
Resource Provisioning for
AJAX Web applications

Master’s thesis

in PARALLEL AND DISTRIBUTED COMPUTER SYSTEMS

Supervisor Author

Dr. Guillaume Pierre Andreea Alexandra Vişan
(Student no. 212803)

July 12, 2011

Abstract

Most of the nowadays popular web applications are enriched with AJAX
techniques that offer a better experience than classical applications. However,
these techniques greatly impact the server’s performance because of their com-
plex features. Regardless their complexity, web applications should ensure the
achievement of the imposed performance target even in the presence of work-
load variations or flash crowds. For this objective to be reached, they should be
able to reprovision on-the-fly and with minimal costs their resources. This thesis
explores the challenges that AJAX features create for resource provisioning by
identifying the aspects that greatly impact the web server’s performance in this
situation. Moreover, this thesis designs performance models for AJAX web appli-
cations that can be further used by resource provisioning algorithms to determine
the optimal configuration of the web server according to the workload.

Keywords: AJAX web applications, persistent connections, dynamic con-
tent, dynamic resource provisioning

Contents

1 Introduction 1

2 Related Work 4
2.1 Resource provisioning . 5
2.2 AJAX Web applications . 6

2.2.1 Introduction . 7
2.2.2 Impact of AJAX on server performance 9

3 Methodology 11
3.1 Application Benchmark . 13

3.1.1 Functionality . 13
3.1.2 Web Server’s Architecture 15
3.1.3 Performance metric . 16

3.2 Experimental Setup . 18

4 AJAX impact on server performance 20
4.1 Comparative study of AJAX and non-AJAX scenarios 20

4.1.1 Experimental Setup . 22
4.1.2 Differences regarding the number of TCP connections . . . 23
4.1.3 Differences regarding the network traffic 24
4.1.4 Differences regarding the memory usage 25
4.1.5 Differences regarding the CPU usage 26
4.1.6 Differences regarding the user perceived performance . . . 27
4.1.7 Conclusions . 27

4.2 The choice of web server software 28
4.2.1 Process-based Web servers 28
4.2.2 Event-based Web servers 29

5 Performance model 31
5.1 Application tier performance model 31
5.2 Database tier performance model 36

i

CONTENTS ii

5.3 Evaluation . 38
5.3.1 Experimental setup . 38
5.3.2 Model validation . 39

6 Provisioning AJAX Applications 41
6.1 Resource provisioning and web server’s parameters 41
6.2 Reprovisioning and deprovisioning issues 42

7 Conclusions 44
7.1 Future work . 46

Bibliography 48

List of Figures

2.1 Classical web application model (synchronous interactions 7
2.2 AJAX web application model (asynchronous interactions). [11] 8

3.1 The asynchronous interactions model of the web application. Exempli-
fication of the two interaction types. 14

3.2 The application’s two tier model . 15
3.3 Inter-users interactions through the web application. Performance met-

ric exemplification: the update made by User1 at T1 moment of time is
received by User2 at T4. 17

4.1 TCP connections handling. a) The non-AJAX scenario implies non-
persistent connections. b) The AJAX scenario supposes persistent con-
nections. 21

4.2 Cumulative distribution function of the number of ESTABLISHED con-
nections for the AJAX and non-AJAX scenarios. 24

4.3 Cumulative distribution function of the number of connections in TIME WAIT
state for the AJAX and non-AJAX scenarios. 24

4.4 Average number of received and transmitted packets/second in the AJAX
and non-AJAX scenarios . 25

4.5 Cumulative distribution functions of the memory usage for the AJAX
and non-AJAX scenarios. 26

5.1 Response time of the AJAX application when increasing the number of
users. Each tier is provisioned with one resource (1 AP, 1 DB). 32

5.2 Response time of the AJAX application when increasing the number of
users. The application tier is reprovisioned with one more resource (2
AP, 1 DB). 34

5.3 Response time of the AJAX application when increasing the workload.
The application tier is reprovisioned with one more resource (3 AP, 1 DB). 36

5.4 Provisioning the database tier. 37
5.5 Model validation . 39

iii

Chapter 1

Introduction

Web applications have become an essential part of everyday life as they offer
online access to all essential services such as shopping, banking, information, and
entertainment. They were originally used only to share static pages, but rapidly
evolved into a more dynamic medium and today are composed of extremely inter-
active pages. However, they still rely heavily on the paradigm based on full-page
retransmissions that presents a series of negative consequences, such as slow page
refreshes and flickering. Frequently, full-page retransmission is leading to a poor
user experience.

By adding AJAX features, a web application becomes more interactive, more
responsive, faster and friendlier. The user is encouraged to interact more with
the page as these interactions and the responses generated by the web server
are handled more elegantly by the AJAX engine placed on the user’s machine.
The overall experience of the user is highly improved. For instance, all major
Google products (Orkut, Gmail, Google Groups, Google Suggest and Google
Maps) use AJAX. Moreover, many of the features that people like in Flickr depend
on AJAX, and eBay.com and Amazon’s A9.com search engine applies similar
techniques. These successful projects demonstrate that AJAX is practical for
real-world applications as AJAX web applications can be any size, from the very
simple, single-function Google Suggest to the very complex and sophisticated
Google Maps.

Taking a look at Google Suggest we observe that the suggested terms update
almost instantly as we type the request. Moreover, while zooming in, grabbing
or scrolling Google Maps, everything happens almost instantly, without waiting
for pages to reload and giving the feeling of a desktop application. Moreover, the
same happens regardless of the number of users who do similar actions on the
same page (and there are millions of users browsing concurrently Google Map at
every moment of time). Furthermore, the user has the same good experience and
receives fast responses even if the workload seen by the web servers evolves, for

1

CHAPTER 1. INTRODUCTION 2

instance because of time changes. In order to be able, at any moment of time, to
offer a good experience to their users, these web applications are adjusting their
processing capacity according to the current workload.

For example, amazon.com, the world’s largest online retailer, was overwhelmed
by the flash crowd caused by the launching of a new gadget in 2008. Then, all
US servers crashed for about two-hours. Because of that, the estimated loss was
$14.835 billion which calculates to nearly $29,000 per minute [13], a situation to
avoid for any application or business.

As a consequence, a mandatory requirement of all web applications is to be
capable of on-the-fly processing capacity adjustment when facing request load
modifications generated by either workload amount variations or workload mix
variations. This resource adjustment has the objective to maintain acceptable
end-to-end performance and to respect the imposed Service Level Agreement
(SLA) with minimal costs. The SLA may define, for instance, the maximum
average response time that the application should offer.

