
Performance Analysis of a Flash-Crowd
Management System

Reinoud Esser (1142909)
Faculty of Sciences
Vrije Universiteit, Amsterdam, The Netherlands

August 2006
Master thesis, Computer Science

Supervisor:
Dr. Guillaume Pierre

Flash-crowds are a growing obstacle to the further expansion of the Internet. One of
the solutions to this problem is to replicate the most popular documents to different
web servers and to redirect client requests to these replicas. In this thesis we present a
performance analysis of a flash-crowd management system based on RaDaR. We
adjust the architecture of RaDaR to focus more on adaptability rather than scalability,
to give the system a better chance against a flash-crowd by using algorithms from
another system by the same authors, ACDN. Because existing benchmarks do not
show realistic behavior, we first propose our own synthetic benchmark. Finally we
use the benchmark tool to replay requests from a trace of an actual flash-crowd.

Our results are three-fold: first we show how to dimension a RaDaR-like system.
Second, we demonstrate based on a synthetic benchmark as well as a trace-based
benchmark that the RaDaR-like system adjusts to a flash-crowd in a timely and
efficient fashion. Finally, we identify an inherent instability in the replica placement
and request distribution algorithms that handle offloading.

Keywords: flash-crowd, performance analysis, benchmark, RaDaR

 3

Contents

1. Introduction... 5
2. Related work ... 7

2.1. Replication systems overview... 7
2.1.1. RaDaR... 7
2.1.2. ACDN ... 8
2.1.3. Akamai.. 8
2.1.4. DotSlash.. 9
2.1.5. CoralCDN ... 9

2.2. Replica placement... 10
2.3. Request routing ... 12
2.4. Detecting flash-crowds ... 15

3. Benchmarking ... 17
3.1. Creating a representative list of requests .. 18
3.2. Method 1: Finish request after request, as fast as possible 23
3.3. Method 2: Fixed amount of requests per second, colliding requests.......... 26
3.4. Method 3: Fixed amount of requests per second, interleaving requests 27
3.5. Method 4: Fixed amount of requests per second, random timing............... 28

4. Benchmarking RaDaR .. 29
4.1. Implementing RaDaR ... 29
4.2. Synthetic benchmarking results .. 32

4.2.1. Single Apache web server... 33
4.2.2. Benchmarking the separate components... 34
4.2.3. Scaling the RaDaR-like system .. 36
4.2.4. Performance during a flash-crowd.. 37
4.2.5. Instability of the content placement and request distribution

algorithms ... 39
4.3. Trace-based benchmarking ... 42

5. Conclusion .. 46
References... 48

 4

1. Introduction

The term “flash-crowd” was first used in a short science-fiction story by Larry Niven
[12]. The story talks about the invention of a transfer booth that could take one
anywhere on earth almost instantly. The designers of this booth did however not
anticipate on thousands of people simultaneously visiting the scene of any event
reported in the news, resulting in chaos and confusion. Something similar can happen
on the Web, when the news about an event can result in a large number of users
suddenly trying to access a (newly) popular web site. Some of these events are
predictable, like specific competitions at the Olympic games or the US Presidential
Elections; others like epidemics or terrorist attacks are not. When a web site is not
prepared for the enormous growth in demand it might lead to significant delays,
requests not reaching it and eventually complete failure. Even when the event is
predictable it is difficult to predict the exact magnitude of the extra demand and to
react in time.

One of the solutions to the flash-crowd problem is to throttle the demand at an early
stage of each request, hereby servicing only part of the requests and rejecting the rest
as early as possible; this obviously does not give satisfying results to every user. A
better (and more commonly used) solution is to replicate the popular web documents
on different web servers and redirect users to these servers. In the past, the decision
on the amount and placement of the replicas was entirely done by system
administrators, which is an immensely difficult and tiresome job. Nowadays systems,
called replica hosting systems, are used to create, migrate and remove replicas
dynamically.

A promising system to handle flash-crowds is RaDaR [2]. It uses multiple levels of
machines to redirect users, and can create replicas on the fly when necessary.
However, RaDaR was designed with scalability in mind and therefore a trade-off
between scalability and adaptability is made. For instance, no live information about
the load of the web servers hosting the replicas is used to make decisions on where to
redirect users. This approach minimizes the internal communication of the system,
but makes it react slower to any sudden changes in load.

This thesis presents a benchmark that is representative for real world use of a web
server. The benchmark is then used to measure the performance of RaDaR under
normal load as well as in a flash crowd. This goes much further than the original
RaDaR measurements. To give RaDaR a better fighting chance against a flash-crowd
we altered the design by replacing algorithms with newer ones from another system,
ACDN, by the same authors as RaDaR [14].

Our results are three-fold: first we show how to dimension a RaDaR-like system.
Second, we demonstrate based on a synthetic benchmark as well as a trace-based
benchmark that the RaDaR-like system adjusts to a flash-crowd in a timely and

 5

efficient fashion. Finally, we identify an inherent instability in the replica placement
and request distribution algorithms that handle offloading.

This thesis is organized as follows. In Section 2 we discuss a selection of replica
hosting systems and different approaches to decide where to place documents, where
to redirect users and how to detect flash-crowds. In Section 3 we describe the
qualities a good web server benchmark should possess. We present four different
synthetic methods of benchmarking web servers, each method being an improvement
over its predecessor. Finally we explain why the final method gives reliable and
representative results. In Section 4 we describe how we implemented a RaDaR-like
system and what changes were made to make RaDaR a more adaptable system in the
context of a flash-crowd. The rest of the chapter contains details about the experiment
and the benchmarking results from the synthetic benchmark as well as from replaying
the trace of an actual flash-crowd. In Section 5 we draw our conclusions.

 6

2. Related work

Earlier research has resulted in a lot of different systems, such as RaDaR, DotSlash
and CoralCDN, to handle the distribution of web documents across multiple servers.
We present the basics of a selection of these systems and their different approach to
decide where to place documents, where to redirect clients and how to detect flash-
crowds. First an overview of all the systems is given in Section 2.1; this includes the
philosophy behind the systems, the layout and a short description of the different sub-
systems. Section 2.2 and Section 2.3 describe how the different systems handle
replication with respect to replica placement and redirection. Finally Section 2.4
discusses the way these systems detect and react to a flash-crowd.

2.1. Replication systems overview

In this section, we present a general description of the most important content
delivery networks. More details about specific aspects of their technical
characteristics are discussed in the remaining of this chapter.

2.1.1. RaDaR

RaDaR (Replicator and Distributor and Redirector) is an architecture for information
hosting systems that can be deployed on a global scale [2]. It places and moves
documents dynamically. The architecture tries to balance the load among the different
servers used, places replicas of documents in the proximity of clients from which
most of the requests originate and scales without creating bottlenecks.
Figure 2.1 shows a high-level view of RaDaR. Every document has a physical and a
symbolic name. A multiplexing service maintains the mapping between the two
names. The physical name is the name by which the objects are accessed internally by
the system (for example the URL of a replica). The symbolic name is the name that is
used by external web clients to access the object. A symbolic name can be mapped
onto multiple physical names when the document is replicated.
When an object is created, it is placed on one of the hosting servers and then
registered with the multiplexing service. Registering involves picking a symbolic
name for the object and telling the multiplexing service where the object was placed.
The host name part of a symbolic URL always resolves into the multiplexor’s
identity. This way all requests are sent to the multiplexing service. The multiplexing
service will then pick a physical location of the object based on client location and
host load, fetch the object and return it to the client.
Decisions on the number and location of object replicas are taken by the hosting
servers in a distributed manner. Every hosting server collects access statistics about
each of its objects and periodically decides whether to drop, migrate or replicate
objects. When a host decides to migrate or replicate an object, it sends a request to the
replication service to find a new location for the object. The replication service keeps

 7

track of the load of all hosts in the system, which allows it to place replicas according
to their loads.

Figure 2.1: High-level view of RaDaR

2.1.2. ACDN

ACDN is a content delivery network for applications [14]. It improves performance
of accesses to dynamic content and other computer applications. It can be seen as the
successor of RaDaR. Its architecture is very similar to that of RaDaR but includes
algorithms for automatic redeployment of applications on networked server and for
distributing client requests among application replicas based on their load and
proximity. The system also contains a mechanism that keeps application replicas
consistent in the presence of developer update to the application data.
Each ACDN server is a standard web server that also contains a replicator, which
implements ACDN-specific functionality. There is also a global central replicator
that mainly keeps track of application replicas in the system. The server replicator
contains scripts to decide if any application on the server should be replicated or
deleted and a script to report the load of the server.

2.1.3. Akamai

Akamai is a commercial content delivery system that serves requests from a variable
number of surrogate origin servers at the network edge [5]. Caching proxies are used
to replicate documents, while a hierarchy of DNS servers redirects client requests to
these proxies. When choosing a server to handle a client request, a trade-off will be
made between a low round-trip-time and low packet-loss. To gather information

 8

about server resources, Akamai places a monitor in every replica server. Clients are
simulated to measure overall system performance and to communicate with border
routers to get an estimation about distance-related metrics.

