost, but its produced placements are not
nearly as good as those of Greedy.

We propose to produce high quality placements while
reducing the required computation time by taking a two-
step approach. The first step is to select network regions
where replicas should be placed. A network region is a

group of nodes whose latencies to each other are relatively
low. Other properties of nodes, such as the available stor-
age space and network connection bandwidth, are irrele-
vant at this stage. This simplification accelerates the region-
selection algorithm, especially if the latencies are modeled
efficiently.

Once the network regions have been identified, the sec-
ond step is to choose individual replica-holding nodes in
different regions. This time, however, it is possible to con-
sider all the factors ignored during the first step, as the num-
ber of nodes in a region is much smaller.

This paper proposes HotZone, an algorithm that ad-
dresses the first step, that is the region identification. For
evaluation purposes, we assume that the second-step algo-
rithm simply selects the node with minimal average distance
to all other nodes in the region.

HotZone relies on the fact that Internet latencies can
be modeled in an M -dimensional geometric space [9]. In
this model, nodes are assigned M -dimensional coordinates.
The latencies between any two nodes are modeled as the
distance between their corresponding coordinates. HotZone
identifies network regions as groups of nodes with proximal
coordinates and places replicas in the most active regions.
In this way, it avoids the costly pairwise latency estimations
between all potential replica locations. This reduces the
computational cost of HotZone to O(N · max(logN, K)),
which is significantly lower than those of the previously
proposed algorithms.

We compare HotZone with three other algorithms, in-
cluding Greedy and HotSpot. We show that the placement
quality offered by HotZone is on average off by 5% from
that of Greedy. We also demonstrate that the lower com-
plexity of HotZone leads to significant gains in placement
computation times, up to 3 orders of magnitude when plac-
ing 20 replicas1.

The rest of this paper is structured as follows. Section 2
discusses relevant research efforts. Section 3 describes the
details of our replica placement algorithm, and analyzes its
computational complexity. Section 4 evaluates the algo-
rithm performance. Finally, Section 5 concludes.

1This paper has been shrunk to fit 7 pages. The full 10-pages version
can be found at http://www.globule.org/publi/LDRP saint2005.html

2 Related Work

2.1 Replica Placement

Many replica placement algorithms have been proposed
in the literature [4]. In general, their goal is to either op-
timize the client performance given an existing infrastruc-
ture, or minimize the infrastructure cost while achieving
given client performance at the same time. This perfor-
mance goal can be expressed by means of many different
metrics, but placement algorithms typically optimize only
client-to-replica latency, as it corresponds to the actual com-
munication delay experienced by the client.

Since the replica placement problem is NP-complete,
placement algorithms optimize their chosen metrics by
means of heuristics [3]. An example of such a heuristic
is the Greedy algorithm, which determines replica locations
one-by-one [8]. It starts with exhaustively evaluating all
possible locations for the first replica, and then chooses the
location yielding the best performance. The subsequent
replicas are placed in the same manner, except that start-
ing from the second replica, all the previously placed repli-
cas are considered to be fixed during metric calculation.
Greedy can be used to optimize any metric. When optimiz-
ing the hop count metric, the Greedy algorithm produces
placements that have been shown to be within a factor of
1.5 of those yielding optimal client performance.

The computational complexity of the Greedy algorithm
is O(K · N2), where K is the number of replicas to be
placed and N is the number of potential replica locations. In
a large-scale distributed system, N can be very large, lead-
ing to long-lasting computations. In such cases, the value
of N can be reduced by clustering [5]. However, even rela-
tively coarse-grained clustering may be unable to reduce N
to a value for which Greedy can be run efficiently.

Another heuristic, called HotSpot, places replicas on
nodes that generate the greatest load [8]. It first orders the
nodes according to the amount of traffic generated jointly
by each node and its neighboring nodes. Then, it places
replicas on the first K nodes with the most active neigh-
bors. Being a neighbor node is defined in terms of some
network distance metric. For example, a node can consider
all nodes whose latency is less than X milliseconds to be its
neighbors. The placements produced by the HotSpot algo-
rithm have been shown to be within a factor of 1.6 – 2.0 of
the optimal one when optimizing on the hop count metric.
Compared to the Greedy algorithm, the drop in efficiency is
traded for only a slightly more attractive complexity, which
is O(N2 + min(N · logN + N · K)). This can still be too
much for globally-distributed systems.

