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Abstract

Large swings in the demand for content are common-
place within the Internet. When a traffic hotspot happens,
however, there is a delay before measures such as heavy
replication of content can be applied. This paper investi-
gates the potential for predicting hotspots sufficiently far,
albeit shortly, in advance, so that preventive action can be
taken before the hotpot takes place.

Performing accurate load predictions appears to be a
daunting challenge at first glance, but this paper shows that,
when applied to web-server page-request traffic, even ele-
mentary prediction techniques can have a surprising fore-
casting power. We first argue this predictability from prin-
ciples, and then confirm it by the analysis of empirical data,
which reveals that large server overloads can often be seen
well in advance. This allows steps to be taken to reduce
substantially the degradation of service quality.

1. Introduction

Traffic congestion in many settings, such as the automo-
bile and airline transportation networks, is often predictable
far enough in advance so that something can be done to
mitigate its effects. The thesis of this paper is that this
observation also applies to much of the page-request traf-
fic on the Web, and that bursts of traffic can often be pre-
dicted shortly, yet adequately, before they reach worrisome
dimensions. Hotspots, flash crowds, the Slashdot effect,
and storms are among the colorful terms referring to these
events. We shall use the term hotspot, but hasten to add that,
for our purposes, the term need not connote “catastrophic”
traffic; it need not mean anything more than traffic signifi-
cantly higher than the norm.

Predicting hotspots, even with moderate accuracy, can
be used to good effect in driving preventive measures such
as replicating files/objects or migrating them to an overlay
network of peer-to-peer server/cache cooperatives [18]. The
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results presented here demonstrate that simple, yet very ef-
fective algorithms can be developed for predicting bursts
of traffic on the Internet, especially those occasional surges
that bring web servers and routers to a virtual standstill.

Papers on hotspot properties generally refer to their
spontaneity and their sudden, or nearly discontinuous ramp-
up of traffic[1, 17]. But as noted in [9], this last property is
only valid on large time scales, much larger than the time
scale needed to react to an approaching hotspot. That a
hotspot is visible in the distance can be explained in a num-
ber of ways. For example, there is the simple phenomenon
of passing the word on a “hot” document. This process
grows exponentially fast, but this in itself does not rule out
adequate advance warning, as the initial growth is approxi-
mately linear. As another example, the time to gain access
to the Internet varies from one person to another.

The goal of this paper is not so much the delivery of a
full off-the-shelf hotspot predictor; rather, we argue the fea-
sibility of such a predictor, and exhibit actual algorithms
that demonstrate this feasibility. It is worth noting that,
while the performance of our predictors is very good, even
a moderate to poor predictor can offer substantial cost sav-
ings. For, in analogy with hurricane forecasting and recent
IT disasters [11], the over-all cost of hotspots arriving with-
out warning exceeds the aggregate cost of false alarms, i.e.,
the cost of preparing for hotspots that do not materialize.

This paper is structured as follows: Section 2 sets the
context of the paper by briefly reviewing background litera-
ture. Section 3 examines the properties of the page-request
traces studied in the paper and pays particular attention
to autocorrelation functions, which have an intimate con-
nection to predictability. Section 4 introduces linear least-
squares extrapolation as the basis for the design of predic-
tion algorithms. Scatterplots are presented which testify to
the excellent performance of this technique.

At the heart of the paper, Section 5 then describes the
structure of a parameterized prediction algorithm, the goal
being a simplest algorithm with excellent prediction perfor-
mance. Section 6 then carries out a case study in which
the values of the parameters are estimated and the quality
of resulting predictions analyzed. Section 7 complements



this study with a sensitivity analysis focusing on window
size and the granularity of data collection. There are a num-
ber of basic issues that must be dealt with satisfactorily if
prediction is to be a viable process and the recommenda-
tions of this paper are to be followed. Among them are the
quality (e.g., the age, representativeness, etc.) of the trace
data, the generality (e.g., the scope of the applications) of
any specific algorithm, and the complexity of the prediction
process. These are covered by our conclusions in Section 8,
the final and perhaps most important section of the paper.