Dynamic resource provisioning supposes that web applications are capable
to request more resources on-the-fly when they need more processing capacity
because the SLA target is violated. In this situation, one has to decide which
component of the web application should be re-provisioned for optimal effect.
New resources can be requested from grids or from clouds, as they prove to be
an attractive platform to host web applications. Moreover, when some resources
are no longer necessary, web applications should be able to release them.

Currently, modern web applications involve a big number of components hav-
ing complex relationships between them such that their dynamic resource provi-
sioning is a very challenging, but difficult task.

Even if the problem of dynamic resource provisioning has been intensively
studied, unfortunately, all current research focuses only on traditional web ap-
plications assuming that applications use the classical request/response/display
workflow. As AJAX web applications are widely used and they suppose a much
more complex interaction than the traditional workflow, special attention must
be paid to this situation.

This thesis explores the challenges that AJAX web applications create for
dynamic resource provisioning because to their specific characteristics: asyn-
chronous requests sent over connections between users and the web server that are
kept persistent over long periods of time. Moreover, our research addresses only
the more interesting case of applications serving highly dynamic content. The
aim is to identify the aspects that differentiate resource provisioning of classical
web applications from those enriched with AJAX techniques.

The first contribution of this thesis consists of demonstrating the fact that the
AJAX technology greatly impacts the web server’s performance and leads to a
completely different performance profile such that it deserves special research in

CHAPTER 1. INTRODUCTION 3

the context of resource provisioning. Furthermore, the study focused on AJAX
applications hosted by process-based web servers and identifies for this scenario
the most important system resources that influence the user perceived perfor-
mance. This thesis identified that the amount of memory allocated to the web
server is very important because it directly impacts the number of active connec-
tions that can be successfully served concurrently. This result is determined by
the fact that AJAX applications maintain long-lived persistent connections such
that, in this case, a bigger number of concurrent connections have to be han-
dled by the web server, compared to classical applications. Moreover, this thesis
presents a performance model for AJAX applications capable of predicting the
future performance obtained with a different provisioning or when facing differ-
ent workload. According to the output of the application’s performance model,
whenever the SLA is no more respected, one can determine what is the compo-
nent that brings the most benefit if it would be reprovisioned and reprovisions it.
To the best of our knowledge, this is the very first study on the particularities of
AJAX applications in the context of resource provisioning.

This thesis is organized as follows. Chapter 2 discusses the current state of the
research on resource provisioning for web applications and examines the aspects
that differences AJAX applications we are focusing on from the classical cases
that were already studied. Chapter 3 discusses the methodology followed by our
study on resource provisioning for AJAX web applications and then details the
characteristics and features of the applications considered as case study. Fur-
thermore, Chapter 4 makes a comparative analysis of the server’s performance
of the AJAX and non-AJAX scenarios and emphasizes the differences between
the two performance profiles. Chapter 5 presents the performance model of the
web application considered as proof of concept. Because of their new features, in
the case of AJAX applications, there are different aspects that impact the web
server’s performance. However, AJAX features impact not only the performance
profile but also arise some issues when reprovisioning the application. Chapter 6
discusses these problems and different tunings having relevance in the context of
resource provisioning. Finally, Chapter 7 concludes by discussing the impact of
our research and giving possible paths for future work and improvements.

Chapter 2

Related Work

Playing an important role in nowadays life, web applications have become more
and more complex. They are designed as groups of interconnected but indepen-
dent services. Each service exposes through standard invocation interfaces an
elementary functionality (e.g., database maintaining customer information, web
application serving search requests, etc). Responses delivered by the web appli-
cation to the users are generated by composing the results of multiple services
based on pre-defined workflows [22]. For instance, a page request to amazon.com,
the e-commerce site, requires the rendering engine to construct the response by
sending requests to over 150 services. Moreover, most of the services have multi-
ple dependencies (and in turn invoke other services) such that the call graph of
an application is complex, having multiple levels [5].

Not only do modern web applications consist of a big number of services and
that the relations between these services are very complex, but also the interac-
tions with the users are more complicated. Because of these aspects, major web
applications have started posing more and more challenges in order to maintain
their end-to-end performance within a predefined SLA when facing unpredictable
workload or flash crowds (e.g., events such as the September 2001 terrorist attack
in the US, when news sites such as www.cnn.com noticed a dramatic increase in
the number of requests and many sites became unavailable).

Precise performance models and resource provisioning algorithms have to be
designed for these web applications in order to be able to keep up with the de-
mands and to achieve the imposed performance targets. Whenever the SLA
targets are violated because of a flash crowd or a workload modification, applica-
tions should be able to reprovision their resources on-the-fly with minimum costs
to offer good user experience. Because of the complexity of nowadays web ap-
plications, interesting challenges are arising when maintaining the performance,
such that the problem of resource provisioning of web applications has captured
the attention of many research groups.

4

CHAPTER 2. RELATED WORK 5

The next chapter shortly presents the studies already conducted on resource
provisioning and reviews the aspects that differentiate modern web applications
enriched with AJAX techniques from the classical ones. Because of the new
features added by AJAX, different aspects impact the server’s performance and
have to be considered when accomplishing the reprovisioning task.

2.1 Resource provisioning

The very first studies on resource provisioning considered simple web applications
presenting a single-tier model [2, 8] or a multi-tier one [14, 20, 23, 28, 29]. These
studies model either the most constrained tier of the web application [20] or they
simplify the tiers’ operation model [14]. [28] handle session-based workload and
concurrency limits at different tiers. Moreover, their studies also capture the per-
formance impacts of techniques such as caching and database replication. These
models represented the starting point of our research as the application case study
we have considered presents such a multi-tier architecture. However, our study
extends their work as we do not address classical applications but applications
enriched with AJAX that present more complex features and interactions (e.g.,
persistent connections and asynchronous requests).

However, some major web applications such as maps.google.com, amazon.com
or ebay.com were not designed in a one-tier or multi-tier fashion but as complex
groups of independent services querying each other [22]. As a consequence, fur-
ther studies addressed the problem of resource provisioning of such multi-service
web applications. Studies presented in [31] model the workflow patterns within
multi-service applications in order to predict future workloads of each service
component. The required number of servers per service can be derived. This
model considers that each server has a fixed maximum capacity, approach basi-
cally equivalent to assigning an SLA to each service. As proved in [6], this can
lead to resources wasting and over-provisioning.

Studies presented in [6] focus on multi-service web applications designed as
directed acyclic graphs. They consider that only the front-end service should be
assigned an SLA as only its end-to-end performance is observed by users. More,
each service is autonomously responsible for its own provisioning by collabora-
tively negotiating its performance objectives with other services. Negotiation
between services is based on ”what-if analysis”: each service estimates its perfor-
mance in case it was assigned more or less resources, or if it received more or less
traffic. The front-end service has the perspective of the whole application and is
responsible for selecting the optimal service to be provisioned.