2.2 Latency Estimation

Latency-driven replica placement algorithms require that
latencies between each pair of nodes can be estimated. A

naive approach could be to let each node measure its laten-
cies to all the other nodes. However, this may be infeasible
if the number of nodes in the system is large, or if some of
them remain out of the system’s control. In a content deliv-
ery network, for example, most of the nodes are Web clients
remaining beyond the control of the CDN operator.

A promising technique for latency estimation has been
proposed in GNP, which models the Internet as an M -
dimensional space [6]. GNP estimates the latency between
any pair of nodes as the Euclidean distance between their
corresponding M -dimensional coordinates. The coordi-
nates of node X are calculated based on the measured laten-
cies between X and Z designated “landmark” nodes, where
Z is slightly larger than M . Consequently, estimating pair-
wise latencies between N nodes requires much fewer mea-
surements (N · Z) than in the naive approach (1

2
N2). It

has been shown that estimation accuracy increases with
the value of M up until M = 6, and only slightly after-
wards [9]. Also, the GNP authors show that, in 90% of
cases, the latency estimations derived from their system sat-
isfy the following constraint:

2

3
Lobserved ≤ Lestimated ≤ 3

2
Lobserved

where Lobserved and Lestimated denote the observed and
estimated latency, respectively. This relatively large error
margin limits the applicability of GNP to systems that can
tolerate such estimation inaccuracies. Since our algorithms
operates on groups of nodes, it does not require high es-
timation precision. Consequently, we can rely on GNP to
provide latency estimations at low cost.

Apart from facilitating latency estimation, the coordi-
nates produced by GNP can also be used for node cluster-
ing [1]. Node clustering reduces the number of nodes that
an algorithm must process as it treats each group as a single
node. Since nodes with similar GNP coordinates are sup-
posed to have minimal latency between them, coordinate-
based clustering is natural in latency-optimizing systems.

In our earlier work, we have demonstrated that a system
of distributed cooperating Web servers can employ GNP to
locate Web clients such that the positioning application is
completely transparent to the clients [9]. In the next sec-
tions, we show how such a system can efficiently calculate
nearly-optimal replica placements.

3 Algorithm

The goal of a replica placement algorithm is to determine
which nodes should host replicas. To solve this problem, we
take a two-step approach. The first step is to select network
regions where replicas should be placed. A network region
is a group of nodes that access the replicated content and
whose latencies to each other are relatively low. Since other
node properties are irrelevant for region selection, only the
relative latencies between nodes must be analyzed at this
stage.

Once the network regions have been identified, the sec-
ond step is to choose individual nodes that shall act as
replica servers in different regions. During node selection,
we consider various node-specific factors ignored during
the region selection. However, because node selection takes
place inside a region, the number of nodes that must be con-
sidered is much smaller, which makes the problem easier to
solve.

We discuss in detail the region-selection algorithm,
called HotZone, in the following sections. The complemen-
tary algorithm for node selection within a region is currently
under development. For evaluation purposes, we assume
that it simply chooses the node with minimal average dis-
tance to all other nodes in the region.

3.1 Region Selection

HotZone places replicas in network regions based on the
relative latencies between nodes. Essentially, it works sim-
ilar to the HotSpot algorithm: it first identifies network re-
gions, then orders the regions according to the load they
generate, and finally places replicas one-by-one in subse-
quent regions starting from the most active region. Placing
a replica inside a heavily-loaded network region seems to
be attractive, as it should improve the access latency for a
large number of requests.

Identifying network regions means determining groups
of nodes whose latencies to each other are relatively low.
In general, it would require analyzing all pair-wise laten-
cies between nodes, which is likely to be computationally
expensive in large-scale systems.