2. Related Work

It is well known that building a load-based taxonomy of
web server traffic is both an extremely important and an ex-
tremely challenging problem [9, 8]. The behavior of the
traffic is shaped by a combination of so many technologi-
cal, sociological, psychological (to name a few) factors that
a quantification of even basic patterns reflecting this behav-
ior would be a major breakthrough. Web traffic forecast-
ing on a macroscopic level has been addressed previously
by [3, 2]. These time scales show discontinuities and have
been adopted for presentation of results that dramatize the
traffic surges of hotspot-like conditions. The discontinuities
disappear on the finer time scales of interest here.

Methods for alleviating the effects of hotspots are dis-
cussed in [5], while [9] studies hotspot properties deter-
mined by traffic patterns, and by client and file-referencing
characteristics. They also introduce techniques that content-
delivery networks can employ to adapt to large increases in
load. While this solves a vital piece of the problem, the ap-
proach is reactive rather than predictive, in that adapting to
hotspots is done at their arrival rather than in advance.

Several other schemes that aim at mitigating the effects
of traffic hotspots include: the Oceano project at IBM [16],
which provides a farm of additional server resources that
can be used to service customer demand during periods of
overload; systems that can dynamically distribute requests
across multiple cooperating web servers [10, 14, 15, 20];
and those proposing to route Web requests through a peer-
to-peer overlay, which allows for caching and load balanc-
ing in heavy load conditions [6, 12, 13, 19]. Again, these
approaches are essentially reactive rather than proactive.
They can make highly-desired content more easily acces-
sible, but do not include any mechanism to identify the con-
tent for which interest is rapidly building. We believe that
the hotspot predictor we present in this article would greatly
complement these approaches.

Finally, we mention the traffic bursts described by
Schwartz [17] for a web site tracking earthquake events,
which are something of an acid test for hotspot prediction,
as passing-the-word delays do not apply to nearly the same
extent. The data are rather limited but they do support the
conclusions of research reported here. The web server of
the earthquake site experienced somewhat faster growth, as

one might expect, but hotspots are also more easily dis-
tinguished from normal traffic levels. The data were for
the 10/16/99 Hector Mine earthquake and showed a web-
server hotspot growing to its peak within about 15 minutes.
The paper focused on methods of coping with these surges,
such as increasing link capacity and using a reverse proxy
server to help distribute traffic to replica servers. Our pre-
dictability results complement this work by indicating ways
to respond earlier and more gracefully to earthquake events.

3. The request flow

3.1. Definitions

In the traces studied in this paper, a traffic observation,
rt, gives the number of page requests in a time slot, which
we take as the unit of time; thus, (t − 1, t] is the t-th time
slot. A typical time slot describing the granularity of data
collection is ten seconds, but depending on the structure of
the data, the efficiency required of the prediction algorithm,
and the desired reaction time, the data may be accumulated
into time slots of different length.

To be able to detect and predict hotspots, the notion of
hotspot must be formally defined. For this, we define a
hotspot level H , whose value depends on the application.
H typically corresponds to the maximum capacity of the
server handling the studied load. Ideally, we would define a
hotspot as any period during which rt ≥ H . In general,
however, request rate samples taken at small granularity
have wide variations from sample to sample. Therefore, a
workable hotspot definition will require a smoothing of the
data over a sufficiently long interval. We define a parameter
Wd as the interval over which load should be computed to
determine whether it is experiencing a hotspot.

We say that traffic is experiencing a hotspot at
time t if the volume of traffic over the last Wd

time slots satisfies
∑

i∈[t−Wd,t]

ri ≥ H × Wd

or equivalently, the average request rate over [t−
Wd, t] is at least H .

3.2. Request-flow analysis

In Figure 1, we show fragments of graphs of web server
loads in four cases: A NASA server (August 1995); a
Nagano Winter Olympics server(1998); a Soccer World
Cup server (1998) and a slashdotted site (2004), referred
to in this paper as ’Fractals’ [4]. Time increases along the
x-axis, and the y-axis plots the number of requests in suc-
cessive 10-second slots. One sees immediately that these
graphs are strikingly different; as we will see, the predic-
tive powers of our algorithms also vary dramatically when
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Figure 1. Fragments of four sample traces
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Figure 2. Tail of the distribution for the number of page requests per time slot

applied to these traces. Figure 2 shows the tails of distribu-
tions of requests per time slot. Here, the number of requests
that can occur within 10-second time slots is varied along
the x-axis and the y-axis plots the probability that the num-
ber of requests in a slot exceeds this value. Note that the
heavy-tail properties of these distributions, which are given
in log-log plots, confirm the log-normal estimate of [8].

