NetAirt: A Flexible Redirection System for Apache

Michat Szymaniak

Guillaume Pierre

Maarten van Steen

Department of Computer Science
Vrije Universiteit Amsterdam
{michal ,gpierre,steen} @cs.vu.nl

Abstract: In this paper, we present NetAirt — a redirection
system that separates redirection mechanisms from redirec-
tion policies. NetAirt is implemented in the form of a mod-
ule for the Apache HTTP server. We propose a few changes
to the original Apache source code that enable Apache to
service UDP datagrams, and show how we exploit these
changes in the NetAirt implementation. Performance mea-
surements prove that the overhead introduced by the redirec-
tion mechanisms is low compared to the overall name reso-
lution time.

Keywords: Redirection, DNS, Apache, Autonomous
Systems

1 Introduction

With the growing popularity of the Internet, more and
more Web sites find it difficult to provide their clients
with satisfactory quality of service. A common solu-
tion to this problem is to replicate the site content over
several machines at specific locations and to redirect
clients to a nearby replica. The proximity of the re-
quested replicas can reduce request Round Trip Times
(RTTSs). Since data transfer constitutes about 80% of
the total RTT of a typical Web request, users are likely
to observe better access performance [17]. This also
leads to load distribution, which may result in faster
client request processing. Systems combining content
replication and client redirection are usually referred
to as Content Delivery Networks (CDNS).

A vital part of every Content Delivery Network is
its redirection system. Redirection can be achieved by
one of the following three approaches [3]. The first
one is to use HTTP-based mechanisms, which redirect
client HTTP requests either by rewriting URLSs inside
Web documents or by using a special HTTP redirec-
tion response code. Although HTTP-based mecha-
nisms are easy to implement, they make the redirec-

tion visible to the clients, which is often considered
undesirable. The second approach utilizes I1P-based
mechanisms in which the redirector forwards incom-
ing network packets to replicas. IP-based mechanisms
are transparent to clients, but they are also complex
and do not scale well over wide-area networks. The
third approach is to use DNS-based mechanisms in
which a custom DNS server responds to name reso-
lution queries with the IP address of a replica rather
than with that of the originally named host. DNS-
based mechanisms are simple, transparent, and scal-
able. Because of these advantages, most CDNs use
DNS-based redirectors.

A redirection mechanism operates according to a
redirection policy. A policy is the part of the redirec-
tor that selects which replica a given client should be
redirected to. This selection may take various crite-
ria into account, such as the replica-to-client distance
and the load of the available replicas. A redirection
mechanism and a redirection policy together form a
redirection system.

This paper presents NetAirt, a redirection sys-
tem that separates the implementations of redirection
mechanisms and policies. This approach allows for
adding new policies, or using existing ones with an-
other redirection mechanism.

We designed NetAirt as a module for the Apache
HTTP server to facilitate its integration into Glob-
ule, an Apache-based CDN that our group is devel-
oping [13]. The advantage of this approach is that it
allows NetAirt to cooperate tightly with other Glob-
ule components. For example, each time Globule de-
cides to change the placement of its replicas, it must
inform NetAirt so that the client got redirected to the
new replicas. Since the component responsible for
replica placement is just another Apache module, a
single function call is enough to bring NetAirt up-to-
date after some replica is created or destroyed. Simi-
larly, NetAirt may notice that some replicas are over-

loaded and provide Globule with hints on where new
replicas would be most needed.

NetAirt currently supports two redirection mecha-
nisms, HTTP and DNS, and three policies. HTTP
redirection mechanisms are trivial to implement in
Apache. As for DNS, however, we had to extend
Apache by basic UDP server functions. Integration of
both HTTP- and DNS-based mechanisms makes Net-
Airt attractive for more users, regardless of whether
they are able to buy and host a DNS domain or not.
Also, it allows one to develop redirection policies that
use both these mechanisms simultaneously, or switch
between them, depending on the circumstances. At
the moment, the implemented policies are: static
name-to-address mapping, round-robin selection, and
a more complex one, the shortest AS-path policy.