To reduce the computational overhead, we identify net-
work regions based on node coordinates produced by GNP.
Recall that GNP approximates the latency between two
nodes with the distance between their corresponding coor-
dinates in an M -dimensional Euclidean space. The main
observation we make at this point is that node coordinates
are not uniformly distributed over the Euclidean space.
Moreover, each cluster of node coordinates denotes a highly
concentrated group of nodes whose latencies between each
other are very low. It is therefore natural to identify network
regions by determining clusters of node coordinates in the
Euclidean space.

A question remains how to identify and measure co-
ordinate clusters. To this end, we split the entire M -
dimensional space into cells of identical size. A cell is an
M -dimensional hypercube whose edge length is equal to
some fixed value C. Each cell is uniquely defined by its
center point. Because of the geometric properties of our
space partition, the coordinates of each center point are

(C.k1 + 1

2
C, .., C.kM + 1

2
C)

for some values of ki, where i ranges from 1 to M . We
identify each cell by means of the integer-valued vector
(k1, .., kM) yielding the center point of that cell. The den-
sity of a cell is defined as the number of nodes whose coor-

dinates fall within that cell. Note that this definition can eas-
ily be extended to support different node weights depending
on the load generated by each node. To calculate the densi-
ties of all cells, the coordinates of each node (x1, .., xM) are
mapped to their corresponding cells (k1, .., kM) according
to the formula

ki = bxi/Cc i = 1, .., M

In this way, N nodes can be mapped into their correspond-
ing cells in O(N) time.

In a straightforward approach to the cluster identifica-
tion problem, we could treat each cell as a potential clus-
ter, and place replicas in the most dense cells only. How-
ever, clusters may span multiple cells. This happens when
cell boundaries divide a coordinate cluster into several parts
with each part falling into a different cell. A split cluster is
less likely to be given a replica, since each of its parts can
be too little to overweigh smaller, but undivided clusters.

To alleviate the problem of split clusters, we introduce
the notion of a zone. Each zone is uniquely defined by a
cell, and consists of that cell plus all the immediate neigh-
boring cells. Each zone contains therefore 3M cells in total.
In other words, a zone is a group of adjacent cells, which
together form a hypercube with edge length 3C. Each zone
shares its center point with the cell that defines that zone.
We define the density of a given zone as the sum of the den-
sities of all its member cells. Since zones do overlap, the
density of a single cell contributes to the densities of sev-
eral zones.

Operating on zones instead of cells does not completely
solve the problem of split coordinate clusters, because coor-
dinate clusters can still be large enough to be scattered over
several disjoint zones. We return to this issue below, when
discussing how to choose the cell edge length C.

When expressed in terms of zones, HotZone works sim-
ilar to the Greedy algorithm. In every iteration, it identifies
the most dense zone, marks this zone as a “replica holder,”
and removes all the node coordinates in this zone so that
they are not considered in the remaining iterations. In this
way, we implicitly assign the removed nodes to the replica
that is currently being placed. More importantly, however,
we reduce the possibility that replica-holding zones overlap,
as empty cells are unlikely to fall within a zone considered
to be dense. This ensures that all the replica-holding zones
together cover as many node coordinates as possible, and
that the replicas are ultimately placed in different parts of
the system.

3.2 Cell Size Choice

The notion of zone allows us to reduce the problem of
identifying coordinate clusters to that of identifying cells
that yield dense zones. Note that there is no one-to-one cor-
respondence between zones and coordinate clusters. De-
pending on the cell edge length C, a zone can contain sev-
eral coordinate clusters, or a coordinate cluster can be scat-

tered over multiple disjoint zones. Therefore, selecting the
value of C plays a key role for the efficiency of HotZone.

There are two factors on which the cell edge length C
should intuitively depend. The first factor that influences
it is the number of replicas K. Recall that HotZone effec-
tively splits the entire space into K parts, and assigns each
part to a different replica. The larger the value of K, the
smaller the parts should be that are produced by the algo-
rithm. Given how HotZone works, each such part should
ideally be identified as a separate zone. The cell edge length
C should therefore be inversely proportional to the number
of replicas K, which is given to HotZone as a parameter.