As is common in prediction problems, the performance
of prediction algorithms depends strongly on the power
spectrum (see [7] for example), that is, the absolute value
of the Fourier transform of the time series. Figure 3 plots
the autocorrelation functions (inverse Fourier transforms) of
the power spectra for a sample of the four data sets we have
studied. A point (x, y) in this graph means that the correla-
tion between load values taken at time t and t + x is equal
to y. A high value of the autocorrelation function demon-
strates that load values taken at time t and t + x are highly
correlated, which suggests that the load value at time t may
be used to predict the load at time t + x. Typically, more
rapidly falling autocorrelation functions are more “jittery”
and more difficult from the predictive point of view.

As one can see, these four autocorrelation functions are
quite different. One would clearly expect that, on the time
scale of 5 − 30 minutes, the performance of any reasonable
prediction algorithm would be near optimal for the World
Cup data, somewhat worse for the Olympic and Fractals
data and much worse for the NASA traces. As we will see,
this intuition is exactly right.
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4. Linear-fit extrapolation

The prediction of Web server request flows should ide-
ally be considered within the general framework of time
series analysis, filtering, and prediction. While there ex-
ists an extended and rich theory servicing applications in
such diverse areas as signal processing and econometrics,
one would in fact be quite surprised to see that “standard”
methods would suffice in the context of Internet traffic.

Even so, we started our investigation by testing what
is arguably the simplest reasonable traffic prediction algo-
rithm: linear extrapolation. As it turns out, it performs
remarkably well. Indeed, as shown in the remainder of
the paper, our experience indicates that linear extrapo-
lation offers an excellent balance between accuracy and
simplicity/speed. This section describes how linear-fit ex-
trapolation is used to predict future loads, whether or not
these loads constitute hotspots. The idea of linear-fit ex-



trapolation is to apply linear regression, at any time t, over
a prediction window Wp ≥ 0 containing the samples col-
lected between t − Wp and t. The regression allows to pre-
dict the load that should occur at time t + τ , where τ ≥ 0
is called the advance notice. A prediction at time t is a
mapping from the observations in the prediction window
[t − Wp, t] to a number pt ≡ pt(τ) ≥ 0 of requests pre-
dicted to appear in the interval [t+τ, t+τ +1], τ time units
in the future.

The Linear Fit (LF) mapping defines pt and τ by the ex-
trapolation of a least-squares linear fit, i.e., pt = ft(t + τ),
where the coefficients of ft(s) = ats + bt are chosen to
minimize

∑t
i=t−Wp

[ft(i)− ri]2, the mean quadratic devia-
tion over the window [t−Wp, t]. The simplicity of LF leads
to a very straightforward, linear-time implementation.

It is clear that, while linear predictors are extremely sim-
ple, they will have poor accuracy if the prediction window
size is poorly adjusted to the parameters of burstiness gov-
erning the request flow. Thus, if the flow is prone to step-
like bursts of activity, the linear predictor will tend to over-
estimate the flow at the beginning of the step; similarly,
the linear predictor will underestimate the flow at the early
stages of a sudden linear increase of activity. More gener-
ally, the structure of the power spectrum of the time series
describing the request flow strongly influences the quality
of a linear predictor. We return to this issue in Section 7.

Figure 4 gives a visual estimate of forecasting power. It
plots (rt+τ , pt), t ≥ 1, with τ = 5 min. Each point plotted
at (x, y) therefore represents a slot containing x requests for
which the predicted value issued 5 minutes in advance was
y requests. The quality of the prediction is high when the
points tend to be close to the diagonal. We see a striking cor-
relation of the performance of the linear fit algorithm with
the properties of the autocorrelation function: the World
Cup and (to a lesser extent) the Olympics loads are well
predicted, while the NASA load is very hard to predict with
our method.

5. Hotspot prediction

The predictability shown by the scatterplots of the last
section will now be exploited in the design of an effective
hotspot prediction algorithm using LF extrapolation. The
data used by the algorithm consists of a sequence of advance
notices τt(H) ≡ τt defined as the time remaining until an
LF extrapolation of the traffic beyond the current time t hits
the hotspot level H . These numbers lead to predictions only
when positive and finite, i.e., when the linear fit of traffic in
the window [t − Wp, t] has a positive slope and intersects
the hotspot level H at a time beyond t (See Figure 5).