Our study on multi-tier AJAX applications can be extended for more complex
multi-service applications as observations we make do not rely on the applica-

CHAPTER 2. RELATED WORK 6

tion’s model but on the new features added by AJAX at the front-end service’s
side. More, we also consider that only the front-end service should have a SLA
associated, as its performance is the sole one observed by users.

All studies previously discussed and ours make the assumption that the un-
derlying provisioning machines are homogeneous. This assumption states in our
case as the experiments were conducted in medium scale environments (cluster
computers). In the last years, however, cloud computing has become a very
attractive platform to host web applications and in this situation, resources are
heterogeneous and, thus, the homogeneous assumption does not state. Recent re-
searches focus on the problem of provisioning web applications in heterogeneous
resource environments. Research presented in [7] addresses the heterogeneity is-
sue by efficiently benchmarking the performance profile of each individual virtual
machine obtained from the cloud. For better performance, the request load is
balanced according to these performance profiles.

Future work should focus on integration of our study with these studies ad-
dressing resource provisioning in heterogeneous environments as major web ap-
plications (that are enriched with AJAX techniques) are often hosted in cloud
environments.

Our research extends previous studies on resource provisioning by focusing
on modern web applications enriched with the AJAX technique. To the best of
our knowledge, our study is the very first attempt to address these applications.
The AJAX technique adds new features and more complex interactions between
users and the web application. These characteristics have great impact on the
web server’s performance profile and, as a consequence, different aspects have to
be considered when reprovisioning the server’s resources.

The next section reviews the differences between classical web applications and
modern ones and makes a brief introduction of the AJAX’s impact on server’s
performance.

2.2 AJAX Web applications

The classic web application model uses a request/response/display workflow and
supposes that most of the user actions in the interface trigger an HTTP request
back to a web server. The server does the complete processing and then returns
an entire HTML page to the client (Figure 2.1). This is a model adapted from
the original use of the web as a hypertext medium and makes a lot of technical
sense, but it doesn’t make sense for a great user experience because of to the
full-page transmission and synchronous communication’s nature. The user has
to wait while the request is sent, the server is doing its processing, and then the
response is received.

CHAPTER 2. RELATED WORK 7

Figure 2.1: Classical web application model (synchronous interactions

Once the web page’s interface is loaded, the user activity should not be halted
every time the application needs something from the server. In fact, for a good
experience, the user should not feel at all that the application is waiting for
information from the web server.

2.2.1 Introduction

AJAX (an acronym for Asynchronous JavaScript and XML) is a group of interre-
lated web development methods used on the client-side to create interactive web
applications. AJAX can be used to implement a web application that communi-
cates with a server in the background, without interfering with the current state
of the page. In [11], Garrett explained that AJAX incorporates the following
technologies:

� HTML or XHTML and CSS for presentation;

� the Document Object Model (DOM) for dynamic display of and interaction
with data;

� XML for the interchange of data and XSLT for its manipulation or JavaScript
Object Notation (JSON), preformatted HTML or plain text as alternative
formats;

� the XMLHttpRequest object for asynchronous communication;

� JavaScript (or another client-side scripting language) to bring these tech-
nologies together.

CHAPTER 2. RELATED WORK 8

Figure 2.2: AJAX web application model (asynchronous interactions). [11]

An AJAX application moves some of the processing at the client side and
eliminates the start-stop nature of interaction with the web server supposed by
classical web applications by introducing an intermediary (namely, the AJAX
engine) between the user and the server. Instead of loading a webpage, at the
start of the session, the browser loads an AJAX engine that is responsible for both
rendering the interface the user sees and communicating with the web server
on the user’s behalf. The AJAX engine allows the user’s interaction with the
application to happen asynchronously and most of the times independent of the
communication with the server (Figure 2.2).

Every user action that would generate an HTTP request in the case of classical
web applications, now takes the form of a JavaScript call to the AJAX engine
instead. Because part of the application’s processing is moved at the client side,
any response to a user action that doesn’t require a trip back to the web server
(e.g. simple data validation, editing data in memory, and even some navigation)
is handled by the AJAX engine itself. On the one hand, this highly improves the
application’s response time and on the other hand reduces the server’s load. If
the engine needs something from the server in order to respond (e.g. submitting
data for processing, loading additional interface code, or retrieving new data) the
engine makes those requests asynchronously, usually using XML, without stalling
a user’s interaction with the application.

The original HTTP protocol did not allow keep-alives, such that a new TCP
connection was established between the users and the web server for each pair of
request and response. This method led to inefficiency because of the high over-

CHAPTER 2. RELATED WORK 9

head implied by frequent connections establishments and terminations and, as a
consequence, the new version 1.1 of HTTP corrected this weakness and incorpo-
rated the concepts of keep-alives: a connection between the client and the web
server is kept open indefinitely, or at least as long as the server permitted. Even
if keep-alive is somehow against HTTP’s original design goal of being ”stateless”,
it allowed for it to overcome its speed and overhead problems and it is a feature
intensively used by modern web applications. Anyway, because of the fact that
interactions with the web server is handled by the AJAX engine, this technology
intensively uses long-lived connections.

2.2.2 Impact of AJAX on server performance

A series of studies focus on analyzing the server performance of AJAX web appli-
cations. In [12], Smullen studies an web application following a three-tier model
that supplies real-time class information extracted from a university student in-
formation system. Authors realize a comparative study on the performance of the
HTML application and the AJAX application implementing the same functional-
ity. Their results show that AJAX significantly reduces the bandwidth required
for the client to receive the response than the traditional HTML application. A
56% reduction in the bytes making up a response was observed. Moreover, they
indicate a reduction in time that the server spends generating a query (16%) in
the case of the AJAX application. However, their study takes into consideration
only synchronous calls, neglecting one of the great AJAX features.

[21] presents the study conducted on the performance gain offered by AJAX
in the case of Hyves (http://www.hyves.nl), The Netherlands’ largest social net-
working website having over 2 million unique users and 10 million page views per
day. When using AJAX, their studies registered a reduction with 41.3% from the
perspective of the network traffic. Moreover, the processing time on the server
side in the AJAX scenario represents about one third of the time required by
classical processing.

Studies analyzing the impact of maintaining persistent connections between
users and the web server reveal first of all that this technique reduces the overhead
implied by frequently opening of TCP connections as at least 3 packets have to be
initiated (for SYN, SYN-ACK and ACK). In fact, the server CPU requirements
are reduced if an average TCP connection carries at least one successful HTTP
transaction. The time spent actually processing the request won’t change, but
the time spent opening and closing TCP connections and launching new threads
or processes to handle them would be reduced [4].