The second factor that should affect the cell edge length
C is the distribution of node coordinates in the space. Since
we are using zones to identify coordinate clusters, it is natu-
ral that the cell size depends on the typical cluster size. For
example, if most node coordinates fall in a small number of
dense clusters, then these clusters can be identified with a
small cell edge length C. On the other hand, if node coordi-
nates are more evenly dispersed over the entire space, then
the cell edge length C must be longer.

We defined coordinate distribution as the average dis-
tance between node coordinates. Note that calculating the
exact average distance would typically require O(N 2) oper-
ations, which we strive to avoid. In our case, however, it is
enough to compute a good estimate of the average distance,
as HotZone is not very sensitive to this parameter (see Sec-
tion 4).

To obtain an estimate of the average distance, we calcu-
late the average distance between an incrementally-growing
number of node coordinates until the resulting value stabi-
lizes. We found that, if we take node coordinates in a ran-
dom order, then the incrementally-computed values quickly
converge to the actual average distance. We note the aver-
age distance between the first E nodes as DE . We deter-
mine the stabilization point by checking whether the value
of DE has stabilized over the last 100 iterations. To do
so, every 10 iterations, we calculate the difference between
the maximum and minimum value of DE that has occurred
within the last 100 iterations, and verify whether it is less
than some threshold value ε:

max(DE−99, .., DE) − min(DE−99, .., DE) < ε

If the threshold is exceeded, then we increase E and proceed
with the next 10 iterations. Otherwise, we treat DE as our
estimate of the average distance.

We verified this method on a sample data set that con-
tained 5728 node coordinates calculated in a 6-dimensional
space. The positioned nodes were the Web clients that ac-
cessed our departmental Web server between the 1st and
30th of November 2003. The node coordinates were pro-
duced by SCoLE, which essentially runs a GNP instance in
cooperation with a number of other hosts, acting as land-
marks [9]. We set ε = 10.

In our experiments the value of DE converges after
E = 1110 iterations. As we show in Section 4, similar

0
10
20
30
40
50
60
70
80
90

100

2 4 6 8 10 12 14 16 18 20

O
pt

im
al

 C
el

l E
dg

e
L

en
gt

h
(C

)

Number of Replicas (K)

Closed Formula

Observation Set

Figure 1. The (K,C) observation set and its
approximation

numbers of iterations are sufficient to calculate the average
inter-node distance also for significantly larger sets of node
coordinates.

In order to discover how the number of replicas and
the average inter-node distance contribute to the cell edge
length C, we empirically determined the optimal values of
C in a wide range of scenarios. We then used non-linear re-
gression to determine a function which outputs a good value
of C for any combination of K and D. Considering that C
is expected to be inversely proportional to the number of
replicas K, and proportional to the average distance D, we
decided to investigate the following family of functions:

C = α · D

Kβ

where α and β are the coefficients that we need to deter-
mine.

To obtain the optimal values of C, we repetitively ap-
plied HotZone to the sample data set for each number of
replicas 2 ≤ K ≤ 20. We ignored the case when K = 1, as
the best location is obviously the node whose average dis-
tance to all the other nodes is minimal. For each value of
K, we repetitively ran HotZone with values of C ranging
from 5 to D, taken in steps of 5. For each value of C, we
evaluated the resulting placement by calculating the median
distance between all nodes and their closest replicas. The
C value yielding the shortest median distance was consid-
ered to be the best for the given number of replicas K. The
outcome of this experiment was a set of observations, each
being a pair of (K, best value of C). This set is depicted in
Figure 1.

To obtain a closed function formula, we applied non-
linear regression to our set of observations. The resulting
values of α and β were 0.126 (≈ 1

8
) and 0.329 (≈ 1

3
), re-

spectively, which gave us the following closed formula for
the cell edge length C:

C ≈ 1

8
· D

3
√

K

where D is the average distance between nodes, and K is
the number of replicas. The corresponding function is plot-
ted in Figure 1. Note that since we computed the set of

observations based on a single data set, we used the set-
specific value of the average inter-node distance D equal
to 670. As we show below, however, the resulting closed
function formula works also for other data sets, for which
the value of D is completely different.