As in the case of hotspot detection, prediction must re-
act to trends over sufficiently large windows rather than a
few isolated points. Also, predictions of hotspots far in the
future tend to be unreliable, and there is no need to act on
them in any case. Thus, for a given window size Wh and
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maximum advance notice τmax, hotspot prediction has the
following form:

If the traffic is currently in a hotspot (as defined at
the end of the preceding section), then an alarm is
set. The alarm is also set if traffic is not already in
a hotspot, but an extrapolation of the trend of the
advance notices in [t−Wh, t] shows that a hotspot
will occur some time in [t, t+τmax]. This is tanta-
mount to a declaration that a hotspot will arrive
within at most τmax time units. If a hotspot is
neither currently in progress nor predicted within
τmax time units, then the alarm is reset.

Concrete versions of this algorithm depend on applica-
tions and how advance notices are extrapolated. We take
one such application, study it in detail, and arrive at es-
timates of the parameters and a specification of the tests
made by the algorithm. We have chosen the IBM Winter
Olympics data for the application as it is more extensive
than the Fractals data, and predictability is somewhat more
of a challenge than the World Cup data. The generality of
this case study will be discussed in Section 8.

6. A case study

The full trace for the IBM Winter Games data is shown in
Figure 6 on a time scale where hotspots are easily identified.
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For the sake of this case study, we set the hotspot level to
H = 40. Throughout this and the next section, the duration
of the interval over which the volume of traffic determines
tH is Wd = 3 minutes.

To see how performance varies with parameter
values, we examine the advance-notice sequences
. . . τt−i, τt−i+1, . . . , τt at current times t. These will
be called prediction sequences and are superimposed on
the corresponding request data, as illustrated in Figure 7,
to visualize the variation of advance notices as a hotspot
approaches. An approaching, well-predicted hotspot will
be represented by a prediction sequence that is decreasing
linearly, or nearly so, to 0 at about the hotspot arrival time
tH , i.e., when the request rate averaged over the last Wd

time units increases to H .
We notice immediately by inspection that the LF algo-

rithm performs extremely well in forecasting the hotspot
shown in Figure 7 over a period of at least 15 to 20 minutes
before the onset tH of the hotspot. For example, assuming
that preparations for a hotspot take no more than a couple of
minutes, a useful choice for τmax could be about 5 minutes
with a window of about 15 minutes for fitting the trend of
the prediction sequence. The alarm would be set close to 5
minutes before the onset tH of the hotspot. That is, a lead
time of close to 5 minutes would be given, where lead time
is defined as the actual advance notice, i.e., the time tH − t
remaining until the hotspot arrival.

The trade-off in setting τmax is clear. If it is too large,
there will be many false alarms where a decreasing predic-
tion sequence will tail off and start to increase before reach-
ing the abscissa. This happens when a surge of traffic does
not in fact reach hotspot proportions, even though early pro-
jections say it would. An example is shown in Figure 8,
where if τmax were chosen to be about 15 minutes or more,
a hotspot would have been falsely predicted at time 244.1
hours. On the other hand, τmax can not be taken too small,
since that would not give enough time to prepare for the
hotspot. Table 1 shows this trade-off by giving the average
lead times corresponding to the advance notices computed
by LF, and the number of false alarms as a function of τmax.

Figure 8 also illustrates an important point about false
alarms. Because τmax is small in the time scale of hotspot
development, the traffic levels setting off false alarms are
not far from hotspot levels. Thus, the “errors” represented
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by false alarms tend to be quite minor.
Figure 9 shows an example of a hotspot that is very diffi-

cult to predict with linear extrapolation. As can be seen, the
growth past the hotspot level of 40 is quite abrupt, first lead-
ing to a number of false alarms, and then failing to correctly
predict the actual hotspot.