2.1.4. DotSlash

DotSlash allows websites to form a community and use spare capacity in the
community to relieve flash-crowds experienced by any individual site [18]. A web
server can join the community by registering it selve with a DotSlash service registry.
In case of being overloaded, participating servers will discover and use their spare
capacity to take over some load. A web server is in one of the following states at all
times: SOS state when its receiving rescue, rescue state when its providing rescue or
normal state otherwise. Figure 2.2 shows an example of a possible rescue relationship
in DotSlash. S1 and S2 are origin servers in this example, while S3, S4, S5 and S6 are
providing rescue. S7 and S8 are not involved in rescue services at all.

Figure 2.2: example of a possible rescue relationship in DotSlash

2.1.5. CoralCDN

CoralCDN is a peer-to-peer content distribution network that replicates content in
proportion to the contents popularity, regardless of the publisher’s resources [9]. One
of the systems goals is to avoid flash-crowds. CoralCDN is composed of three main
parts:

1. a network of cooperative HTTP proxies that handle user requests
2. a network of DNS servers that map clients to nearby HTTP proxies
3. an underlying indexing infrastructure (Coral) on which the first two applications

are built

Every node in the network runs the indexing infrastructure. This infrastructure does
not implement a DHT but a so-called ‘distributed sloppy hash table’ (DSHT). DSHTs
provide applications with the means to store key/value pairs, where multiple values
may be stored under the same key. The difference between normal distributed hash
tables and DSHTs is that DSHTs use a sloppy storage technique that not only stores

 9

key/value pairs on the node closest to the key, but also caches the pairs at nodes
whose IDs are close to the key. This technique greatly reduces the creation of hot-
spots in the overlay. CoralCDN uses this service to map a variety of types of keys
onto addresses of CoralCDN nodes. This way CoralCDN is able to find nameservers,
HTTP proxies caching particular web objects and nearby Coral nodes for the purpose
of minimizing internal request latency.
The nodes are grouped together in so-called clusters characterized by a maximum
desired network round-trip-time (the diameter of a cluster). A fixed hierarchy of
diameters known as levels parameterizes the system. Each node is therefore a
member of one cluster at each level. When searching for information, Coral first uses
the smallest and fastest cluster it belongs to, and queries higher-level clusters only if
necessary. Besides running Coral, all the nodes also have a DNS server and a HTTP
proxy running.

2.2. Replica placement

Replica placement algorithms are used to determine when and where a copy of a
document must be created or removed. These algorithms can be triggered either
periodically, aperiodically or in a hybrid fashion [15]. When triggered periodically, a
number of input variables are analyzed at fixed time intervals. Such an evaluation
scheme can be effective for systems that are relatively stable. With less stable systems
it might be difficult to determine the right interval to evaluate: a too short period will
lead to unnecessary overhead, while a too long period might cause the system to react
too slowly to changes. Aperiodic triggers will monitor the variables continually
(usually using metrics like client latency or server load). This has the advantage of
allowing the system to react quickly to the current situation. This does however
require continuous evaluation of the variables. Hybrid triggers combine the best of
both worlds. They combine periodic and aperiodic triggers to be able to perform
global optimizations as well as reacting fast enough to emergency situations.

In RaDaR, replica placement is done in cooperation between the replica servers and
the replication service. To make this service scalable it is implemented as a hierarchy
(see Figure 2.3).

When a host is overloaded it can send an offload request to its own replicator to find
under-loaded hosts where to migrate documents. Besides using replicating for load
balancing, every host also periodically runs the replica placement algorithm to
improve proximity between clients and hosts. If a document replica receives fewer
requests than the deletion threshold U (and this is not the sole replica of the
document), it will be deleted. When the load of the document exceeds U, it will be
migrated to a host that occurs on the majority of preference paths
(MIGR_RATIO>0.5); these paths are based on information periodically extracted
from routers. In case migration fails (when for instance there is no such host) an
attempt is made to replicate the document to a host that occurs on at least
REPL_RATIO of the router paths. The condition for replication REPL_RATIO is a lot

 10

Figure 2.3: the replicator hierarchy in RaDaR

weaker than for migration (MIGR_RATIO). To make replication worthwhile, the load
should always be above the replication threshold M (minimum load where replication
outweighs the cost of creating a new replica).

In ACDN, replica creation is also initiated by the server hosting an existing replica.
Similarly to RaDaR, when the server is overloaded, it will query the central replicator
for a low-loaded server in the system, which will then be asked to create a new
replica. When the reason for replication is improving proximity, the target server will
be identified locally from its replica usage. Finally the target server informs the
central replicator about the new replica. The central replicator sends this update to the
DNS server that does the redirecting, which can now recompute its request
distribution policy.
The decision process on a server with the application replica initiates replica deletion
as well. The server sends the central replicator a request to delete the replica. When
the server’s replica is not the last one in the system, the replicator sends the deletion
update to the DNS server, which can now recompute its request distribution policy.
Once the DNS server has updated its policy, the server gets permission to delete the
replica after the DNS time-to-live (TTL) has expired, to avoid running into problems
with requests that arrive at the server due to earlier DNS responses.
The replica placement algorithm uses three parameters: the deletion threshold D, the
redeployment threshold R and the migration threshold M. The deletion threshold
characterizes the lowest demand that still justifies having a replica. The redeployment
threshold reflects the amount of demand from clients in the vicinity of another server
(i) to justify an application replica at that server. Let Bi be the amount of data served
to clients close to this server. Now when Bi is larger than the total cost of replicating,
the application will be replicated. Sometimes it is even beneficial to replicate even if
Bi is smaller than the total cost, just to improve the latency. Also Bi should be larger
than the deletion threshold to avoid creating a replica, which will then be deleted
shortly after because of lack of demand.

 11

The migration threshold M is used to make the migration decision. When Bi/Btotal >
M, and if the bandwidth benefit would be sufficiently high relative to the overhead,
the application will be migrated.
When a server is overloaded it will also replicate the application. The system has two
load watermarks, high watermark HW and low watermark LW. A server considers
itself overloaded when the load reaches HW, and will continue considering itself
overloaded until the load drops beneath the low watermark.

In Akamai documents are replicated by caching them. When a replica server receives
a request for a document it does not own, it treats it as a miss and fetches the
document from the origin server. This means that the creation of a replica is delayed
until the first request. The decision to place a replica in a certain server is taken when
redirecting client requests to this server. To improve the performance of uncacheable
documents, the documents are divided into cacheable and uncacheable portions.

DotSlash also uses a form of caching. The rescue servers generate a virtual host name
for all the origin servers it is willing to rescue. It keeps a table mapping these virtual
host names to the origin servers. The origin servers will redirect to these virtual host
names and the rescue server can look up in the table which content to return.
Whenever a rescue server has a cache miss for one of the origin servers it will issue a
reverse proxy request to the origin server.

In CoralCDN each client keeps a local cache from which it can immediately fulfill
requests. When a client requests a non-resident URL, CoralProxy first attempts to
locate a cached copy of the referenced resource using Coral. If CoralProxy discovers
that one or more other proxies have the data, it attempts to fetch the data from the
proxy to which it firsts connects. If Coral provides no referrals or if no referrals return
the data, CoralProxy must fetch the resource directly from the origin.

2.3. Request routing

Whenever a request for a certain document is received from a client, the system needs
to decide which replica server shall best service this request and how to actually
redirect the client to this server. This problem is called request routing [15]. The
entire request routing problem can be divided into two sub-problems: coming up with
a redirection policy and selecting a redirection mechanism.
A redirection policy is an algorithm that defines how to select a replica server in
response to a given client request. A redirection policy can be either adaptive or non-
adaptive. Adaptive policies take the current system conditions into consideration
when making their decision, while non-adaptive policies do not. The information that
adaptive policies may use, for example, is the load of replica servers or congestion of
network links. Some request-related information like the object requested or client
location might also be useful.
The redirection mechanism informs the client about the decision made by the
redirection policy. Redirection mechanisms can be classified into transparent, non-

 12

transparent and combined mechanisms. Transparent mechanisms hide the redirection
from the client, while in non-transparent mechanisms this is visible to the client.
Combined mechanisms take the best from the two previous types and eliminate their
disadvantages.

RaDaR uses a non-adaptive redirection policy to select a replica server for a given
request. All replica servers are ranked based on their predicted load, which is derived
from the number of requests each has received so far. So instead of looking at the
current load of the replica servers, as an adaptive policy would do, it uses the load
information it has gathered in the past. Clients are then redirected to a replica server
close to them, while the following invariant has to be maintained: the access count of
the most heavily loaded replica is at most a constant times the count of the most
lightly loaded replica.
The redirection mechanism is implemented in the multiplexing service. To help make
the system scalable the multiplexing service is split into two types of components:
redirectors and distributors. The redirector maintains the mapping from symbolic to
physical names. The total symbolic namespace is divided over the different
redirectors based on some hash function. The amount of redirectors is kept low
because of the high frequency of updates to the symbolic-name/physical-name
mapping. The second type of component, the distributor, stores the hash function
mapping the symbolic names to the different redirectors. Because the function is
fairly static, distributors can be highly replicated. Figure 2.4 shows the multiplexing
service.