One server can maintain a restricted number of active TCP connections and
associated HTTP server threads or processes. Also, both open connections (in-
cluding ESTABLISHED, CLOSING, etc. states) and TIME WAIT connections

CHAPTER 2. RELATED WORK 10

require some protocol control block (PCB) table space [16]. A busy server could
end up with its tables full of connections in this TIME WAIT state, or having
no room for new connections or imposing excessive connection table management
costs. When a server runs out of TCP connections descriptors or out of pro-
cesses or threads for managing individual connections, it has to close idle TCP
connections.

However, even if the impact on server’s performance implied by asynchronous
AJAX and persistent connections were intensively studied, currently, to the best
of our knowledge, there is no study addressing the design of predictive models of
the server performance that could be used by a resource provisioning system to
determine on-the-fly the optimum requirement of resources.

Chapter 3

Methodology

This chapter presents the methodology followed by our research on dynamic re-
source provisioning for AJAX web applications. We have chosen as proof of con-
cept a live chatting web application exposing a rich AJAX functionality to users,
that is representative for its class of asynchronous AJAX web applications both
from the perspective of types of interactions and from the perspective of AJAX
engine’s behavior type. On the one hand, persistent connections are maintained
over long periods of time between users and the web server. On the other hand,
asynchronous request are made by the AJAX engine on the user’s behalf during
the interaction with the web server, generating an interesting interaction, similar
to the one of major applications successful nowadays. Moreover, following the
trend of nowadays applications, our study is fundamentally concerned with web
applications serving predominantly dynamic content.

The considered AJAX web application mimics one of the functionalities of
eBay.com [22], a very popular online auction and shopping site, currently ranked
22th among the most visited web sites on the Internet and presenting a three
hours average connections’ duration [9]. The behavior of AJAX engines in the
cases of both applications are very similar, the sole difference consisting on the
significance of the information exchanged with the server: information regarding
bids when referring to eBay.com or short text messages when referring to the
application considered by our research.

Studies presented in [3] emphasize the importance of realistic benchmarking of
modern web applications enriched with AJAX techniques in order to be capable
to fully capture their interactions’ complexity. Our experiments precisely mimic
the behavior of real users and the behavior of the AJAX engine interacting with
the web application. However, experiments are conducted on a LAN so they do
not capture real latencies perceived by users that are normally geographically
distributed on the Internet. Moreover, the resources provisioning the application
are homogeneous as they belong to a grid environment. Future work could extend

11

CHAPTER 3. METHODOLOGY 12

our research by addressing this aspect.
First, we analyze the differences and impact on the server’s performance im-

plied by the AJAX’s specific characteristics. To accomplish this task, we con-
ducted a comparative study on the performance of two applications, both of
them exposing the same live chatting functionality from users’ perspective. One
of them uses the AJAX technology and persistent TCP connections, while the
second one lacks the AJAX features.

The comparative study revealed the fact that, under similar configurations and
workload, the performance profiles of the servers serving the two applications are
completely different. This result leads us to the conclusion that, because of the
new features added by the AJAX technology and because of the use of long-lived
persistent connections, different aspects heavily impact the server’s performance
profile and have to be considered when reprovisioning AJAX applications. As a
consequence, AJAX applications heavily differentiate from classical web applica-
tions and thus, require separate provisioning techniques.

As AJAX applications expose a new performance profile, the next step of our
research consisted of designing of the web application’s performance model. The
performance model is a mathematical model capable to predict what the web
server’s performance would be when more or less resources would be assigned or
if the workload would increase or decrease. The performance model is heavily
influenced by the features added by the AJAX technology and, as a consequence,
the web server has a completely different performance profile than the one in the
case of a classical web application.

The performance model is used to accomplish the resource provisioning task.
Each service can to continuously estimate its performance based on the ”what-if”
analysis and to collaboratively negotiate its performance objectives with other
services [6]. The front end service has the perspective of the whole application
and whenever the SLA is no more achieved selects for re-provisioning the services
that bring the best global benefit. Similar action is taken when the application
is over-provisioned compared to the current workload - the resource that incurs
the lowest global performance is removed.

This chapter continues with the description of the functionality, characteristics
and features of the AJAX web application considered as proof of concept and then
discusses the significance of the performance metric chosen in our research. The
chapter ends by presenting the experimental environment and setup used in all
evaluations.

CHAPTER 3. METHODOLOGY 13

3.1 Application Benchmark

We have chosen to analyze the characteristics of AJAX applications by consid-
ering as proof of concept a web application exposing a rich AJAX functionality
to users (asynchronous requests and long-lived persistent connections). More, it
serves to users highly dynamic content. Research was conducted on the Word-
press web application [18], the largest self-hosted blogging tool in the world, used
on millions of sites [25]. Another reason for this choice is that Wordpress is an
open-source project and thus, we have access to all its internals, a mandatory
requirement of our research.

As AJAX features are used only in some administrative screens of the Word-
press web site, the basic functionality was enriched with Pierre’s Wordspew plu-
gin [30] that creates a live shoutbox, using AJAX as a backend. The shoutbox
adds basic live chatting functionality to the web application and permits a real
time interaction between users through short text messages (posts). Currently,
the number of users who have enriched their Wordpress web pages with this plu-
gin is greater than 33,000, placing the plugin among the most popular Wordpress
plugins.

3.1.1 Functionality

As any live chatting application, the plugin’s functionalities imply on the one
hand the reading of posts created by other users and on the other hand the
creation of new posts. Both types of interactions are intermediated by the AJAX
engine placed at the client side.

The reading of new posts is implemented as a HTTP GET request made by
the AJAX engine with fixed frequency (Figure 3.1, unbolded lines) controlled by
T . T is a configurable parameter that influences on the one hand the application’s
degree of interactivity and on the other hand, the server’s load. A small value
of T determines very frequent requests, and thus, a high rate of updates received
by clients. However, it would heavily increase the workload on the server side.
On the other hand, a big value of T reduced the workload registered at the
server side but also reduces the application’s interactivity as updates are more
rarely received. In all experiments, to provide a highly interactive application,
we considered T = 0.5 seconds.

A GET request specifies the identifier of the last message ”known” by the
current user to have been added to the live chat. The response sent by the web
server contains the lists of all timestamp-identifier-message tuples newer than
the identifier specified by the request. GET requests are made regardless of
the user’s actions and thus, this type of interaction generates only asynchronous
communication with the web server.

CHAPTER 3. METHODOLOGY 14

Figure 3.1: The asynchronous interactions model of the web application. Exem-
plification of the two interaction types.