We conducted performance experiments which
show that our Apache-based DNS implementation is
about 2 times faster than the popular Bind DNS server.
The shortest AS-path policy introduces an additional
overhead of 640 s on average, which is little in com-
parison to the overall DNS request-reply delay.

The paper is structured as follows. Section 2 sur-
veys related work. Section 3 presents the design
of a DNS-based redirection system. Section 4 de-
scribes the implementation of NetAirt as a module for
Apache. Finally, Section 5 discusses our performance
measurements, and Section 6 concludes.

2 Related Work

The idea of exploiting DNS for client redirection
emerged in 1995, yet originally only for load balanc-
ing [4]. In essence, a DNS server can be modified to
respond to DNS queries concerning a given domain
name with IP addresses of different machines. The
only constraint is that any of these machines can ser-
vice client requests targeting the service. For exam-
ple, a query regarding ww. gl obul e. or g is usu-
ally resolved as follows. First, it reaches an (un-
modified) DNS server responsible for the . or g do-
main, and then it is sent to the (modified) DNS server
hosting . gl obul e. or g, which may return differ-
ent addresses of ww. gl obul e. org. An impor-
tant advantage of DNS redirection is that it requires
modifying only the lowest-level DNS server, i.e., the
one uniquely associated with the service domain, and
leaves all other DNS servers untouched. This is be-
cause all DNS responses regarding the service origi-
nate from the service DNS server [11].

Redirection decisions are based on a short-lasting

view of system conditions. To prevent such decisions
from remaining in use for too long, small time-to-
live (TTL) values are attached to redirecting DNS re-
sponses. A potential problem is that assigning too low
TTLs may lead to performance degradation of name
resolution. However, it has been shown that reducing
TTL values to about 10 minutes does not significantly
degrade DNS cache hit rates, while giving the redirect-
ing server sufficient control over redirection [8].

In a wide-area replicated system, the choice of
replica can depend on a client’s location, so that the
client is redirected to a nearby replica. However, DNS
queries do not carry any information about the query-
ing client. A redirecting DNS server must therefore
approximate the client’s location with that of the DNS
server that resolves the name on behalf of the client.
The assumption here is that clients are located close to
their local DNS server. This is generally true, since
about 64% of clients are located in the same Au-
tonomous System as their DNS server [9]. An Au-
tonomous System (AS) is a collection of networks that
share the same, clearly defined set of rules concerning
the exchange of traffic with other ASes [7]. Each AS
is connected to some other (one or more) ASes. All
ASes together cover the entire Internet.

A redirection policy may redirect clients to their
closest replicas according to a certain distance metric.
For example, the shortest AS-path policy is based on
a graph, where vertices denote Autonomous Systems
and edges reflect inter-AS traffic-exchange relation-
ships [10]. The distance between two arbitrary ma-
chines is defined as the number of edges in the shortest
path between the ASes to which these two machines
belong. The graph can be derived from routing tables
available at routers running BGP - the inter-AS rout-
ing protocol [14].

The scalability of DNS-based redirection can be im-
proved by using what is known as two-tier DNS redi-
rection, in which several redirecting DNS servers are
deployed in different parts of the Internet [6]. A client
of a specific server is periodically redirected to a clos-
est redirecting DNS server by a main redirecting DNS
server, and is instructed to use that server for a cer-
tain time (e.g., 1 hour). In this way, the load originally
handled by the main DNS server is distributed across
several client-proximate DNS servers, which are likely
to service the redirection requests faster.

In the following sections, we discuss how the above
ideas can be combined inside a single redirection sys-
tem. We then show how to implement this system as a
module for the Apache HTTP server.