Figure 2.4: the multiplexing service in RaDaR

A client request first arrives at a distributor close to the client. RaDaR uses DNS
servers (which makes this totally transparent to the client) to map the domain name of
the requested website to an IP address of a distributor. The distributor will forward
the request to the appropriate redirector using the hash function. The redirector will

 13

then send select the best host for the client and will forward the request to it. The host
sends the object directly to the distributor, which forwards it back to the client.

In ACDN every DNS server stores tuples of the form (R, Prob(1), .., Prob(N)), where
R is a region (could be geographical regions or network regions) and Prob(i) is the
probability of selecting server i for a request from this region. The central replicator
computes these tuples and sends them to the DNS servers whenever there is an
update.
The load watermarks LW and HW seen earlier in this ACDN when replica creation
was concerned are also used in the request distribution algorithm. The algorithm
operates in three passes over the server. The first pass assigns a probability to each
server based on its load. Servers with a load above HW get zero weight, servers with a
load beneath LW get unity weight and servers with a load between LW and HW get a
weight depending on where the load falls between LW and HW. If all servers are
overloaded, the algorithm assigns the load evenly among them. In the second pass the
algorithm will compute probabilities depending on distance from the region. In the
third pass the probabilities will be normalized so that they will sum up to 1.

The important difference to notice between RaDaR and ACDN is that ACDN uses
load feedback to take request distribution decisions while RaDaR does not. The
central replicator in ACDN uses the load information that is periodically being send
to it by all the hosting servers to calculate the distribution tuples for the DNS server.
In RaDaR however, the redirectors keep track of the number of accesses each replica
receives themselves. A drawback of the latter method is that redirectors have no
information about how much load other redirectors might put on a given replica
server. The reason for using this algorithm though is that RaDaR was designed to be
deployed on a global scale, using load feedback would mean that every redirector
needs information about the load of all the replica servers; this could mean an
enormous amount of overhead when a large system is concerned.

Akamai also uses a dynamic DNS system for its redirection. The DNS system has a 2
level hierarchy. When a resolver queries an Akamai top level DNS server, it will
return a domain delegation to a low level DNS server (with a TTL of about an hour)
that is in the same location as the client. Then the resolver will query this DNS server,
which will return the IP addresses of servers that are available to satisfy the request.
This resolution has a short TTL to allow Akamai to redirect requests to other
locations or servers as conditions change.

DotSlash has two configurable parameters: the lower load threshold and the upper
load threshold. These two parameters define three regions: lightly loaded region [0,
lower load threshold), desired load region [lower load threshold, upper load
threshold] and the heavily loaded region (upper load threshold, 100]. Now when the
load of an origin server gets into the lightly loaded region it will decrease the
probability of redirecting requests, where it will increase the probability of redirecting
requests when the load gets into the heavily loaded region. When a rescue server gets
into the lightly loaded region it will increase the bandwidth available for taking the

 14

requests of origin servers and it will decrease the bandwidth available for taking
requests when it gets into the heavily loaded region. The amount by which the
probability is changed depends on the difference between the load and the reference
load (the average of the lower threshold and the upper threshold).
To offload client requests to its rescue servers DotSlash uses both HTTP redirecting
and DNS round robin.

A good example of a system that uses a non-transparent redirection mechanism is
CoralCDN. To use CoralCDN, a content publisher appends “.nyud.net:8090” to the
hostname in a URL. Now when the client accesses this Coralized URL, the local DNS
resolver of the client will query a Coral DNS server. This DNS server will probe the
client to determine its round-trip-time and last few network hops. Based on the probe
results, the DNS server checks Coral to see if there are any known nameservers
and/or HTTP proxies near the client’s resolver. If none were found, it returns a
random set of nameservers and proxies. The client will now send the request to the
specified proxy. If the proxy is caching the file locally, it returns the file and stops.
Otherwise, the proxy looks up the web object’s URL in Coral. If Coral returns the
address of a node caching the object, the proxy fetches the object from this node. In
case no other nodes are currently caching the object, the proxy will download the
object from the origin server. The object is then returned to the client, and a reference
will be stored in Coral, recording the fact that this proxy is now caching the URL.

2.4. Detecting flash-crowds

In a flash-crowd, before doing any replication or adapting of the redirection policy,
the problem is to first actually detect the flash-crowd. The most systems use aperiodic
triggers to do this (see Section 2.2): one or more variables are monitored continuously
to look for any irregular behavior. One of the most used and simplest metrics to
monitor is the request rate. When the request rate exceeds a certain threshold, the
system starts adapting to the new situation. The idea behind this is that a high request
rate might be a sign of an upcoming flash-crowd [11]. Using a single threshold
however, is in practice not always enough; the oscillating behavior of the request rate
could result in a lot of unnecessary system adaptations. To address this problem,
systems like DotSlash and ACDN use a watermarking technique with two thresholds
[14][18]. The system defines two watermarks: the low watermark and the high
watermark. After exceeding the high watermark, replica servers consider themselves
overloaded, which will remain unchanged until the request rate reaches the low
watermark.

Initiating document replication after one of the servers is considered overloaded
might however prove to be too late when a flash-crowd occurs. It might be
advantageous to try to avoid flash-crowds more proactively; Felber et al. describe an
algorithm that introduces a third watermark to detect flash crowds more gradually and
to adjust the system according to the current phase of the flash crowd [7]. The extra

 15

Figure 2.5: adding a third watermark

watermark is positioned between the low watermark and the high watermark, and is
treated as an early warning about an upcoming flash-crowd. Figure 2.5 illustrates how
this algorithm works.

Inter-arrival time is computed as an exponential weighted moving average of the
difference between the arrival time of a hit and the arrival time of the previous hit. In
other words: the lower the inter-arrival time, the higher the load on the server. When
the inter-arrival time reaches the “copy threshold“ TC (at time t1) the system suspects
a flash-crowd and will take early measures by starting to replicate documents.
However, because CPU and network have not yet reached saturation during this point
in time, requests will not be redirected to these new replicas until the inter-arrival
time reaches the “redirection threshold” TR (at time t2). After the flash-crowd has
passed, the system has to return to normal operation. Again, to avoid that small
oscillations around the average inter-arrival time repeatedly active and deactivate
request redirection, the system does not deactivate request redirection until the inter-
arrival time reaches the “service threshold” TS (at time t3). The service threshold is
typically a few times bigger than TR.

 16

3. Benchmarking

To study the performance of flash-crowd management systems in a reliable and
systematic fashion we need a good benchmark. This chapter describes the
characteristics of such a benchmark, and explains why the benchmark that we
propose here meets all these demands.

Using the definition of a flash-crowd as a sudden growth in the request rate, a flash-
crowd management system needs to detect this peak and then try to balance the
increased load between the available web servers. Given this fact, the performance of
a flash-crowd management system depends on

• how fast it detects the flash-crowd. The faster it detects it, the faster it will be
able to react to it.

• how long it takes before the load is (almost) evenly balanced between the
servers.

• how evenly the load is being balanced between the servers.

This means that we need a benchmarking program that is able to change the request
rate directly to simulate the flash-crowd and to stress the web server enough to get it
overloaded. However, most existing benchmarking programs allow one to control the
concurrency degree (amount of threads sending requests concurrently), but not the
request rate. For instance Flood and HammerHead are scenario-based benchmarks for
web servers that will hit URLs from a list in sequential order [8][10]. Although one
can change the load on the web server by altering the number of used threads, this
will not get the server into an overloaded state, because the request rate will
effectively be adjusted to the capacity of the server; only a slowdown will be noticed.
On the other hand, certain programs (like the Apache benchmark tool ab) do give the
operator the option to set an even request rate. However, they will send the same
requests over and over again which does not produce realistic results.

Besides the above requirements, to make a benchmark useful to the user in general,
and to create credible and meaningful results, the benchmark has to provide the
following non-functional properties:

• be reproducible. If the results of the benchmark are not reproducible the
results will have no meaning.

• be representative. If the benchmark is not representative for a real system, the
results will have no meaning for a real situation.

• be scalable. This will make the benchmark useful to a whole array of
differently sized systems.

 17

Clearly, a good benchmarking tool should not issue the same single query again and
again. Section 4.2 therefore contains details about how to create a representative list
of requests to be addressed to the benchmarked system. Then, Sections 4.3 to 4.6
describe various methods to issue requests, from a simple but naïve implementation
to the actual tool, which was used in the remaining of this thesis.

3.1. Creating a representative list of requests

To ensure that benchmarking gives realistic results, the benchmarking program needs
to issue requests for different documents. In actual real world deployment the systems
would be getting requests for a whole array of different files as well.

Earlier research has shown that the file size of requested documents follows a Pareto
distribution (see Figure 3.1 and Figure 3.2) with a median average file size of 2000
bytes, and a mean average file size of 4000-6000 bytes [3][4][13]. A Pareto
distribution is a heavily tailed probability distribution that is found in a large number
of real-world situations [16]. If X is a random variable with a Pareto distribution, then
the probability that X is greater than some number x is given by:

for all x ≥ xm, where xm is the (necessarily positive) minimum possible value of X, and
k is a positive parameter.