To complete the chat functionality, users have to be able to add new posts.
The adding of new posts is implemented as a HTTP POST request that de-
scribes the content of the text message that will be posted to the live chat. It
implies a synchronous interaction because it requires the user’s will to take action
(Figure 3.1, bolded line).

This live chatting application’s behavior is very similar to the one of eBay.com
in the context of an online auction. In the last minutes of the auction, the AJAX
engine keeps the user up-to-date with the new bids placed by others and also
permits the placing of a better bid. In the case of both applications, the AJAX
engines make requests with fixed frequency to the web server for new updates.
Moreover, at the user’s will, the AJAX engines add new information (i.e. text
messages in the context of the Wordpress chatting application or new bids on
eBay.com). These similarities prove that the functionality exposed by the appli-
cation considered in our research as proof of concept is reach and representative
for the class of modern web applications that are popular nowadays.

As previously discussed, it is important to ensure a realistic benchmarking
of web applications generally speaking and thus, of AJAX applications in the
context of our research. Normally, the client of any web application would be
a web browser that retrieves and renders the content. However, in our research
we re-implemented in Java the client side as a standalone component. This
component mimics the behavior of the AJAX engine that would be normally
placed on the client side to intermediate the users’ communication with the web

CHAPTER 3. METHODOLOGY 15

Figure 3.2: The application’s two tier model

server. In both simulated and real environment, GET requests are issued with
fixed frequency and no user action is required. On the other hand, POST requests
require user action and the simulations we considered generate these requests with
uniform distribution. However, there is no need to simulate advanced features
such as user’s typing speed as they have no big impact on the workload registered
at the web application server side.

In the case of AJAX applications, the first interaction between the user and
the web server normally implies the transmission of all scripts that are mandatory
for the AJAX engine to work at the client side. Moreover, this interaction has a
synchronous character and happens at most once as these scripts could be already
cached from a previous session or could be served by a separate entity such as
CDNs. However, the first interaction has no big relevance for our research such
that we neglect it and consider strictly the AJAX specific interactions supposed
by the web application.

3.1.2 Web Server’s Architecture

The Wordpress live chatting application is served by an Apache web server and
was designed in a classical multi-tier fashion (Figure 3.2), being composed by:

� the application tier (where the application logic is implemented);

� the database tier (where the persistent state of the chat is stored).

CHAPTER 3. METHODOLOGY 16

The application tier receives HTTP (GET and POST) requests issued by the
AJAX engine placed on the client side. A GET request issues one query to the
database required to search for posts having an identifier newer than the one
specified by the request. On the other hand, a POST request issues two queries
to the database; one query is required to actually save the new post message into
the database and another one is required for archiving it.

As a consequence of the fact that the experimental environment (described
in Section 3.2) is homogeneous and thus, resources have the same processing
capabilities, the load balancers equally distribute the workload between the re-
sources provisioning the application tier, and respectively resources provisioning
the database tier.

3.1.3 Performance metric

To illustrate the way multiple users interact through this web application, we will
analyze the separate interactions between the web server and two users that are
connected during overlapping periods of time (Figure 3.3). On behalf of each one
of them, the AJAX engines placed on their machines, will make GET requests
with the same fixed frequency influenced by the T parameter.

Considering that, for instance, on the time axis, at the moment of time T1,
User 1 decides to post a new text message to the chat, this new message will
be visible by User 2 at the moment of time T4. In fact, T4 marks the receiving
of the response corresponding to the very first GET request made by the AJAX
engine on the User 2’s behalf after the effects of the POST request performed by
User 1 are committed as persistent state by the database layer.

The delay between times T1 and T4 is denoted by Tint that expresses the
degree of interactivity between users offered by the web application. A reduced
value for Tint denotes a high degree of interactivity and implies small update
delays. This is the desired behavior for any interactive application. Tint will be
considered the performance metric of the web application considered as proof of
concept.

As expected, Tint, the degree of interactivity, depends on the user perceived
response times of both GET and POST requests, denoted by RGET , and respec-
tively by RPOST . Moreover, it depends on the ”phase shift” (PS) between the
two events - the time elapsed between the moment when User 1 posts his message
and the moment of time the AJAX engine triggers the very first request for new
updates (Figure 3.3):

Tint = f(RPOST , RGET , PS)

PS = T3− T1

CHAPTER 3. METHODOLOGY 17

Figure 3.3: Inter-users interactions through the web application. Performance
metric exemplification: the update made by User1 at T1 moment of time is
received by User2 at T4.

However, the value of PS varies between any two users and is directly in-
fluenced by T . In the worst case PS → 0.5 seconds as two GET requests are
generated each second and a GET request on the behalf of User 2 is received
just before the POST request of User 1, such that only the very next GET re-
quests will catch the update. Anyway, the value of PS is not influenced by the
current performance of the web server and as a consequence, the application’s
performance metric neglects the PS term.

Furthermore, a good user experience in the case of such web applications
assuming live interactions supposes that updates have to be quickly seen by the
other participants. The amount of time required by an update to be announced
to the other users characterizes the performance of our web application and it is

CHAPTER 3. METHODOLOGY 18

Parameter Value Meaning

KeepAlive On Enables HTTP persistent connections.
KeepAliveTimeout 2 The number of seconds Apache will wait for

a subsequent request before closing the con-
nection.

MaxKeepAliveRequests 100 Number of requests allowed on a persistent
connection.

MaxClients 150 Maximum number of connections that will
be processed simultaneously.

MaxAliveTimeout 2 Amount of time the server will wait for sub-
sequent requests on a persistent connection.

MaxSpareServers 150 Maximum number of idle child server pro-
cesses.

Table 3.1: Web server’s configuration of the keep-alive parameters

considered to have the following form:

Tint = RPOST + RGET (3.1)

To offer good user experience and real-time interactivity between users, we
consider in all evaluations that the performance target to be Tint ≤ 0.3 seconds.

The manner we set the application’s performance metric can be extended also
for the case of other AJAX web applications that generate real time interactions
between users. Considering for instance the example of eBay.com [22], our per-
formance metric expresses in fact the time necessary for a new bid placing for
a specific product to be visible by another users who are interested in the same
item. The lower this duration is, the better the interactivity and the improved
the user’s experience are as users can react to others’ actions.

3.2 Experimental Setup

The web application considered as case study is Wordpress version 3.0.4, enriched
with Pierre’s Wordspew plugin version 6.1. The application layer was imple-
mented using PHP version 5.3.5 and Apache HTTP server 2.2.17 (configured as
specified in Table 3.1) while the database layer is implemented using MySQL
version 5.0.92. According to W3 Techs [27], Wordpress is used by over 14% of
the 1,000,000 biggest websites. Apache was chosen instead of a event-based web
server because it has been, since 1996, the most popular HTTP server on the

CHAPTER 3. METHODOLOGY 19

World Wide Web, serving in 2011 over 63% of all websites and over 66% of the
million busiest, according to Netcraft [26].