REPLI CA
DATABASE

CONFI GURATI ON
SUBSYSTEM
CONFI GURATI ON

COVMMUNI CATI ON
LAYER

QUERY RESPONSE

Figure 1: The design of NetAirt

3 System Design

As shown in Figure 1, NetAirt consists of five main
components: a replica database, a policy, a base proto-
col, a communication layer, and a configuration sub-
system. The split into the four leading components
reflects different phases of handling a redirection re-
quest. The configuration subsystem was added to
make NetAirt consistent with Apache, which has a
separate configuration subsystem as well.

The replica database stores data about the replicas.
These include the domain names of replicated ser-
vices, replica server IP addresses, and TTL values.

The policy component receives invocations contain-
ing a service name and executes a service-dependent
replica selection algorithm to return one or more
replica IP addresses to which the client should be redi-
rected. This algorithm uses the data stored inside
the replica database, but may also exploit any policy-
specific data stored inside the policy component.

The base protocol layer is responsible for decoding
service names from client requests (DNS or HTTP),
and passing these names to the redirection policy. The
latter returns one or more replica IP addresses, which
are subsequently encoded into a protocol-specific re-
sponse. The possibility of using both DNS- and
HTTP-based redirection makes NetAirt more flexible.

The communication layer receives client requests
and passes them to the base protocol implementation.
The responses returned by the latter are sent back to
their respective clients. To service DNS, this layer
must support both UDP and TCP.

The configuration subsystem allows for adjusting
different settings of the previous four components,
such as the contents of the replica database and the
number of replica addresses returned. In addition, it

can control some policy-specific settings.

The separation of the redirection mechanism (by
means of the base protocol layer) and the redirec-
tion policies makes it possible to build complex redi-
rection systems. For example, NetAirt can use the
same mechanism to service several domain names,
each configured to use a separate policy. More im-
portantly, NetAirt can be used to implement the two-
tier DNS redirection discussed in Section 2, where the
main redirector uses different policies than the redi-
rectors scattered across the Internet.

4 System Implementation

We start by explaining how we built NetAirt as an
Apache module for doing HTTP redirection. Then
we describe which modifications had to be made to
Apache to allow it to service DNS requests as well.

41 HTTP Redirection

Apache splits the servicing of HTTP requests into
three steps: accepting a connection, processing the re-
quest (including response generation), and closing the
connection [1]. The processing step is further divided
into several HTTP-specific phases.

Each phase is handled by so-called hook functions.
Whenever a given phase is reached, the correspond-
ing hook functions are called. Hook functions are pro-
vided by modules, which can be a part of the standard
Apache distribution, or can be provided by third par-
ties. This allows one to easily extend the functionality
of Apache.

An HTTP redirector can easily be implemented as
an Apache module. This module provides one hook
function that generates redirecting HTTP responses.
The behavior of the hook function follows the request
processing model described in Section 3. It extracts
the service host name encoded inside the URL, and in-
vokes the redirection policy to find a replica IP address
for that name. It then prepares a new URL, in which
the service host name is replaced with the replica IP
address, and packs this URL into an HTTP response
that carries the “302 Temporarily moved” HTTP re-
sponse code. Upon retrieval of this response, the client
is expected to follow the new URL and access the cor-
responding replica.

4.2 DNSRedirection

Supporting DNS redirection requires Apache to ser-
vice DNS queries that come, for example, from re-
solving www. gl obul e. or g as we explained be-
fore. These queries can be carried by either TCP or
UDP [12]. TCP-carried DNS queries can be handled
similarly to HTTP requests — by defining a hook func-
tion that overtakes the entire connection. The only dif-
ference is that the function must now decode DNSre-
quests to identify target service names, and pack the
replica IP addresses into DNS responses.

Servicing UDP-carried DNS queries is more com-
plicated because Apache was originally designed as a
TCP server. Supporting UDP requests required modi-
fying the Apache code. However, the required modifi-
cations are relatively small.