The popularity of documents follows a Zipf (see Figure 3.3 and Figure 3.4)
distribution. Zipf’s law [17] states that

where Pn is the frequency of item n and a is almost equal to 1.

filesize

oc
cu

re
nc

e

filesize (LOG)

oc
cu

re
nc

e
(L

O
G

)

 Figure 3.1: filesize versus occurrence, Figure 3.2: filesize versus occurrence

 a Pareto distribution on a LOG/LOG scale

 18

document rank

nu
m

be
r o

f r
eq

ue
st

s

document rank (LOG)

nu
m

be
r o

f r
eq

ue
st

s
(L

O
G

)

 Figure 3.3: document rank versus number Figure 3.4: document rank versus number
 of requests on a normal scale of requests on a LOG/LOG scale

The reason that the figures of the Pareto distribution and the figures of the Zipf
distribution look so much alike is that the Zipf distribution is essentially a discrete
version of the Pareto distribution [1]. The x-axis in Figure 3.3 and Figure 3.4 is
continuous, while bins are used in Figure 3.1 and Figure 3.2.

A request list can be constructed in two ways. One can implement algorithms
describing a Pareto and a Zipf distribution to determine the file size and popularity of
documents respectively. Then these algorithms can be used to construct the request
list. This method is called synthetic benchmarking. On the other hand one can use
existing request traces. A log file is taken from a web server and used to replay the
requests. This is called trace-based benchmarking.

This means there is a trade-off to be made between flexibility and realism. The first
method gives enormous flexibility; one can decide exactly what the list will look like
and how long it is going to be. This is a lot harder to do when using actual traces
taken from a web server, but one can however expect the results to be more realistic.
We decided to use the first method to give me the flexibility we need to simulate a
flash-crowd. To make the results more realistic we generated the request list based on
statistics extracted from actual web server log files.

We started by taking the log file from the web server of the Computer Science
Department of the Vrije Universiteit Amsterdam (http://www.few.vu.nl). See Table
3.1 for more information about this log file. Figure 3.5 shows how document rank
relates to the amount of requests on a LOG/LOG scale.

Vrije Universiteit log file
date log file April 23 2005
number of requests 2,863,248
number of successful requests 2,671,887
number of unique documents 320,099
percentage of requests for top 10 files 7.50%

Table 3.1: Vrije Universiteit log file properties

 19

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000
document rank (LOG)

nu
m

be
r o

f r
eq

ue
st

s
(L

O
G

)

Figure 3.5: document rank versus number of requests for the Vrije Universiteit

 log file, on a LOG/LOG scale

If we compare this figure with Figure 3.4, we can see that this log file clearly follows
a Zipf distribution. This means that this log file is representative for real world use of
a web server, as far as document popularity distribution is concerned.

The same type of comparison can be made for the distribution of the file size of the
requested files. Figure 3.6 shows file size versus occurrence. And again is shown that
this log file shows the expected behavior if we compare Figure 3.6 with the model
behavior of Figure 3.2.

We however decided not to base the benchmark on this trace. The reason is that even
the most popular documents get only a relatively moderate amount of requests (as can
be seen in Table 3.1). This shows that the VU website may simply not need
replication of documents. Should its load exceed a single server capacity, all that
would be needed is distribution of the documents over multiple web servers.
However, real flash-crowds receive requests for only a few documents, which
requires replication. We therefore need a log file containing fewer documents, so that
each one accounts for a larger fraction of the total. This way the flash-crowd
management system will be forced to replicate documents and it is possible to
evaluate how well it does this.

 20

1

10

100

1000

10000

100000

100 1000 10000 100000 1000000
file size (in buckets of 512 bytes) (LOG)

oc
cu

rr
en

ce
 (L

O
G

)

 Figure 3.6: file size versus occurence of the Vrije Universiteit log file, on a LOG/LOG scale

A better log file for the purpose of testing flash-crowd management systems is the log
file of the Minix3 web server. With the release of version 3 of the MINIX operating
system the web server experienced a huge amount of requests for a relatively small
number of documents. Table 3.2 shows more information about this log file.

The reason why the total number of requests and the total number of successful
requests are equal here is that the Globule server used to host this site only logs the
successful requests. This is not a problem for us because only the successful requests
are used anyway.

The same procedure described earlier can be used to analyze this log file. Figure 3.7
shows document rank versus number of requests.

Minix 3 log file
date log file November 15 2005
number of requests 606,997
number of successful requests 606,997
number of unique documents 507
percentage of requests for top 10 files 78.8%

Table 3.2: Minix3 website log file properties

 21

1

10

100

1000

10000

100000

1 10 100 1000

document rank (LOG)

nu
m

be
r o

f r
eq

ue
st

s
(L

O
G

)

 Figure 3.7: document rank versus number of requests for the Minix3 website log file,
 on a LOG/LOG scale

Although not as clear as with the Vrije Universiteit website log file, the beginning of
this curve still follows a Zipf distribution whereas the end deviates from it a little bit.
Because this only involves a few requests (on a total of 606,997) this is not of very
much importance.

Figure 3.8 shows the file size distribution of this log file. As can be seen there are a
lot of small files as opposed to only a few larger files. This is exactly the behavior of
a Pareto distribution (see Figure 3.2).

Because replaying the entire log file for every benchmark would take an enormous
amount of time, we instead used the data about document popularity to create a new
shorter request list. The choice for a certain document for each entry in this list is
based on the probability function:

 number of requests received by d
 Pd =
 total number of requests in the log file

This way it is possible to generate a request list as big, or as small, as necessary.

 22

1

10

100

1000

100 1000 10000 100000

file size (in buckets of 512 bytes)

oc
cu

re
nc

e

 Figure 3.8: File size versus occurrence of the Minix3 website log file

The next thing after creating a request list was coming up with a method to decide
how exactly the requests should be sent. Because the results of the benchmark have to
be reproducible there has to be some sort of regularity in it. Also, changing the timing
can be used to influence the load on a system.

3.2. Method 1: Finish request after request, as fast as possible

The first method we considered spawns a number of workers (threads), each of which
starts sending requests sequentially from the request list, as fast as possible. A worker
will not send a new request until its last request is completed and the answer has been
received. This method is similar to the ones used in Flood and HammerHead.

In this method one can control the number of workers, thereby controlling the load on
the system. This means that one can fix the concurrency degree. A metric like
“number of workers” can now be used to quantify the load on the system during a
certain benchmark.

It is important that every worker does not start at the top of the same request list.
Otherwise, the system would receive an amount of requests for the same document
(the one on top of the list) equal to the number of workers. The same thing would
happen with the second document on the list, etc. Because web servers store a few
recently requested disk blocks in memory, implementing method 1 like this would
have the undesirable side-effect that most documents are fetched from memory

 23

instead of disk. A solution to this is to let every worker start benchmarking at a
different offset in the request list using the following algorithm:

Ox = x * (R / W)

Ox denotes the offset from the start position for worker x
R denotes the total number of requests in the request list
W denotes the total amount of workers

Figure 3.9 shows an example of determining the offset from the start position for 3
workers.

Another solution would have been to start a worker only after the worker that was
started before this worker has already sent a few requests (see Figure 3.10). The only
problem with this is that is really hard to determine at what moment in time all the
workers are actually sending requests. Because of this problem we used the solution
described earlier for this method.

Figure 3.9: example of determining the offset for 3 workers

 24

 Figure 3.10: Another (bad) solution to ensure that workers do not send requests for the same
 file at the same time.

Figure 3.11 shows the results of this method when it is being used for benchmarking
an Apache web server. We notice that the server does not show any limit in its
processing capacity but simply responds slower and slower as the concurrency degree
increases. The reason is that as the server slows down the workers will slow down as
well, because they will wait for the answer of a request before sending a new request.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35

number of workers

cl
ie

nt
 p

er
ce

iv
ed

 la
te

nc
y

(m
ic

ro
se

c)

 Figure 3.11: benchmarking an Apache web server using method 1

 25

This behavior does not correspond to real situations of server overload. In a real
flash-crowd, users will keep sending their requests regardless of the load on the
system, which effectively can bring a server to a halt. We therefore need a better
method for sending requests, in which it is possible to select the request rate rather
than the concurrency degree.

3.3. Method 2: Fixed amount of requests per second, colliding requests

To address the issues of the first method, the second method tries to control the
request rate rather than the concurrency degree. It spawns a number of workers, but
instead of sending requests as fast as possible, each worker will send exactly 1
request per second. The same algorithm for determining the offset from the start
position of the request list as was used by the first method is used here as well.

Now the number of workers can be used to specify the number of requests that should
be sent each second (“number of workers” and “requests per second” essentially
mean the same thing in this method).

In this method, we need to make sure that all workers will not send their requests at
the same moment, leading to the server receiving a burst of requests every second. To
get an even distribution of the different requests over the 1 second timeslot, the time
at which a worker will send a request is determined by:

Tx = T0 + (x * (1000000 / W))

Tx denotes the time worker x will send its request (in microseconds)
T0 denotes the absolute start time of the time slot (in microseconds)
W denotes the total amount of workers

Figure 3.12 shows the result of this method when it is being used for benchmarking
an Apache web server. As can be seen from the figure this method has accomplished
exactly what it was designed for: it is able to push the web server into an overloaded
state. However, problems with this method arise when several client machines are
used for spawning worker threads. This may be necessary to be sure that the
machines used by the benchmarking tool are not the bottleneck in the whole
benchmarking setup.
When a multitude of machines are used, starting times of requests will collide, the
exact same thing we tried to avoid by using different times for sending requests. This
means that a little adjustment to this method is necessary.