Experimental testing was conducted in a homogeneous environment: DAS-4
(The Distributed ASCI Supercomputer 4) [1], a six-cluster wide-area distributed
system designed by the Advanced School for Computing and Imaging. The VU
cluster of DAS-4 includes 74 dual-quad-core compute nodes having the following
configuration: 2.4 GHz and 24 GB memory, interconnected by an InfiniBand
network. The operating system the DAS-4 runs is CentOS Linux.

Chapter 4

AJAX impact on server
performance

To illustrate the impact that AJAX features have on server’s performance and to
better emphasize the difference between these applications’ behavior and the one
of classical web applications, we conducted experiments on the two applications
exposing the same application-specific functionality to the users (as described
in the previous chapter) but one of them using AJAX features and persistent
connections, in contrast to the second one.

4.1 Comparative study of AJAX and non-AJAX

scenarios

Basically, the main difference between the two scenarios is represented by the
way TCP connections between the users and the web server are handled. These
connections are maintained persistent in the case of the AJAX web application in
contrast to the other scenario. As a consequence, as Figure 4.1(a) describes, in the
case of non-AJAX behavior, each application-specific request made to the server
implies that a new HTTP connection is established (and terminated afterwards).
As a consequence, a TCP connection is used only for one pair of request/response
and never reused. In contrast, the AJAX behavior (Figure 4.1(b)) implies that
TCP connections between users and the web server are kept persistent over long
periods of time and are reused by multiple request/response pairs.

Figure 4.1 presents a simplified representation of the states a TCP connection
changes during its lifetime. As only two of these states have big relevance for our
study, only they were represented:

� Established state indicates that the connection is ready to send and re-

20

CHAPTER 4. AJAX IMPACT ON SERVER PERFORMANCE 21

Figure 4.1: TCP connections handling. a) The non-AJAX scenario implies non-
persistent connections. b) The AJAX scenario supposes persistent connections.

CHAPTER 4. AJAX IMPACT ON SERVER PERFORMANCE 22

Table 4.1: TCP connection lifetimes

AJAX scenario non-AJAX scenario
ESTABLISHED state 50 s 100 ms

TIME WAIT state 60 s 60 s

ceive data between the user and the web server. The time a connection is
kept in this state depends on the connection’s character (persistent or non-
persistent). In the AJAX scenario, up to 100 requests (and corresponding
responses) are sent reusing the same TPC connection. As a consequence,
the lifetime of the active connection is long (up to 50 seconds, Table 4.1), in
contrast to the lifetime of an active connection in the non-AJAX scenario
that lasts for few hundreds of milliseconds.

� Time Wait state represents waiting for enough time to pass to be sure
the remote peer received the acknowledgment of the connection termina-
tion request. According to RFC 793 [24] a connection can stay in this state
for a maximum of four minutes known as a MSL (maximum segment life-
time). However, in both scenarios, the lifetimes of the idle connection are
comparable (up to 60 seconds).

4.1.1 Experimental Setup

To perform this comparative study, we considered for both applications the same
setup and the same experimental environment, as described in Section 3.2, except
for the MaxClients parameter that was set to 200. This modification was done
with the purpose to better emphasize important performance aspects that differ
from one scenario to the other. Moreover, in the case of both scenarios, each of
the two tiers of the web application has assigned only one resource.

The workload is generated by 200 users. On the behalf of each one of them, the
AJAX engine generates 2 GET requests/second, resulting thus, a request rate of
400 requests/second. POST requests are generated with an uniform distribution.

Both applications performed well and had no problems to complete all re-
quests without violating the imposed SLA. (As specified in Section 3.1.3, the
performance target is imposes on the interactivity time that should satisfy the
condition Tint ≤ 0.3 seconds).

CHAPTER 4. AJAX IMPACT ON SERVER PERFORMANCE 23

4.1.2 Differences regarding the number of TCP connec-
tions

The distinction from the perspective of the TCP connection handling between
the AJAX and non-AJAX scenarios is reflected first of all by big differences in
terms of the number of concurrent TCP connections in the ESTABLISHED and
TIME WAIT state registered at server side. Figure 4.2 presents the cumulative
distribution function of the number of concurrent established TCP connections
encountered in both scenarios.

As expected, because TCP connections are kept persistent over longer periods
of time and they are established and terminated less frequently in the AJAX
scenario, the number of concurrent open connections is much higher than in the
non-AJAX scenario. As a further consequence of the long persistency, the number
of open connections does not vary too much over time: more than 80% of the
time more than 80% of the users are connected (the number of connections is
around 164, with a standard deviation equal to 13).

In contrast, as the non-AJAX scenario supposes short-lived TCP connections,
the total number has large variations and uniformly covers a wider range. In this
case, the average number of concurent active connections is around 47.7 (more
than 3 times less compared to the AJAX scenario) while the standard deviation
of values is 32.4 (almost 3 times more compared to the AJAX scenario).

Figure 4.3 presents the cumulative distribution function of the number of idle
TCP connections for the same configuration and setup. In the non-AJAX case,
the web server handles about 400 requests/second and each of these requests is
establishing a new TCP connection. As a consequence, the web server handles
in fact the establishment of 400 connections/second. As they are short-lived
connections, the number of concurrent idle connections has a uniform distribution
over a wide range.

On the other hand, as AJAX scenario maintains long-lived connections and
one connection carries up to 100 requests, in this case the number of idle TCP
connections is drastically reduced (by about 100 times) (Figure 4.3). Basically,
the lifetime of a persistent connection is about 50 seconds and the approximate
duration of the TIME WAIT state is 60 seconds. Due to the ratio between these
two values, in the AJAX case, the number of idle connections is just slightly
greater than the number of active connections and its cumulative distribution
has a similar profile.

In conclusion, because of the long-lived connections, from the perspective of
concurrent active and idle TCP connections, the web server’s state is more stable
and easier to predict in the AJAX scenario.

CHAPTER 4. AJAX IMPACT ON SERVER PERFORMANCE 24

Figure 4.2: Cumulative distribution function of the number of ESTABLISHED
connections for the AJAX and non-AJAX scenarios.

Figure 4.3: Cumulative distribution function of the number of connections in
TIME WAIT state for the AJAX and non-AJAX scenarios.