Apache encapsulates listening sockets into so-
called “listener” structures, which contain a network
socket descriptor and a pointer to a custom “accept”
function. When data has arrived to one of the listening
sockets, Apache calls the associated “accept” function
to establish the connection, and then passes the con-
nection to the standard connection-processing subsys-
tem. All “accept” function calls are serialized with a
mutex in order to avoid several processes to try to si-
multaneously accept the same connection.

Usually, the socket descriptor is that of a TCP
socket, but it can easily be replaced by a UDP socket
descriptor. In UDP, however, connections do not need
to be accepted, so the corresponding listener must
have its “accept” function set to a void function. Un-
fortunately, this modification is not sufficient, as the
standard request-processing subsystem implicitly con-
siders the socket descriptor to use TCP. For example,
it operates on this socket using TCP-specific func-
tions, such as read() and wri te(), whereas for
UDPrecvfrom() and sendt o() should be used.
We solved that problem by adding another function
pointer to the listener. This pointer indicates a cus-
tom request-processing function that should be called
instead of the standard one. The pointer remains un-
used in TCP listeners, for which the standard Apache
request-processing subsystem is still invoked.

With this small modification to the Apache listener
structure, a UDP server such as a DNS redirector can
easily be implemented as an Apache module. A spe-
cial hook function creates a UDP listener at server
startup and adds it to the server-wide collection of lis-
teners. The remaining parts of request processing are
essentially identical to that of its TCP-based counter-
part.

4.3 Redirection Policies

NetAirt currently supports three redirection policies.
The first policy implements static name-to-address
mapping. It always returns the same IP addresses for
a given service name and enables NetAirt to behave
like a simple DNS server. The second policy imple-
ments round-robin address selection, which allows for
simple load balancing. Since the implementation of
these two policies is quite straightforward, we do not
discuss it in this paper.

The third policy is the shortest AS-path policy de-
scribed in Section 2. It assumes physical distribution
of replicas, and aims at improving the client-perceived
service performance by exploiting replica locality.

The implementation of the shortest AS-path policy
must fulfill two tasks. Firstly, it must match replica
and client IP addresses to their respective ASes. Sec-
ondly, it must build a graph of ASes based on which
distance calculations can be performed. The necessary
AS-related data are derived from BGP routing tables.

4.3.1 |P-to-ASMatching

A BGP routing table contains a list of entries. Each
entry describes a single route to the set of machines
whose addresses fall within a given IP address range,
such as the one below:

10.2.3.0/24 ... 64003 64001 64112 i
This entry means that the route to any machine which
has “10.2.3” as the first 24 bits of its IP address passes
through ASes 64003, 64001, and 64112. The triple
dots denote other available information, which is irrel-
evant here. The list of AS numbers is called an AS-
sequence. The trailing character, called “origin,” de-
notes the information source: “i” means that the route
was learned using an Internal Gateway Protocol. In
other words, the route ends in the last AS in the AS-
sequence.

BGP route descriptions allow one to match IP ad-
dresses to their “home” AS. Given an IP address, we
first determine which route leads to this address. We
then consider the last AS in the corresponding AS-
sequence as the home AS for the IP address.

To speedup the search of relevant routes, NetAirt or-
ganizes all routes into a prefix-based tree and then ap-
plies a classical longest-prefix search algorithm [16].
As a result, mapping an IP address to its home AS
takes on average less than 1 microsecond when run-
ning on a P111/1.1GHz.

Treating the last AS in an AS-sequence as the home
AS is not always correct. For example, BGP tables

can contain entries that represent a set of aggregated
routes. In this case, the AS-sequence is followed by
an unordered set of ASes, through which the traffic
can go further. Since we have no certainty concern-
ing which element from the AS-set is actually at the
end of the route, we cannot accurately determine the
home AS. Instead, we can consider the last AS in the
AS-sequence only as the best available approximation.
According to our tests, AS-sets occur in less than 1%
of all routes in a typical BGP table.