 26

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50 100 150 200 250 300 350 400 450

load (requests/sec)

cl
ie

nt
 p

er
ce

iv
ed

 la
te

nc
y

(m
ic

ro
se

c)

 Figure 3.12: benchmarking an Apache web server using method 2

3.4. Method 3: Fixed amount of requests per second, interleaving requests

Method 3 is the same as the second method, with the small difference that when
multiple machines are used by the benchmarking tool for spawning workers, they will
agree on a time to start benchmarking and can now avoid sending requests at the
exact same time as other machines. This requires a small adjustment to the algorithm:

Tx = T0 + (x * (1000000 / W)) + (Mx * (1000000 / W / Mtot))

Tx denotes the time worker x will send its request (in microseconds)
T0 denotes the absolute start time of the time slot (in microseconds)
W denotes the total amount of workers

 Mx denotes the number of the machine worker x is on
Mtot denotes the total amount of client machines

This makes the request distribution extremely even, but it is actually so even that it is
not representative anymore. Also, synchronizing the different machines is very hard.
What we need is a new method that shows some fuzzy behavior (requests in a real
situation are not perfectly distributed over time either) but does have reproducible
results.

 27

3.5. Method 4: Fixed amount of requests per second, random timing

Method 4 builds on the idea of sending a fixed amount of requests per second. This
method will also spawn a number of workers, but instead of having them send exactly
1 request per second, the interval between requests will be selected randomly, with an
average between 0.7s and 1.3s. After a few requests the total load per worker will
average at 1 request per second, but with the added bonus that there is no need for
algorithms to determine the exact time to send a request. To determine where in the
request list to start, this method also uses the algorithm described earlier for method
1.

Because of the fact that a random number is picked, most requests will not collide,
but sometimes they will, just as would be the case in a real situation. This makes the
benchmark very representative of how a system would actually be loaded with
requests. Because every worker will average 1 request per second after a while, the
results are also very reproducible (as long as the same request list is used).

When multiple machines are used for the benchmarking tool, there is no need for
communication between the machines; this makes the benchmark very scalable. Extra
machines can be added to increase the load.

When being used on a LAN (where almost all the factors can be controlled) this
method has all the properties of a good benchmark.

 28

4. Benchmarking RaDaR

Because an implementation of RaDaR was not available at the time this thesis was
written, we had to implement a RaDaR-like system first. However, rather than merely
imitate an existing system, we decided to adjust its architecture to make it perform
better in the context of flash-crowds. First of all, because proximity and migration are
less important than creating extra replicas in a flash-crowd, we decided to focus
exclusively on replication and to ignore proximity/migration. Secondly, RaDaR was
designed with scalability rather than adaptability in mind; in particular the redirecting
algorithm is not using direct load feedback from the replica servers, which harms
adaptability. In their ACDN research where scalability was less of an issue, the
RaDaR authors used another algorithm that does include load feedback. Because of
the importance of adaptability when a flash-crowd occurs we decided to use the
ACDN redirecting algorithm in our RaDaR system instead. Similarly, we used the
ACDN replica placement algorithm. The last change we made in the RaDaR
architecture that will benefit performance is to use redirecting instead of proxying
when delivering web documents to clients.
This chapter is structured as follows: Section 4.1 describes our implementation in
detail. Section 4.2 describes the results of benchmarking RaDaR using the synthetic
benchmark. Then, Section 4.3 shows the results of replaying a trace of an actual
flash-crowd.

4.1. Implementing RaDaR

While implementing the RaDaR-like system we used as many existing components as
possible. Software like Apache and Squid have a solid and stable implementation that
have been used in production for many years; using them in the RaDaR system will
ensure a high implementation quality for the various parts.

As shown in Figure 4.1, the RaDaR system is implemented in a four level hierarchy.
Client requests are sent to the top level, and then they travel down the tree.

The first level consists of the distributors. A distributor receives incoming requests
and then selects the appropriate redirector for the requested web document based on a
hash function. The distributors are implemented as an Apache web server with a
custom module that is registered with Apache as a filter. The default configuration of
Apache 2 is to use a hybrid mode that uses both multiple processes and multiple
threads. To make it easier to share routing information between the different instances
of Apache, we configured Apache to use only threads.

In RaDaR, after selecting the redirector, the distributor forwards the client request to
this redirector. The redirector then decides on which replica server to use and finally
the replica server sends the document to the distributor, which will return it to the
client. The big advantage of this form of proxying is that it is totally transparent to the

 29

distributor distributor distributor

user. We decided to use HTTP redirecting (using HTTP response code 302) instead
though. The client is first redirected to a redirector by the distributor, which redirects
the client to a replica server where the replica can be retrieved. This way we have lost
transparency, but gained extra performance by relieving the distributors from the
burden of proxying large amounts of data.

Redirectors and replicators make up the second level. Because the workload of a
replicator is relatively low, and to simplify communication between redirectors and
replicators, every machine from level 2 acts as a redirector as well as a replicator.
Each redirector/replicator-machine is in exclusive charge of a fraction of the URL
space. It is responsible for monitoring the load of replica servers, and for making
decisions on where to replicate documents and to redirect requests accordingly.
Similarly to the distributors, these machines are running an Apache web server with
custom redirection modules. Periodically, the replica servers send load reports and
offloading requests to the relevant redirector/replicator. These reports and offloading
requests are implemented as simple HTTP requests for a specific URL, and are
filtered out by the replicator module. The replicator then adjusts the load table that is
stored in shared memory or initiates replica creation. In case of replica creation, the
replicator picks the least loaded server not already hosting this replica and adjusts the
redirection table also stored in shared memory.

Redirector/
replicator

Redirector/
replicator

level 1

Redirector/ level 2
replicator

replica server replica server
level 3a

source level 3b

Figure 4.1: high-level view of the RaDaR-like system

 30

The redirector module filters out the forwarded client requests and then picks a
replica server to service the client using the ACDN redirection algorithm. When
making redirecting decisions, this algorithm takes into account the load information
that was stored by the replicator module. The original RaDaR research uses a non-
feedback method for request redirecting that is not very suitable for the situation we
are simulating here. The benefit of using the ACDN algorithm is that redirectors get
exact information about the load of replica servers instead of an estimation. Because
the focus of this thesis is on adaptability and not on scalability we do not have to
worry about the drawbacks of the ACDN algorithm that were discussed in Section
2.3. After selecting a replica server the client will be redirected to this server.

The next level consists of machines that are running one Squid cache each, which will
simulate the behavior of a replica server. The caches are configured as reverse proxies
to a single Apache web server that will act as the source of all the web documents.
Before benchmarking starts every document is requested once and is thus cached on a
single machine; this machine will be seen as the origin server for that document. The
Squid caches are large enough to hold all the documents, this way there will never be
any swapping of documents. Documents are never refreshed either to minimize
communication with the Apache server. After benchmarking has started, the only
time the Apache server is used is when a replica has to be created. The way replica
creation works is that a redirector will add the target replica server to its redirection
table. The next time the redirector receives a request for this replica, it will send the
client a HTTP redirect to the Squid cache where the replica has to be created, which
will result in a cache miss. The cache will then reverse proxy the document from the
Apache server, cache it (thus creating a replica) and then return it to the client. The
first difference with RaDaR is that in RaDaR the target replica server would get the
document directly from the replica server that initiated replication. The second
difference is the moment of replication: in RaDaR the replica gets created
immediately, where in our system this happens when the first request for the new
replica is issued.
Besides running Squid, replica server machines also run a small standalone program
that is used to monitor the load on the replica servers. This standalone program tails
the Squid access log file and records load information per document. The average
load is periodically reported to the replicators on the second level. When the
standalone program notices the server gets overloaded (meaning that the load grows
higher than the HW), it uses the ACDN Replica Placement Algorithm discussed in
Section 2.2 to offload. However, instead of asking the central replicator for the least
loaded server, the standalone program will use the same hash function used by the
distributors to find the replicator that is co-located with the appropriate redirector for
a given document. This replicator can then directly alter the redirecting table, where
in RaDaR the replica server would have to tell the distributor to do this. Figure 4.2
and Figure 4.3 illustrate the difference between the two approaches.

 31

Multiplexing
service

Replication
service redirector / replicator

4.2. Synthetic benchmarking results

For the benchmarking environment we used the Distributed ASCI Supercomputer 2
(DAS-2) [6]. The DAS-2 is a wide-area distributed cluster designed by the Advanced
School for Computing and Imaging, and was built by IBM. The DAS-2 consists of
five clusters, located at five Dutch universities. The cluster we used contains 72 nodes
and runs RedHat Linux. Each node contains:

• two 1-GHz Pentium III CPUs
• at least 1 GB of RAM
• a 20 GByte local IDE disk
• a Myrinet interface card
• a Fast Ethernet interface (on-board)

In Section 4.2.1 we show the results of benchmarking a single Apache web server to
get some reference data. In Section 4.2.2 we describe the results of benchmarking the
separate components of the RaDaR-like system. In Section 4.2.3 we study how to
dimension the RaDaR-like system by putting an ever growing load on it. In Section
4.2.4 we show the results of using a step function to simulate a flash-crowd. And
then, in Section 4.2.5 we show the effects of an instability of the content placement
and request distribution algorithms.