4.1.3 Differences regarding the network traffic

Maintaining short-lived TCP connections in the non-AJAX scenario comes with
an overhead to be paid at the server side, as any application specific request made
by an user will determine a new connection to be established (and terminated
afterwards). Each TCP connection establishment requires an overhead of at least
3 packets to be initiated (i.e. SYN, SYN-ACK, and ACK packets). Moreover,
each connection termination requires two pairs of FIN and FIN ACK packets.

CHAPTER 4. AJAX IMPACT ON SERVER PERFORMANCE 25

Figure 4.4: Average number of received and transmitted packets/second in the
AJAX and non-AJAX scenarios

As both scenarios expose the same functionality to users, the number of pack-
ets/second required to transmit the application-specific data is similar. The sole
difference consists of the number of packets required for TCP connections estab-
lishment and termination.

In the non-AJAX scenario, the web server receives on each connection an
average of five packets: one SYN, one ACK, one application-specific request,
one FIN and one FIN ACK. On the other hand, the web server sends on each
connection an average of four packets: one SYN ACK, one application-specific
response, one FIN and one FIN ACK. In contrast to this, in the AJAX scenario,
the web server receives and sends on each connection not one, but up to 100
application-specific requests, respectively responses.

Figure 4.4 compares the number of received and transmitted packets/second
registered at the server side for the two scenarios, considering the discussed setup
and workload. Maintaining persistent TCP connections reduces the number of
received and transmitted packets/second with up to 80%. This result is generated
by the fact that, in the AJAX scenario, users send around 2.08 packets/second
while in the non-AJAX scenario, they send around 10 packets/second to accom-
plish the same application-specific functionality.

As both GET response and POST request packages carry the messages added
to the chat and the size of these messages present big variations from one exper-
iment to another, we avoid to compare the network traffic in terms of number
of received and transmitted bytes. The statistic of the number of received and
transmitted packets is, however, very suggestive and emphasizes the big behav-
ioral difference between the two scenarios.

4.1.4 Differences regarding the memory usage

As discussed earlier, the sole difference between the two scenarios consists of the
way the TCP connections with users are handled by the web server. As seen in
Section 4.1.2, the number of active and idle connections in the AJAX scenario is
several hundred times less than in the non-AJAX scenario. This big difference is

CHAPTER 4. AJAX IMPACT ON SERVER PERFORMANCE 26

Figure 4.5: Cumulative distribution functions of the memory usage for the AJAX
and non-AJAX scenarios.

largely caused by the huge number of idle connections. However, the operating
system permits, if needed, to close an idle connection at any moment of time
because a certain duration of the TIME WAIT state is an advice of the protocol
designers for safety but it is not mandatory. Anyway, a TCP connection, either
being active or idle implies some maintenance costs because of the following
resources[4]:

� the socket file descriptor and the kernel data structures corresponding to it;

� the TCP connection tuple (consisting of protocol, source:port, destina-
tion:port) and its data structures;

� the socket send and receive buffers.

As a consequence of the big difference between the number of managed TCP
connections, the amount of memory used in the non-AJAX scenario is bigger.
Reducing the lifetime of an idle connection would give advantage, however, to
the non-AJAX scenario.

4.1.5 Differences regarding the CPU usage

As the AJAX scenario implies less varying number of open and idle TCP con-
nections and reduced network traffic, the CPU usage presents small variations:

CHAPTER 4. AJAX IMPACT ON SERVER PERFORMANCE 27

less than 30% during the entire experiment. On the other hand, the non-AJAX
behavior implies additional overhead because of extra establishments and ter-
minations of TCP connections. As a consequence, in this case the CPU usage
increased significantly to values just below 100%. However, this big difference
is determined not only by frequent TCP connection establishments and termi-
nations, but also by more demanding searches in TCP connections table. This
happens because TCP packets do not include a session identifier, but both end-
points identify the session using the client’s address and port. Whenever a packet
is received, the TCP implementation must perform a lookup on this table to find
the destination process. As discussed in Section 4.1.2, in the non-AJAX scenario,
the table contains much more entries, thus requires more CPU usage.

4.1.6 Differences regarding the user perceived performance

The non-AJAX scenario supposes that each application-specific request issued by
users requires one TCP connection establishment to the web server. As a conse-
quence, the response time of the each GET and POST request incorporates also
the duration of the connection establishment. In contrast, in the AJAX scenario,
only about 1% of the requests present a response time that incorporates this con-
nection establishment delay. However, the application-specific processing time is
similar for both scenarios because the current request rate is below the maximum
throughput of the server. As an expected consequence of these facts, the aver-
age response time in the non-AJAX scenario is up to 11.2% greater compared
to the other scenario. The difference is caused by the fact that the application
specific processing time in both cases is comparable to the TCP establishment
time (around 20 milliseconds, respectively 2-3 milliseconds). This stands, how-
ever, because no network delays are measured as experiments are conducted in a
LAN.

4.1.7 Conclusions

This section illustrated the impact of AJAX features on the web server’s per-
formance in the context of our proof of concept application. However, these
observations can be extended for other applications and with small differences
(caused by application specific characteristics) these observations stand for them
too.

As seen, persistent connections improve the CPU usage, the network traffic
and the user perceived performance but in the meantime negatively impact the
physical memory usage which should be the very first concern of the administra-
tors of such web applications. This is reflected by the MaxClients parameter that
limits the number of (persistent) connections that can be concurrently served and

CHAPTER 4. AJAX IMPACT ON SERVER PERFORMANCE 28

thus, in our case, the number of users than can be handled concurrently without
violating the SLA.

However, all observations we made in this section consider a fixed configura-
tion and setup. Varying the Apache parameters (e.g. MaxKeepAliveRequests,
MaxRequestsPerChild, etc) would lead obviously to different results.

In the scenario of modern AJAX application handling very frequent requests
(such as ours or eBay.com), modifying the MaxRequestsPerChild parameter
would have the greatest impact on the server’s performance. For instance, reduc-
ing the value of the parameter would reduce the lifetime of the active connection
but would increase the network traffic and the CPU usage as more packets would
be sent to establish and terminate TCP connections. The performance would be
somewhere between the ones discussed in this section. On the other hand, in-
creasing the value of the MaxRequestsPerChild parameter would increase even
more the connection lifetime, but could lead at some point to memory leaks.
More, the task of de-provisioning would be harden as it should firstly ”wait” for
all (persistent) connections handled by an instance to consume their lifetime and
to be closed and only after that to release the resource.

However, there is no perfect solution and major Apache-based web sites have
different keep-alive configurations. Some of them, such as Yahoo! do not permit
persistent connections at all while BBC has a very short keep-alive timeout (i.e.
less than 5 seconds). On the other hand, there are other sites such as Apple and
CNET that use a large keep-alive timeout [19].