3.3 Complexity Analysis

In this section, we analyze the computational complexity
of HotZone. Similar to the notation used in the previous
sections, we use N to denote the number of nodes, K to
denote the number of replicas, and M to denote the GNP
space dimension.

The computational cost of HotZone consists of three
parts, each corresponding to a single step. The first step
is to determine the average distance between nodes. As we
show in Section 4, HotZone obtains a good estimate of this
distance by calculating the distance between a fixed num-
ber of randomly-selected nodes. The cost of this operation
is constant.

The second step is to construct the set of zones. Hot-
Zone first assigns nodes to their corresponding cells, which
costs O(N) operations. Then, the set of non-empty cells is
translated to the set of zones. To do that, HotZone identifies
the neighboring cells of each cell, and sums their densities.
Given that each zone contains a constant (3M) number of
cells, and that the number of cells cannot exceed N , this
operation costs O(N) cell-accesses. In our implementa-
tion, we sort all the cells according to their center points
using Radix sort, which costs O(N · M) = O(N) opera-
tions. Then, we access individual cells using binary search,
which yields the cost of O(logN) per a cell access. The
total cost of the second step is therefore O(N · logN).

The third step is to iteratively place replicas. For each
replica, we identify the most dense zone, which requires in-
specting all the zones. The identification of the most dense
zone costs O(N) operations, as we access all the cells in
our cell table directly, and without using binary search this
time. Given that the same operations are performed for each
replica, the total cost of the third step is O(K · N).

The total computational cost of HotZone is the sum of
the costs of the above three steps:

O(1)+O(N · logN)+O(K ·N) = O(N ·max(logN, K))

This cost is significantly lower than that of the previously
proposed algorithms, such as Greedy (O(K · N 2)) and
HotSpot (O(N2 + min(N · logN + N · K)).

4 Evaluation

We evaluate HotZone based on three data sets produced
by SCoLE, a GNP-like system that positions Web clients
in a 6-dimensional space based on their latencies to 12
landmarks deployed worldwide [9]. We deployed SCoLE

Dataset Unique Clients Client Profile
Andy 5,758 Universities worldwide

Cartoon 14,682 US schools and DSL users
MP3 64,041 European DSL users

Table 1. Dataset statistics

Dataset Sample Andy Cartoon MP3
α value 0.126 0.154 0.363 0.130
β value 0.329 0.310 0.651 0.373

Table 2. The values of the α and β coefficients

on three independent Web sites participating in our node-
positioning experiment, and positioned all the clients that
visited these sites between the 1st of February and the 31st
of March, 2004. Each data set correspond to one of the sites,
and consists of the positions of the clients visiting that site
(see Table 1).

4.1 Average Distance Calculation

Determining the right cell size is crucial to good behav-
ior of HotZone. Since the cell size depends on the average
distance between nodes, we first investigated how the incre-
mental calculation method performs on our data sets.

As it turns out, a similar number of nodes is necessary
to calculate a good estimate of the average distance: 740,
650, and 820, for the Andy, Cartoon, and MP3 dataset, re-
spectively. This observation confirms that this cost should
be treated as a constant in the evaluation of the computa-
tional complexity of HotZone. Furthermore, this constant
time is very small compared to the overall time of replica
placement computation (about 100 milliseconds vs. several
seconds).

4.2 Closed Formula Verification

HotZone calculates the cell size using a formula that de-
pends on two parameters, α and β. Recall that in Section 3,
we determined α and β by applying non-linear regression
to a set of optimal cell sizes, which we computed based on
a single sample data set. In this experiment, we verify how
general these α and β values are by computing them for
each of the other three data sets. The results are presented
in Table 2.