Replica server

1. ask for the least
loaded server

2. response: y

4. report created
replica of d on y

Replica server y

3. create replica for d

Squid cache

1. find the least loaded
server y and alter the
redirecting table to redirect
to y for document d

2. next request
for d

Squid cache y
3. reverse proxy for d
Apache web server

Figure 4.3: Replica creation in our
implementation

Figure 4.2: Replica creation in RaDaR

 32

4.2.1. Single Apache web server

To evaluate the performance of the RaDaR system, we first need a reference server
and determine the maximum load it can sustain. The obvious choice is to use a single
Apache web server as the reference server. To determine the maximum load we start
by putting a low load on the server and then gradually increase it, while measuring
the latency as perceived by the client. Latency is defined as the time spent from
opening the connection with the server to closing the connection after the document
has been received successfully. The load is increased every hour and the 90 percentile
of the latency over the past hour is calculated. We choose to measure the 90
percentile instead of the arithmetic mean or the median, to make sure that accidental
high or low values do not skew the measurement results, and to get the typical latency
a client would experience when the server gets overloaded.
To make sure that the Apache web server is the bottleneck, and not the benchmarking
client machine, we only let the benchmarking machine send a maximum of 100
requests per second and add extra client machines when the load is increased. The
request list used is based on the log file of the Minix3 web site, and Method 4 is used
for benchmarking. Figure 4.4 shows the results of benchmarking a single Apache web
server.

0

20000

40000

60000

80000

100000

120000

0 50 100 150 200 250 300 350 400 450 500

load (requests/sec)

cl
ie

nt
 p

er
ce

iv
ed

 la
te

nc
y

(m
ic

ro
se

c)

Figure 4.4: benchmarking a single Apache web server

As can be seen from the figure the server is underloaded up until 300 requests per
second, and has no problem serving the clients. When the load reaches about 350
requests per second the server resources start to get saturated, and the server
eventually starts to fail serving all incoming requests at around 450 requests per
second. This teaches us that a reasonable load on the server lies around 300 requests

 33

per second and that the absolute peak load is 450 requests per second. We also
conclude that the peak latency lies around 100 milliseconds.

4.2.2. Benchmarking the separate components

To find out about where to place the low load watermark and the high load
watermark, and to see the effect of the added redirections levels on the client
perceived latency, one needs to benchmark the separate components of the RaDaR-
like system. We start by benchmarking a system that contains only one replica server,
using the same benchmark as in Section 4.2.1. Again we start with a low load and
gradually increase it by adding extra benchmarking machines. The load is increased
every hour and the 90 percentile of the client perceived latency over the previous hour
is calculated. The results are shown in Figure 4.5.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50 100 150 200 250 300 350 400 450 500

load (requests/sec)

cl
ie

nt
 p

er
ce

iv
ed

 la
te

nc
y

(m
ic

ro
se

c)

replica server

replica server +
redirector/replicator
replica server +
redirector/replicator + distributor

Figure 4.5: benchmarking a simple RaDaR-like system

As can be seen, the results are mostly similar to the results of the single Apache web
server benchmark of Section 4.2.1. The client perceived latency scales linearly with
the load up until the server resources start to get saturated around 350 requests per
second. Just to be on the safe side, we decided to pick 300 requests per second as the
high load watermark. A normal load for this replica server seems to be around 200
requests per second, so we take this as our low load watermark.

The next step is to benchmark a redirector/replicator. A redirector/replicator is added
to the system, which will redirect all incoming client requests to the replica server.
The benchmarking machines will now send HTTP requests to the redirector/replicator
instead of sending them directly to the replica server. Again, the load is increased

 34

every hour, and the 90 percentile of the client perceived latency over the previous
hour is calculated. The results of this benchmark can be found in Figure 4.5.

Because of the previous benchmark, we know how much time it takes on average for
a replica server to serve a single request. If we subtract this from the time it takes a
redirector/replicator plus a replica server to serve a single request (which we
measured in this benchmark), we know how much time the extra level of redirection
(the redirector/replicator) adds to the total latency. As can be seen from Figure 4.6,
the latency added by the redirector/replicator oscillates around 3 milliseconds. We
can also notice a bit of a growing trend, but no clear maximum is shown. We
conclude that a redirector/replicator can sustain a much higher load than a replica
server. This benchmark does not succeed to put it to its maximum load.

Finally, a similar benchmark can be done for benchmarking a distributor. A
distributor is added to the system, adding yet another level of redirection. This
distributor redirects all incoming client requests to the redirector/replicator, which in
turn redirects the requests to the replica server. Again the load is increased every hour
by adding extra benchmarking machines, and the 90 percentile of the client perceived
latency over the previous hour is calculated. The results of benchmarking this
complete RaDaR-like system (one replica server, one redirector/replicator and one
distributor) can be seen in Figure 4.5. To calculate the time the newest level of
redirection (the distributor) adds to the total latency, we subtract the latency measured
in the previous benchmark from the latency measured this benchmark. Figure 4.6
shows that the distributor, like the redirector/replicator, adds around 3 milliseconds.

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300 350 400 450 500

load (requests/sec)

ad
de

d
la

te
nc

y
(m

ic
ro

se
co

nd
s)

redirector/replicator
distributor

Figure 4.6: latency added by the extra levels of redirection

 35

4.2.3. Scaling the RaDaR-like system

Because no real maximum load was found for the redirector/replicator or for the
distributor in Section 4.2.2, one can conclude that the replica server becomes a
bottleneck before the redirector/replicator or the distributor. This was to be expected,
but leaves us with the question of how to dimension each layer of the RaDaR-like
system for a given load, or for a given number of available machines.

To find out how to dimension a RaDaR-like system, we start with a simple system of
one replica server, one redirector/replicator and one distributor. Again we load the
system with a low load and then gradually increase it. The load is increased every
hour by adding an extra benchmarking machine. We also calculate the 90 percentile
of the client perceived latency over the previous hour. When the client perceived
latency reaches a certain maximum, we consider the previous load put on the system
as the maximum load that this system configuration can sustain. For the latency
maximum we used 100 milliseconds, which was seen earlier as a latency peak in
Section 4.2.1. When the system reaches its full potential, we change the system
configuration by adding another replica server, and keep increasing the load. If
adding replica servers does not help anymore to increase the maximum load a certain
configuration can sustain, we know that either the redirector/replicators or the
distributors have become the bottleneck. Now we can add a redirector/replicator or a
distributor, or both of them. When a system configuration consists of multiple
distributors, the benchmarking machines will be split up in groups, which each target
a certain distributor, to simulate multiple DNS table entries. Figure 4.7 shows the
results of this experiment.

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9 10 11 12

number of replica servers

m
ax

im
um

 lo
ad

 (r
eq

ue
st

s/
se

c)

1 distributor, 1
redirector/replicator
2 distributors, 2
redirector/replicators

Figure 4.7: scaling the RaDaR-like system

 36

As can be seen from the figure, the maximum load that a single redirector/replicator
and a single distributor can sustain scales linearly with the number of replica servers
up until four replica servers. Adding the fifth replica server adds only about 200
requests per second to the maximum sustainable load, while adding any more replica
servers does not help the system at all. One can conclude from this that around 1500
requests per second, either the redirector/replicator or the distributor becomes the
bottleneck of the system. However, adding just a redirector/replicator or just a
distributor did not result into any noticeable gain in performance, which tells us that
both the redirector/replicator and the distributor must have become bottlenecks. This
means that the capacity of a redirector/replicator and the capacity of a distributor are
almost equal, which lies around 1400 requests per second. More proof of this can be
found when both a redirector/replicator and a distributor are added to the system, to
create a configuration with two redirector/replicators and two distributors. Now the
maximum load that can be put on the system scales linearly with the number of
replica servers up until nine replica servers.

We conclude that one redirector/replicator is needed for every four or five replica
servers. The number of distributors should be at least equal to the number of
redirector/replicators, but because of the almost static nature of the distributor, they
can be heavily replicated. In a very large system scenario the load reports of the
replica servers to the redirector/replicators could become the only real bottleneck of
this system as each replica server needs to report its load to most (if not all)
redirector/replicators. However, each report only consists of a single HTTP request
and needs to be issued only every few thousand client requests (depending on the
report interval). We therefore have no reason to believe that the RaDaR-like system
does not scale even to very high loads.