Another potential problem is posed by incomplete
route descriptions, which inform that at some point
routers switch from BGP to another routing protocol.
Such entries have a special “origin” mark: “?” instead
of “i.” Like in the previous case, the last AS in an AS-
sequence is only the best available approximation of
the home AS. Moreover, switching to another routing
protocol also means switching to another network dis-
tance metric. Since our aim is to express network dis-
tance in inter-AS hops, ignoring this new metric does
not influence our distance calculations. We noticed
that incomplete descriptions constitute about 12% of
the BGP table we used.

4.3.2 BuildingaMap of ASes

BGP route descriptions also allow one to build a map
of the Internet in the form of a graph of ASes. Net-
Airt links two ASes if they are adjacent in at least one
AS-sequence. We assume here that inter-AS traffic ex-
change is bidirectional.

A potential problem is that one BGP routing table
can provide a view of the Internet topology as seen
only from a given router. This view contains routes
only from this router to other ASes, and thus misses a
lot of transversal links. NetAirt solves this problem
by exploiting a global routing table, available from
the RouteViews project [2]. This table merges several
views of the Internet, contributed by routers located in
different parts of the world. It therefore contains many
more links than a normal routing table.

4.3.3 Policy Implementation

Given an IP-to-AS translation tree and an AS graph,
the shortest AS-path policy operates as follows. For
each redirection request, it starts with translating
the IP addresses of the client and every candidate
replica to their home ASes. Then, it applies a clas-
sical Breadth-Search-First (BSF) algorithm to the AS-
graph, and traverses the graph starting from the client’s
home AS. While traversing, it builds a list containing

the visited home ASes of the candidate replicas. The
search terminates once the required number of replicas
has been found, or when the entire graph has been tra-
versed. Finally, the policy returns the just-built list of
candidate replicas as its redirection recommendation.

NetAirt keeps the AS-lookup tree and the AS graph
in a shared memory chunk to make them available to
all the Apache processes. Two such chunks are used
alternatively: when one stores the currently used data
structures, the other one is available for their new ver-
sion to be generated when a new version of the BGP
routing table is downloaded. In this way, one version
of the data structures is available at any time, which
enables the policy to work continuously, even while a
new data version is being constructed (which may take
up to 2 minutes on a P111/1.1GHz).

A possible optimization could be to precompute re-
sponses that would be returned to clients located in
each AS. A potential problem, however, is that in such
approach the responses would have to be recomputed
every time a replica is created or destroyed. There-
fore, whether it is beneficial to precompute them de-
pends on the replica placement dynamics. We plan to
investigate this optimization in the future.

5 Performance Measurements

We measured the performance of NetAirt by conduct-
ing two experiments. First, we measured the perfor-
mance of the DNS transport layer alone, and com-
pared it to the performance both of Bind 9.1.3 and
of (unmodified) Apache 2.0.32. Second, we per-
formed micro-benchmarks on the shortest AS-path
policy. Both experiments were performed on a stan-
dard PC, equipped with one PI11/1.1GHz CPU.

5.1 DNSTransport Layer

In this experiment, we evaluated how much time our
redirector needs to service a typical DNS request. We
conveyed separate tests for UDP- and TCP-based DNS
queries. For each test we used the two simplest (thus
fastest) policies: the static address mapping policy and
the round-robin policy. We ran the tests on four redi-
rector configurations, each returning a different num-
ber of addresses to the client.

We measured the average Round Trip Time (RTT)
for 1000 DNS queries. To avoid network-related over-
head, the client and the redirector were located on the
same machine. Also, to avoid concurrency-related in-
accuracies, we configured the redirector to use only

TransportLayer |No. of Addresses Returned
and Policy 1 2 3 4
TCP Static 588 595 595 599

TCP Round-robin | 590 596 | 596 600
UDP Static 387 391 | 392 395

UDP Round-robin | 393 400 | 400 402

Table 1: RTTs for different policies (in us)

one request-processing thread. The results of these ex-
periments are summarized in Table 1.