7. Robustness

The prediction algorithm relies on a number of constants
whose value may influence the performance of the predic-
tors. For example, increasing the sample granularity (i.e.,
the size of the time slot) also smooths the data and speeds
up prediction algorithms. The effect of increasing granu-
larity is shown in Figure 7. As suggested, predictions are
relatively robust to the choice of time slot; granularity can
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Figure 7. Prediction sequence plots for different time slot granularities

τmax (mins) � of false alarms � of late alarms average lead time (mins)
6 0 2 2
12 2 1 5
18 3 1 9
24 5 1 12

Table 1. The performance of linear prediction on the IBM Winter Olympics trace for different values
of τmax. A late alarm occurs when the alarm is not given until the arrival of the hotspot. The trace
contains 5 hotspots.

vary over an order of magnitude without a serious degrada-
tion of the prediction process. Of course, the time slot must
be kept appreciably smaller than lead times expected of the
predictions.

Window size (Wp) is a more important parameter as it
must be adjusted to the burstiness (and spectral density) of
the data. Robustness is still present to a fair degree, but
there are clear limits. If Wp is taken too small, then the LF
predictions over-react to local variations, but if it is taken
too large, then the predictions become sluggish as they use
data that is too old and hence irrelevant to current traffic
behavior. Figure 10 shows performance for 3 choices of
window size. As compared to the choice that we have been
using (20 minutes), the choice of Wp = 10 minutes gives
more erratic prediction sequences; and while those for the
case Wp = 45 minutes are quite smooth, they are late in
their predictions. The autocorrelation function can serve as
an initial guide to selecting window sizes.

Finally, we tested possible improvements in linear ex-
trapolation. In particular, we examined the performance of
quadratic least squares extrapolation. Interestingly, the po-
tential improvements were found to be minor, at most 10%,
and not worth the added complexity. More generally, we
took a closer look at the leading edges of traffic surges to
see if there was a useful relation between the growth-rate
derivative and the ultimate peak height. However, our ex-
periments revealed no significant dependence between these
traffic measures. It is worth emphasizing that this may not
hold in other applications, where high traffic peaks are sig-
naled early on by accelerating increases in traffic.

8. Conclusions

We have dealt with essentially an empirical problem
and with algorithms containing parameters that are esti-
mates drawn from traffic traces rather than the solutions
to well-defined mathematical problems; this scenario is of
course inherent to the concept of prediction. Bearing this
in mind, we have presented convincing evidence that even
very simple prediction algorithms have a significant predic-
tive power. One meta-conclusion is that they perform espe-
cially well in situations where they are needed, that is, when
sustained traffic surges are likely to occur.

The generality of our problem, and hence our contribu-
tion, lies in its structure, and not so much in the parameter
values supplied for specific applications. This structure is
defined by a resource (web servers here) with a demand that
fluctuates, on occasion increasing to levels too high to sup-
port. This paper has shown that there is a useful predictabil-
ity in Internet traffic that can be exploited in the use of re-
sources that experience strong surges in traffic. Our proof
of concept has included the design of an effective prediction
algorithm for web-server traffic, together with the parame-
ter values of a case study, for applications resembling sports
tournaments in terms of the demand placed on the servers.
Our specific algorithm is especially useful for situations in
which simplicity and speed are required with little sacrifice
in accuracy. Our parameter values apply to empirical data
spanning several years, and they can easily be rescaled to
account for technological advances in the future.

Important phenomena that increase applicability have
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Figure 10. Prediction-sequence plots for Wp of 10 minutes, 20 minutes, and 45 minutes. We used H = 40 requests per slot as the
hotspot level for the IBM Winter Olympic trace.

been observed, e.g., robustness with respect to granularity
of data collection. Further, it is important to recognize that
the mechanism we are proposing is quite efficient and eco-
nomical in use of resources, so it can only improve system
performance; even with ill-adapted parameter values or “ill-
tempered” hotspots, a “late-alarm failure” of the algorithm
simply converts hotspot prediction into hotspot detection,
which is no less (and is in some cases more) than the status
quo. Further, while false alarms are created by traffic at less
than hotspot level, the traffic is close to hotspot level, and
so hotspot responses to such traffic are not wholly inappro-
priate.

Finally, we note that the scenario we have studied is con-
servative in the following sense. Prediction algorithms in
practice may be supplemented with partial prediction data
such as the general timing of particular events. For example,
it may be known that an announcement will appear within a
couple of hours on a given day, but the timing is otherwise
unknown. Consistent information of this sort can in gen-
eral be exploited in the parameter settings of a prediction
algorithm.
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