4.2.4. Performance during a flash-crowd

To see how fast the RaDaR-like system reacts to a flash-crowd, how fast it adjusts to
it and how well it balances the load, we subject it to an artificial flash-crowd. We
simulate this by using a step function with two intervals. During the first interval, the
load put on the system is below the low load watermark. During the second interval,
the load increases instantly to a level above the high load watermark. This is
particularly interesting because the authors of ACDN never induced offloading in
their own system by pushing replica servers above the high load watermark [14].
The experiment is conducted in a system with one distributor, one
redirector/replicator and two replica servers. Initially one replica server (replica
server 1) contains all documents, while the second replica server (replica server 2) is
completely empty. The high load watermark and the low load watermark for the
replica servers are 300 and 200, respectively (see Section 4.2.2). Replica servers send
one load report to the redirector/replicators every 10 seconds. To keep things simple,

 37

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45
time (seconds)

re
qu

es
t r

at
e

(r
eq

ue
st

s/
se

c)
replica server 1
replica server 2

HW

LW

replication starts

Figure 4.8: simulating a flash-crowd using a step function

we coupled the execution of the Content Placement Algorithm with the load
reporting. Because we use no regions, and therefore cannot make use of the notion
that every region is responsible for a certain number of requests, we use the crude
estimate that creating a replica for a document will relieve the source replica server
from 50% of the requests for the particular document. During the whole experiment
we monitor how the load is balanced between the two replica servers. Figure 4.8
shows the transition from the first interval to the second interval. The figure plots the
load on each replica server, measured in the number of requests per second, in
sequential 0.5-second intervals. The flash-crowd begins around the 21st second.

As can be seen from the figure, the load on the first replica server is well below the
high load watermark during the first interval of the step function. As a result of this
no replication takes place, leaving the second replica server completely empty.
Consequently the second replica server does not receive any traffic during the first
interval of the step function. During the first eight seconds of the second interval,
when the load is well above the high load watermark, the entire load is still on the
first replica server, until the Content Placement Algorithm gets executed. The system
now replicates the most popular documents (19 documents in total) to the second
replica server, and the load on the two replica servers balances out in less than two
seconds.

What we can gather from this is that the RaDaR-like system adjusts itself in a timely
and efficient fashion to the flash-crowd once it gets detected; only the most popular
documents are replicated and request redirection policies are updated in less than two

 38

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45
time (seconds)

re
qu

es
t r

at
e

(r
eq

ue
st

s/
se

c)

replica server 1
replica server 2
replica server 3

HW

LW

A

B

Figure 4.9: simulating a flash-crowd in a system with 3 replica servers

seconds. However, the time it takes the system to detect the flash-crowd heavily
depends on how often the Content Replacement Algorithm is executed.

To take a closer look at how exactly the load gets balanced over the replica servers,
we repeat the experiment but now use three replica servers instead of just two. Again,
initially one replica server contains all the documents, while the other replica servers
are empty. The results of this experiment can be found in Figure 4.9.

As can be seen from the figure the first replica server serves all requests during the
first interval and during the first eight seconds of the second interval. When the
system first detects the flash-crowd, it starts replicating documents solely to replica
server 3. The figure clearly shows how the increase in traffic to replica server 3
results in a decrease in traffic of equal amount to replica server 1 (see item A in the
figure). After the load of replica server 3 has been reported, replica server 2 is more
attractive as a target for offloading, and therefore the rest of the documents is
replicated to replica server 2. Again the decrease in traffic to replica server 1 and the
increase in traffic to replica server 2 are clearly visible in the figure (see item B in the
figure). The replication process stops when the load on replica server 1 falls below
the low load watermark, which can also be seen in the figure.

4.2.5. Instability of the content placement and request distribution algorithms

When one closely examines the Content Placement Algorithm, it is immediately clear

 39

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 9

time (seconds)

re
qu

es
t r

at
e

(r
eq

ue
st

s/
se

c)

0

replica server 1
replica server 2

HW

LW

Figure 4.10: Offloading too much traffic, creating a herd effect

that the high load watermark determines the exact moment of offloading. It is
however less obvious that the total amount of offloading depends on the low load
watermark. This brings up the question what will happen if we set the low watermark
low enough to offload an amount of traffic that would bring the fresh replica server
into an overloaded state. To simulate this situation, we use a RaDaR-like system of
one distributor, one redirector/replicator and two replica servers. Initially one replica
server contains all the documents while the other replica server is empty. We leave
the high load watermark at 300 requests per second, but lower the low load
watermark to 100 requests per second. When the total load put on the system reaches
400 requests per second in the second interval of the step function, this results into
offloading 300 requests per second to the second replica server, which should
immediately put it into an overloaded state. Again, the report interval is set to 10
seconds, and the execution of the Content Placement Algorithm is coupled with the
load reporting. The results of this experiment can be found in Figure 4.10.

As can be seen from the figure, around the 38th second, replica server 1 offloads 300
requests per second to replica server 2; this almost puts it into an overloaded state.
After this load has been reported, the Request Distribution Algorithm tries to balance
the load between the replica servers by sending most of the requests to replica server
1. This however leads to the load of replica server 1 exceeding the high load
watermark again, which makes the situation even worse. Because servers with a load
exceeding the high watermark get no requests redirected to them, almost the entire
load is now put on replica server 2. The few requests still received by replica server 1,
are due to the fact that replica server 2 is not hosting all of the documents yet. After

 40

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 9

time (seconds)

re
qu

es
t r

at
e

(r
eq

ue
st

s/
se

c)

0

replica server 1
replica server 2

HW

LW

Figure 4.11: Putting a load of 500 requests per second on the RaDaR-like system

the next load report, the Request Distribution Algorithm redirects all requests to
replica server 1 again, since the load on replica server 2 now exceeds the high load
watermark. With one replica server in an overloaded state and one replica server in an
underloaded state, the load will now keep bouncing between the two replica servers.

On a side note, to avoid this “herd-effect” the authors of ACDN propose the
limitation that a replica server is only allowed to accept a request for replication if the
predicted load after replication stays below the low load watermark. This however
does not solve the problem shown above, but merely reverses it. In the situation
above, where 2 replica servers should be capable of handling a load of 400 requests
per second together, replica server 1 would only be allowed to offload a load of 100
requests per second (the low load watermark) to replica server 2. This brings the
system into the exact same state with one overloaded replica server and one
underloaded replica server.

The assumption that this problem can be avoided by selecting the right low load
watermark is incorrect however, since the amount of offloading is determined by the
difference between the total load on the overloaded replica server and the low load
watermark. The system we used during the first flash-crowd experiment (with a high
load watermark and a low load watermark of 300 and 200, respectively) can be
brought into a state with a bouncing load as well by putting a total load of 500
requests per second on it, as can be seen in Figure 4.11.

To make the RaDaR-like system more responsive to a flash-crowd, one can make the
replica servers report more often to the redirector/replicators. Trying to find a system

 41

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40 45

time (seconds)

re
qu

es
t r

at
e

(r
eq

ue
st

s/
se

c)

replica server 1
replica server 2

LW

HW

Figure 4.12: Reducing the report interval to 1 second

configuration where the system is able to recover from a state with a bouncing load
by itself, we decided to run the same experiment with a low load watermark of 100, a
high load watermark of 300, but with a reduced report interval of 1 second. Figure
4.12 shows the results of this experiment. As can be seen from the figure, sending
more reports to the redirector/replicators does not help to avoid, or recover from, the
herding effect. From this, and from the two experiments above, we can conclude that
the herding effect is inherent to the part of the ACDN algorithm that handles
offloading.

4.3. Trace-based benchmarking

To see how the RaDaR-like system performs in a real-life flash-crowd, and to
validate the results from the synthetic benchmarking, we replay a trace from an actual
flash-crowd which happened on the 3rd of February 2004. The reason of the flash-
crowd was Google introducing a fractal-looking logo honoring Gaston Julia. After
clicking on the logo, Google performed a search for images matching the term “Julia
fractal”. The two most interesting resulting images on the top row of the list were on
a server of the University of Western Australia, which abruptly experienced an
enormous amount of requests for these images. Because the traffic targeting Google
is much higher than any single server can sustain, the University server stood no
chance, and failed.

Because, from our standpoint, the first sixteen hours of the day are not interesting, we
only use the requests from the last eight hours of the day. During these eight hours the

 42

0

500

1000

1500

2000

2500

0 60 120 180 240 300 360 420 480

time (minutes)

re
qu

es
t r

at
e

(r
eq

ue
st

s/
m

in
ut

e)

Figure 4.13: the fractals flash-crowd trace

server received a total of 511,292 requests for 18,507 unique documents. Figure 4.13
shows the request rate during this 8-hour period.

To be able to replay traces, our benchmarking tool first needs a few small
adjustments. Every request in the request list is now associated with a timestamp,
which defines when exactly the request has to be send to the RaDaR-like system. To
make sure that the client machines that run the benchmark are not the bottleneck, we
use eight synchronized client machines. The request list is divided over these eight
client machines using a modulo function. Every client machine spawns a total of 200
workers that keep getting request-timestamp-pairs from the top of the request list.
Instead of issuing exactly one request per second, the worker now waits until it is
time to send the request, based on its timestamp; it sends the request and then gets the
next pair from the request list. When we compared the load produced by
benchmarking an Apache web server using the adjusted benchmarking tool with the
original trace file, the results were almost an exact match.

Because replaying the trace in real-time would not put our replica servers in an
overloaded state, we decided to speed up the trace by dividing the timestamps by
four. The experiment is conducted in a system with one distributor, one
redirector/replicator and two replica servers. The results can be found in Figure 4.14.
As can be seen from the figure, the flash-crowd occurs around the 22nd minute. The
RaDaR-like system reacts by replicating the 24 most popular documents to replica
server 2. This results in a fairly well balanced state, with the two servers receiving an
almost even amount of requests. The system stays in this state until the 48th minute.