As can be observed, TCP-oriented queries are about
50% slower than UDP-oriented ones. We believe that
this difference is caused only by the cost of establish-
ing TCP connections.

The overhead introduced by the round-robin policy,
compared to the static address mapping policy, turns
out to be negligible (about 2% of the total RTT). Also,
returning different numbers of addresses (between 1
and 4) does not significantly influence the RTT.

We also compared the efficiency of our Apache-
based DNS server with that of the popular Bind DNS
server [5]. Similar to the TCP-vs-UDP comparison,
we placed the client and the server on the same ma-
chine and measured the average RTT for 1000 DNS
queries. It turned out to equal 821 us for UDP-based
queries, and 1514 us for TCP-based ones. These val-
ues indicate that our DNS implementation services
a typical DNS query over 2 times faster than Bind.
A possible interpretation of these results is that Bind
supports many advanced DNS features, whereas our
implementation deals only with the classical queries.
Consequently, the DNS request-processing code of
NetAirt is much simpler.

Finally, we compared the performance of DNS
queries versus HTTP queries. We measured the over-
all latency of downloading a 0-byte long HTML file
using the “ApacheBench” utility. Similarly to the
above experiments, the server was configured to use
a single request-processing thread, and both the client
and the server were placed on the same machine. The
average latency turned out to be 588 us per request,
which comes close to the latency of TCP-oriented
DNS requests. This shows that handling simple DNS
queries in Apache can be just as efficient as processing
HTTP requests.

5.2 The Shortest AS-path Policy

In this experiment, we investigated the internal latency
of the shortest AS-path policy. To measure only the
delay caused by the AS-related processing (and not by
Apache), we removed the redirection policy function
from NetAirt, and embedded it into a single-threaded
C program. We measured the time needed to return
a list of replica addresses, excluding costs due to the
transport layer.

We performed the following experiment. First, we
selected an arbitrary AS where a simulated client was
located. Then, we placed one simulated replica in ev-
ery AS, and instructed the redirector to treat each of
these replicas as the only replica of a certain site. In
other words, we put a non-replicated site in every AS.
Finally, for each site, we measured the time needed
by the policy to prepare a redirecting response for the
client.

The results turned out to be independent of the
client’s location. Figure 2a shows the distribution
of search times for replicas located at increasing dis-
tances from the client. When a replica is very close
to the client, the BSF search algorithm inside the pol-
icy explores only a few AS-graph nodes before finding
it, so the search is very fast. When the distance grows,
the number of nodes to explore dramatically increases,
leading to longer search. Finally, only very few nodes
are located far away from the client. Searches for these
nodes correspond to a nearly full exploration of the AS
graph. This interpretation is supported by Figure 2b,
which shows that most nodes are indeed located at dis-
tances 3 to 5 from the clients.

Knowing the search times, we can derive the time
needed to locate the n replicas closest to a given client:
this time is equal to the search time of the n-th replica.
For example, if the n-th replica is located at distance 4
from the client, then the complete search will take be-
tween 0.05 and 0.8 milliseconds (see Figure 2a). Also,
search time is bounded by 3.1 milliseconds, which cor-
responds to the time of a full graph exploration. The
mean search time, however, is much lower: 0.64 mil-
liseconds. These values are very low compared to typ-
ical name resolution times, which have been evaluated
between 60 and 200 milliseconds [15].

Knowing the search times, we can also derive the
theoretical maximum server throughput. In a pes-
simistic case, when all queries require complete AS-
graph exploration, the redirector can handle about 290
queries per second. In a typical case, however, the
throughput will be over 950 queries per second, as the
mean request processing time equals 1.04 millisecond

~—~~
QD
~—

3000

2500

2000

1500

1000

500

Search delay (microsecs)

0
0o 1 2 3 4 5 6 7 8

Distance from the client's AS

~
O
~

8000

6000
4000 /
2000

o 1 2 3 4 5 6 7 8
Distance from the client's AS

Number of nodes

Figure 2: The results of the shortest AS-path policy analysis: search times (a), and distance distribution (b)

(including the overhead due to both UDP and DNS
processing). This shows that the throughput of our
redirector is close to that of Bind, even when taking
into account the computational cost of the shortest AS-
path policy. Also note that the throughput of a DNS
redirection system can be increased to almost any level
by combining several redirectors.