As can be observed, the values of α and β computed
for the Andy and MP3 data sets are very similar to their
counterparts derived from the sample data set. However, it
is clearly not so for the Cartoon data set, where the values
of α and β are significantly different. We believe that this
is because of the fact that nodes in the Cartoon data set are

 0

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70 80 90 100

M
ed

ia
n

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

HotZone(5)

HotZone(10)

Cell Size (C)

Interval

HotZone(20)

Figure 2. Placement quality vs. C values

more evenly distributed over the space. In that case, clients
barely form any clusters, which leads to an optimal cell size
significantly larger than expected. However, as we show
in the next section, even sub-optimal values of C lead to
placements almost as good as those produced by Greedy.

4.3 Sensitivity to C values

Although the performance of HotZone depends on the
choice of a a good value for C, we show here that the qual-
ity of placements is quite resilient to suboptimal values of
C. Figure 2 shows the performance of placements obtained
with varying values for C betwen 5 and 100ms. For sake
of clarity, we only show the results for placing 5, 10, and
20 replicas based on the Andy dataset. Other datasets ex-
hibit similar behavior. Framed boxes show the interval of
C values that yield performance results within 10% of the
optimal.

As can be observed, the value of C can vary by a large
amount without having very high impact on the quality of
placements. This explains why HotZone produces nearly-
optimal placements even though the C values themselves
may be imperfect.

4.4 Placement Quality Comparison

A popular method of evaluating replica placements is
calculation of the average latency between nodes and their
closest replicas. However, the results produced by this
method very much depend on outliers, which are nodes
whose latencies to any other nodes are very high. Outliers
typically use slow network connections, such as modems,
and do not tend to form clusters. Because of these two fac-
tors, it is hard to improve the replica-access latencies of
outliers without placing replicas specifically on them. We
therefore decided to concentrate on the remaining nodes
by evaluating placements with the median latency between
nodes and their closest replicas.

We evaluated HotZone against the Greedy and HotSpot
algorithms described in Section 2. Recall that HotSpot
needs to know how to determine whether two given nodes

are neighbors or not. We configured HotSpot to consider
nodes to be neighbors only if the distance between them
is less than some threshold value. To ensure the fairness
of comparison, we tried various threshold values and report
only the best result.

We also considered a variant of HotSpot, which we call
“HotClear.” After placing a replica on a given node, Hot-
Clear removes all the nodes from the neighborhood of this
node so that they are not considered in the subsequent iter-
ations. Also in this case, we tried several threshold values
and report only the best result.

We apply the four evaluated algorithms to each of the
three data sets. We iteratively place K replicas, for K be-
tween 1 and 20, and calculate the median node-to-replica
latency for each value of K. The results are presented in
Figure 3.

As can be observed, the original HotSpot algorithm per-
forms significantly worse than all the others. This is not
surprising: as it turns out, HotSpot places replicas on nodes
whose coordinates are close to the centers of a few very
active neighborhoods. Although these neighborhoods may
change depending on the threshold value, the replicas are
ultimately placed close to each other, which results in poor
performance. This is exactly the effect that HotZone tries to
avoid by using overlapping network regions.

The remaining three algorithms produce comparable re-
sults. Compared with Greedy, HotZone offers median la-
tency that remains within 13%, 14% and 9% of that offered
by Greedy for the Andy, Cartoon, and MP3 data set, respec-
tively. The average difference between latencies offered by
these two algorithms, however, is between 3% and 5% in all
the data sets. Note that HotZone sometimes slightly outper-
forms Greedy, which can be seen in the graph depicting the
replica placement based on the MP3 data set.

HotZone usually performs better than HotClear. In this
case, however, the average difference in latencies is very
small (between 5% and 7%) for the two smaller data sets,
but it increases to 16% for the biggest data set. The case
of HotClear shows that the original HotSpot algorithm can
easily be improved to work effectively on node coordinate
sets, but even then it still cannot outperform HotZone.

4.5 Placement Computation Times

The main advantage of HotZone over other algorithms
is its low computational cost. In this experiment, we show
how the differences in computational complexities of differ-
ent algorithms translate into placement computation times.
We measured the execution times of the four evaluated al-
gorithms for each number of replicas K between 1 and 20,
based on all the three data sets. The tests were performed on
an idle PC equipped with a Pentium III 1GHz. The results
are depicted in Figure 4 (note the logarithmic time scale).