 43

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100

time (minutes)

re
qu

es
t r

at
e

(re
qu

es
ts

/m
in

ut
e)

120

replica server 1
replica server 2

Figure 4.14: replaying the trace in the RaDaR-like system (speeded up four times)

What happens next is that the web server administrators noticed the enormous load on
the server, and removed the images of the Julia fractals. They also replaced the index
page with a 30K recovery page containing the Google logo, explaining what has
happened to the server. From this time on, the most popular documents are the
recovery page, the Google logo and the 404 error page. The RaDaR-like system
immediately replicates these documents to replica server 2. However, because the
users that are looking for images of Julia fractals are unsatisfied with the result, they
start to look through other pages on the web server, resulting in a few thousand
requests per minute for a few hundred different documents. Because no single
document out of these documents is very popular by itself, none of them gets
replicated. As a result, the load on replica server 1 remains at least twice as high as
the load on replica server 2, which serves almost exclusively requests for the three
most popular documents. It must however be noted that the load of replica server 1
remains well below the high watermark, which is the reason why the system does not
adapt any further.

To take a closer look at what exactly happened during the first minutes of the flash-
crowd, Figure 4.15 plots the load on the replica servers during the first two minutes in
sequential 1-second-intervals. As can be seen from the figure, it takes about 9 seconds
for the system to detect the flash-crowd. Then the state where the load is almost
evenly balanced over the two replica servers is reached in about 20 seconds.

Concluding from Figure 4.14 and Figure 4.15, we can say that the RaDaR-like system
did not have any problem with the initial flash-crowd when the requests were
distributed over a small number of documents. These documents were replicated and

 44

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100 110 120 13
time (seconds)

re
qu

es
t r

at
e

(re
qu

es
ts

/s
ec

)

0

replica server 1
replica server 2

HW

LW

Figure 4.15: the first two minutes of the flash-crowd

the distribution of the load over the two replica servers was almost even. The system
however rebalanced its load when the users started to look at a large number of
different files.

 45

5. Conclusion

Flash-crowds are becoming a growing obstacle to the further expansion of the
Internet. When web servers are not prepared for the enormous growth in demand,
users will experience significant delays and eventually even complete failure of the
web server. Even when the flash-crowd can be predicted it is difficult to predict the
exact magnitude of the extra demand and to react in time. One of the solutions to this
problem is to replicate the most popular documents to different web servers, and to
redirect client requests to these replicas. One promising system to handle flash-
crowds is RaDaR, as it uses multiple levels of machines to redirect client requests,
and can create new replicas on the fly.

In this thesis, we first proposed a benchmark that is representative for real world use
of a web server. Most existing benchmarks only allow one to change the concurrency
degree directly, but not the request rate. Because the request rate will effectively be
adjusted to the capacity of the web server, these kind of benchmarks will not get the
server into an overloaded state. On the other hand, benchmarking programs that do
give the operator the option to set an even request rate merely allow to send the same
request over and over again, and therefore do not produce realistic results. The
benchmark we proposed combines the best of both worlds: the operator can directly
set the request rate and a scenario is used to send the requests.

Secondly, we present the results of a performance analysis of a RaDaR-like system
using the benchmarking tool we proposed. Because RaDaR is designed with
scalability in mind rather than adaptability, we used a RaDaR-like system based on
algorithms by another system, ACDN, by the same authors as RaDaR. This
performance analysis goes much further than the original RaDaR measurements.
First, we benchmarked the separate components of the system to measure the
performance of each component. Secondly, we put an ever growing load on the
system and added components when necessary. With the results of these two
experiments we can answer the question of how to provision a RaDaR-like system. In
our experiment one redirector/replicator and one distributor are needed for every four
to five replica servers. To see how fast the RaDaR-like system reacts to a flash-
crowd, how fast it adjusts to it and how well it balances the load, we then simulated a
flash-crowd by using a step-function. Finally, we analyze the performance of the
RaDaR-like system in a real-life flash-crowd by adjusting the benchmarking tool to
replay requests from a trace of an actual flash-crowd.

From our experiments we conclude that RaDaR scales very well, even to very high
loads. How fast the system detects flash-crowds heavily depends on how often the
Content Replacement Algorithm is executed. During a flash-crowd our RaDaR-like
system adjusts itself in a timely fashion. Once the flash-crowd gets detected, the
system replicates the most popular documents and balances the load in around 2
seconds. We believe that this is fast enough to react to an actual real-life flash-crowd.

 46

We did however discover an instability inherent to the parts of the replica placement
and request distribution algorithms that handle offloading. In some cases, this
instability leads to the load bouncing between the different replica servers.

Our study shows that flash-crowds are not a fatality, and that relatively simple
mechanisms can allow a server to offload its exceeding demand to other rescue
servers. The problems of handling flash-crowds are not solved entirely, however. In
systems distributed across bandwidth-limited networks or hosting large multimedia
objects, the mere creation of extra replicas can be considerably slowed down by the
very flash-crowd that made it necessary in the first place. For such systems it
becomes necessary to predict the upcoming flash-crowds such that replication can
take place before the system is actually overloaded. Similarly, the RaDaR system
only handles the replication of static documents. Replicating dynamic Web sites in
front of a flash-crowd will undoubtedly require entirely new techniques.

 47

References

[1] Adamic, L.A. “Zipf, Power-laws and Pareto – a ranking tutorial”.

http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html.

[2] Aggarwal, A., and Rabinovich, M. “RaDaR: A Scalable Architecture for a Global

Web Hosting Service”. The 8th Int. World Wide Web Conf, May 1999.

[3] Arlitt, M.F., and Williamson, C.L. “Web Server Workload Characterization: The

Search for Invariants (Extended Version)”. In Proceedings of the 1996 ACM
SIGMETRICS Conference on the Measurement and Modeling of Computer
Systems, Philadelphia, PA, USA, pages 126-137, May 1996.

[4] Cunha, C.R., Bestavros, A., and Crovella, M.E. “Characteristics of WWW Client-

based Traces”. Tech. Report BU-CS-95-010, Boston University Computer Science
Dept, June 1995

[5] Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B.

“Globally Distributed Content Delivery”. IEEE Internet Computing, pages 50-58,
September-October 2002.

[6] The Distributed ASCI Supercomputer 2 (DAS-2). http://www.cs.vu.nl/das2/

[7] Felber, P., Kaldewey, T., and Weiss, S. “Proactive Hot Spot Avoidance for Web

Server Dependability”. In Proceedings of the 23rd International Symposium on
Reliable Distributed Systems, Florianpolis, Brazil, pages 309-318, October 2004.

[8] Flood. http://httpd.apache.org/test/flood/

[9] Freedman, M.J., Freudenthal, E., and Mazieres, D. “Democratizing content

publication with Coral”. In Proceedings of the 1st USENIX/ACM Symposium on
Networked Systems Design and Implementation, March 2004.

[10] HammerHead. http://hammerhead.sourceforge.net/

[11] Jung, J., Krishnamurthy, B., and Rabinovich, M. “Flash Crowds and Denial of

Service Attacks: Characterization and Implications for CDNs and Web Sites”.
In Proceedings of the 11th International Conference on World Wide Web 2002,
Honolulu, Hawaii, USA, pages 293-304, May 2002.

[12] Niven, L. “Flash Crowd”. The Flight of the Horse, pages 99-164, 1973.

[13] Pitkow, J.E. “Summary of WWW characterizations”. Journal of Computer

Networks and ISDN Systems, volume 30(1-7), pages 551-558, April 1998

 48

http://www.cs.vu.nl/das2/
http://hammerhead.sourceforge.net/

[14] Rabinovich, M., Xiao, Z., and Aggarwal, A. “Computing on the Edge: A
Platform for Replicating Internet Applications”. The 8th Int. Workshop on Web
Content Caching and Distribution, March 2004.

[15] Sivasubramanian, S., Szymaniak, M., Pierre, G., and van Steen, M. “Replication

for Web Hosting Systems”. In ACM Computing Surveys 36, number 3
(September), pages 291-334, September 2004.

[16] Wikipedia, “Pareto distribution”.

http://en.wikipedia.org/wiki/Pareto_distribution

[17] Wikipedia, “Zipf’s law”. http://en.wikipedia.org/wiki/Zipf%27s_law

[18] Zhao, W., and Schulzrinne, H. “Dotslash: A Self-configuring and Scalable

Rescue System for Handling Web Hotspots effectively”. In International
Workshop on Web Caching and Content Distribution (WCW ’04), Beijing,
China, October 2004.

 49

	Introduction
	Related work
	Replication systems overview
	RaDaR
	ACDN
	Akamai
	DotSlash
	CoralCDN

	Replica placement
	Request routing
	Detecting flash-crowds

	Benchmarking
	Creating a representative list of requests
	Method 1: Finish request after request, as fast as possible
	Method 2: Fixed amount of requests per second, colliding req
	Method 3: Fixed amount of requests per second, interleaving
	Method 4: Fixed amount of requests per second, random timing

	Benchmarking RaDaR
	Implementing RaDaR
	Synthetic benchmarking results
	Single Apache web server
	Benchmarking the separate components
	Scaling the RaDaR-like system
	Performance during a flash-crowd
	Instability of the content placement and request distributio

	Trace-based benchmarking

	Conclusion
	References