6 Conclusion

We have presented NetAirt, a redirection system that
separates redirection mechanisms from redirection
policies. NetAirt is implemented in the form of a
module for the Apache HTTP server. HTTP redirec-
tion can be performed by simply compiling this mod-
ule into Apache. To perform DNS redirection, how-
ever, we had to propose a few changes to the original
Apache source code that enable it to service UDP data-
grams.

NetAirt currently supports two basic policies and a
more elaborated one, the shortest AS-path policy. If a
need for other policies is ever identified, NetAirt pro-
vides a simple framework for implementing it without
having to code redirection mechanisms again.

Performance measurements show that even a rel-
atively complex redirection policy can be supported
with low overhead compared to the overall name res-
olution time.

NetAirt will soon be released for public use. We
hope that it can contribute to the development of
worldwide-distributed services, and thus help sustain-
ing the continuous growth of the Internet.

References

[1] The Apache HTTP Server Project,
http://httpd. apache. org/.

[2] The RouteViews Project,

http://ww. routevi ews. org/.

[3] A. Barbir, B. Cain, F. Douglis, M. Green, M. Hoff-
man, R. Nair, D. Potter, and O. Spatscheck, Known CN
Request-Routing Mechanisms, Internet Draft, IETF,
May 2002.

[4] T. Brisco, DNS support for load balancing, RFC1794,
IETF, April 1995.

[5] Internet Software Consortium,
Berkeley Internet Name Domain,
http://ww. isc.org/products/BIND .

[6] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitara-
man, and B. Weihl, Globally Distributed Content De-
livery, IEEE Internet Computing 6 (2002), no. 5, 50—
58.

[7] L. Gao, On Inferring Autonomous System Relation-
ships in the Internet, IEEE/ACM Transactions on Net-
working 9 (2001), no. 6, 733-745.

[8] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, DNS
Performance and the Effectiveness of Caching, IEEE
Transactions on Networking 10 (2002), no. 5, 589-
603.

[9] Z. Morley Mao, C. Cranor, F. Douglis, M. Rabinovich,
O. Spatscheck, and J. Wang, A Precise and Efficient
Evaluation of the Proximity between Web Clients and
their Local DNS Servers, Proc. of USENIX Annual
Technical Conference, 2002.

P. R. McManus, A Passive System for Server Selection
within Mirrored Resource Environments using AS-Path
Length Heuristics, Tech. report, Applied Theory, Inc.,
June 1999.

P. Mockapetris, Domain Names — Concepts and Facil-
ities, RFC1034, IETF, November 1987.

P. Mockapetris, Domain Names — Implementation and
Specification, RFC1035, IETF, November 1987.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

G. Pierre and M. van Steen, Globule: a Platform for
Self-Replicating Web documents, Proc. of the 6th Inter-
national Conference on Protocols for Multimedia Sys-
tems, October 2001, pp. 1-11.

Y. Rekhter and T. Li, A Border Gateway Protocol 4
(BGP-4), RFC1771, IETF, March 1995.

A. Shaikh, R. Tewari, and M. Agrawal, On the Effec-
tiveness of DNS-based Server Selection, Proc. of IEEE
INFOCOM, April 2001, pp. 1801-1810.

H. Hong-Yi Tzeng, Longest Prefix Search using Com-
pressed Trees, Proc. of IEEE Globecom, November
1998.

M. Zari, H. Saiedian, and M. Naeem, Understanding
and Reducing Web Delays, IEEE Computer 34 (2001),
no. 12, 30-37.

