
Latency-Driven
Replica Placement

Michal Szymaniak Guillaume Pierre Maarten van Steen

Vrije Universiteit Amsterdam
The Netherlands

{michal,gpierre,steen}@cs.vu.nl

2

Problem Description

• Large distributed system
– Thousands+ of nodes

• Wide-area network
– Internet

• Node = client + server
– Nodes can host content

• Most popular content is replicated
– Thousands of possible replica locations

• Where to place replicas efficiently?
• Efficient = minimal average client-to-replica latency
• Clients always use their closest replicas

3

Current Solutions

• Greedy
– Place replicas one-by-one
– Each time evaluate all possible locations
– Good placement quality
– O(K*N^2), K replicas, N candidate locations

• Hot-Spot
– Compute load generated by each location
– Place replicas in K most active locations
– Slightly worse quality than Greedy
– O(N^2+min(N*logN,K*N))

• Note:
– O(N^2) is too much for large-scale systems
– O(N^2) caused by all-pair latency calculations; can we get rid of them?

4

Our Two-Step Solution

• 1: Cluster locations; choose clusters for replicas
– Clustered nodes close in terms of latency

• 2: Select nodes inside clusters
– Current work

• Identify clusters efficiently (HotZone)
– Model latencies such that clustering is cheap
– We use Global Network Positioning (GNP)

• HotZone identifies clusters in O(N*max(logN,K))

5

Agenda

• Efficient Latency Modeling
– Global Network Positioning

• Cluster Identification

• Performance
– Placement Quality
– Computation Times

• Conclusion

6

Efficient Latency Modeling

• Global Network Positioning (GNP):
– Internet == M-dimensional geometric space
– Nodes == M-dimensional positions

– Latencies == distances between positions

• GNP can be run efficiently even in
large-scale systems
– Previous work

• So: we play with points in geometric space
• How to identify clusters of points?

7

Cluster Identification

• Divide space into M-dimensional hypercubes (cells)
• Cell density = number of nodes inside cell

• We are done!
Take most dense cells as clusters!

• Not quite:
– We could cut clusters into pieces..
– ..which can be too small..
– ..to be assigned replicas :-(

• What can we do about it?

8

Fixing Split Clusters

• Solution: adjust density definition
– Cell density = the number of nodes INSIDE + AROUND the cell.
– After placing each replica - remove nodes that replica shall service!

• What if we cannot unambiguously identify dense cells?
– Wrong cell size; adjust it to node distribution.

9

Performance

• Placement Quality.. ..and Computation Time

• Tested for 64k nodes (clients == possible replica locations)

10

Conclusions and Future Work

• Two-step replica placement for large-scale systems:
– 1. Cluster locations according to latency; choose biggest clusters
– 2. Inspect chosen clusters to select nodes that will hold replicas

• First step - HotZone:
– Relies on geometric system model provided by GNP
– Identifies biggest node clusters at low cost: O(N*max(logN,K))
– Preserves ultimate placement quality

• Second step - Current work:
– Not so many nodes -- consider their individual properties
– Clusters = virtual servers; they will dynamically manage local replicas

11

Thank you!

Questions?

12

Extras: Complexity

• Entry: we know positions of all N nodes
• Divide geometric space into O(N) cells: O(N)

– For each position: O(1) to identify target cell
– Cells identified by their center positions

• Calculate densities O(NlogN)
– O(N) to calculate all cell densities
– O(N) merges with neighbor densities
– But: neighbor lookup costs O(logN) in our data structures

• Choose K clusters for replicas O(KN)
– For each replica: O(N) to find most dense cell..
– ..and O(logN) to remove that cell and its neighbors

• Total: O(N*max(logN,K))

13

Extras: Cell Size

• Cell size C intuitively depends on two factors:
– node distribution (e.g., average inter-node distance D)
– number of replicas to place K

• Let C=A*D/K^B; (A,B) - parameters
• Obtain (A,B) using non-linear regression:

– Try all (C,D,K) combinations on a sample
– Identify best C values for all (D,K) pairs
– Assign (A,B) such that best C~= A*D/K^B

• Experiments:
– A~1/8, B~1/3 for our sample
– (A,B) will vary for other datsets
– Still: placement quality resilient

to small changes in A and B

14