As can be observed, the time needed by HotZone to com-
pute its placements up to 3 orders of magnitude lower than
the time needed by Greedy. In comparison with HotSpot

Andy: Cartoon: MP3:

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16 18 20

M
ed

ia
n

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Number of Replicas

HotSpot

HotClear

Greedy

HotZone

0
20
40
60
80

100
120
140
160
180

2 4 6 8 10 12 14 16 18 20

M
ed

ia
n

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Number of Replicas

Greedy

HotSpot

HotClear

HotZone

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14 16 18 20

M
ed

ia
n

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Number of Replicas

HotClear

HotSpot

HotZone Greedy

Figure 3. Placement quality comparison

Andy: Cartoon: MP3:

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

Number of Replicas

Greedy

HotZone

HotSpot HotClear

1

10

100

1000

10000

100000

2 4 6 8 10 12 14 16 18 20

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

Number of Replicas

Greedy

HotZone HotSpot HotClear
1

10

100

1000

10000

100000

1e+06

2 4 6 8 10 12 14 16 18 20

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

Number of Replicas

Greedy

HotZone

HotSpot HotClear

Figure 4. Placement computation times

and HotClear, however, the computation time of HotZone
is better only for the two larger data sets, and the advan-
tage of HotZone over these two algorithms increases with
the number of nodes in a data set. On the other hand, for
the smallest data set, the computation time of HotZone is
comparable to these of HotSpot and HotClear. This indi-
cates that HotZone is particularly suitable for large-scale
systems, where the number of nodes is very high.

5 Conclusion

We have presented HotZone, a replica placement algo-
rithm that optimizes node-to-replica latency based on node
coordinates produced by SCoLE. Similar to HotSpot, Hot-
Zone places replicas on nodes that along with their neigh-
boring nodes generate the highest load. However, the com-
putational cost of placing K replicas using HotZone is
O(N · max(logN, K)), which is significantly lower than
that of any previously proposed algorithm. This makes Hot-
Zone attractive for use in large-scale distributed systems.

HotZone produces results of comparable quality to those
of Greedy. Furthermore, for large data sets, the computation
time of HotZone is significantly lower than those of all other
evaluated algorithms. In particular, it is up to 3 orders of
magnitude lower than the computation time of Greedy.

We plan to use HotZone in Globule, a peer-to-peer con-
tent delivery network that our group is developing [7]. We
believe that it will help us efficiently place replicas among
a large number of Globule nodes.

References

[1] L. Amini and H. Schulzrinne. Client Clustering for Traffic
and Location Estimation. In 24th International Conference
on Distributed Computing Systems, Mar. 2004.

[2] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and
B. Weihl. Globally Distributed Content Delivery. IEEE Inter-
net Computing, 6(5), Sept. 2002.

[3] M. Karlsson and C. Karamanolis. Choosing Replica Place-
ment Heuristics for Wide-Area Systems. In 24th International
Conference on Distributed Computing Systems, Mar. 2004.

[4] M. Karlsson, C. Karamanolis, and M. Mahalingam. A Frame-
work for Evaluating Replica Placement Algorithms. Technical
report, HP Laboratories, Palo Alto, CA, 2002.

[5] B. Krishnamurthy and J. Wang. On Network-Aware Cluster-
ing of Web Clients. In ACM SIGCOMM, Aug. 2000.

[6] T. E. Ng and H. Zhang. Predicting Internet Network Distance
with Coordinates-Based Approaches. In 21st IEEE INFO-
COM Conference, June 2002.

[7] G. Pierre and M. van Steen. Design and Implementation of a
User-Centered Content Delivery Network. In The 3rd IEEE
Workshop on Internet Applications, June 2003.

[8] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the Place-
ment of Web Server Replicas. In 20th IEEE INFOCOM Con-
ference, Apr. 2001.

[9] M. Szymaniak, G. Pierre, and M. van Steen. Scalable Coop-
erative Latency Estimation. In 10th International Conference
on Parallel and Distributed Systems, July 2004.