4.2 The choice of web server software

As previously discussed in this chapter, the maintaining of keep-alive connections
has a great impact on the web server’s performance. However, the keep-alive
concept was been implemented differently by different HTTP servers, and from
this regard, there are two main directions in which they have evolved: process-
based servers (e.g. Apache) and event-based servers (e.g. nginx, lighttp). The
difference between them is made by the way they map the received requests on
the working processes.

4.2.1 Process-based Web servers

The best known example of process-based web server is represented by Apache [10],
the web server used also in our experiments. When Apache is started with pre-
fork MPM (which is required by mod php), a main ”coordinator” process is
created, that is responsible for accepting incoming connections and passing them
to ”worker” processes previously created. These workers read users’ requests and

CHAPTER 4. AJAX IMPACT ON SERVER PERFORMANCE 29

send back responses. When a worker is done servicing a user’s requests, it reports
to the main process and waits for a new connection to be handed to it.

In a perfect world, we would set to infinity the lifetime of a connection such
that clients would maintain a connection to the web server for as long as possi-
ble to remove the overhead of TCP connection establishment and termination.
Unfortunately, each client connection requires Apache to use a worker process to
serve the requests associated with. A worker process can only handle one con-
nection at a time, and each connection is persistent over a long period of time.
Thus, Apache will create a new worker process for each new connection until it
reaches its limit of MaxClients.

Let’s consider as example what happens when 1000 web clients concurrently
access a web site, considering that the web site was MaxClients = 150, the de-
fault value for Apache. The first 150 clients will successfully connect, because
Apache will create workers to service their requests. However, as these clients
maintain persistent connections over long periods of time, they do not immedi-
ately leave so the next 850 clients will be unable to access the web server, as
all Apache worker processes are already assigned. Those 850 clients will queue
and wait for an Apache process to become available and to serve their request,
but when the maximum wait time is reached, they will give up by dropping the
connection and leaving the web application after a bad user experience.

Just increasing the MaxClients setting to something high enough to handle
the flash crowd won’t work because each Apache process consumes memory and
thus, MaxClients is limited by the memory dedicated to the web server:

MaxClients =
TotalRAMdedicated

MaximumWorkerProcessSize
(4.1)

Setting up a higher number of worker processes than this limit will determine
the web server to begin exaggeratedly thrashing and swapping between RAM and
the hard drive in a futile attempt to make it work. Unfortunately, in the end,
this leads to a totally unresponsive server and a bad user experience. There are
two solutions to fix the problem: by adding many gigabytes of RAM to the server
or by reducing the duration of persistent connections. The latter solution is out
of the question in this research.

4.2.2 Event-based Web servers

Event-based web servers are trying to avoid the large memory footprint that
process-based servers such as Apache have. The best known examples are Nginx
(http://nginx.org/) and Lighttpd (http://www.lighttpd.net/). Chris Lea said:
”Apache is like Microsoft Word, it has a million options but you only need

CHAPTER 4. AJAX IMPACT ON SERVER PERFORMANCE 30

six. Nginx does those six things, and it does five of them 50 times faster than
Apache.” [17].

Studies reveal that Nginx can handle much more traffic as compared to Apache
on same hosting plan. Hosting Wordpress [17], the nginx setup presented the same
CPU and memory usage but hosted four times more sites and servers five times
more traffic without any downtime or without getting slow.

The performance improvement is offered by the way nginx manages the re-
quests received from users. Similarly to process-based web servers, in nginx, the
worker process that is selected to serve a keep-alive HTTP connection will con-
tinue to serve all subsequent HTTP requests over that same connection. However,
in contrast to process-based web servers, nginx worker processes handle requests
”on-demand” in an asynchronous manner.

Nginx workers do not fork or create new threads upon receipt of a new con-
nection, they just add the new connection to their connection set, and go back to
their main select/poll loop. When HTTP requests are received, the nginx worker
process it and then go back to their select() loops. Since each worker handles
multiple connections to backend, the only issue is to find the right number of
worker processes to use for the nginx instance.

Web application administrators and future studies on resource provisioning
should take into consideration such event-based servers as the web server perfor-
mance profile could be different than the one when setting up a process-based
web server.

Chapter 5

Performance model

To optimally accomplish the resource provisioning of an AJAX application, a
good performance model is required. It represents a mathematical model capable
to predict the future behavior of each individual service composing the web ap-
plication if more or less resources would be allocated and if the workload would
increase or decrease. This chapter designs the performance model of the AJAX
application considered as a proof of concept in our research.

The web application is hosted and configured according to the setup specified
in Section 3.2. As previously discussed, the application was designed in a simple,
multi-tier fashion. The application tier implements the logic of the live chatting
system, while the database tier stores the persistent state of the system in a
MySQL database. In all experiments we considered Apache as being the web
server hosting the web application.

5.1 Application tier performance model

Starting with an initial configuration in which each tier of the AJAX live chatting
web application is provisioned with only one resource, we analyzed the impact
on the user perceived performance when increasing the number of users and,
respectively, the workload registered at the server side. On the behalf of each
user, the AJAX engine generates two GET requests/second. Each one of them
further generates one read query to the database tier, such that the response time
depends on the response time of both the application and the database tier:

RGET = RAS + RDB (5.1)

On the other hand, POST requests are generated with an uniform distribution
and each one of them issues two insert queries to the database tier, such that:

RPOST = RAS + 2 ·RDB (5.2)

31

CHAPTER 5. PERFORMANCE MODEL 32

Figure 5.1: Response time of the AJAX application when increasing the number
of users. Each tier is provisioned with one resource (1 AP, 1 DB).

Replacing formulas 5.1 and 5.2 into 3.1, we obtain:

Tint = ct1 ·RAS + ct2 ·RDB (5.3)

where ct1 and ct2 are two constant values.
Moreover, the number of requests (L) handled by the web server can be ap-

proximated as linearly depending on the number of users (U): L = ct · U .
Figure 5.1 presents the evolution of the user perceived response times provided

by this setup of the AJAX web application when increasing the workload. The
performance target set by the SLA specifies the restriction: Tint ≤ 0.3 seconds.
As observed, the SLA starts to be violated when the number of concurrent users
exceeds 150.

To deeply understand the cause of this performance loss, we analyze the state
of the most important system parameters that are describing the state of the ma-
chine that is provisioning the application tier of the chatting system. Table 5.1
specifies the values of these system parameters close to the crash moment of time,
namely when the number of concurrent users that are accessing the application
exceeds 150. It is easy to observe that, even if, under this workload, the per-
formance target is no more achieved, the states of the system parameters reveal,

CHAPTER 5. PERFORMANCE MODEL 33

CPU usage 25%
memory usage 1.8 GB

RX packets/second 272
TX packets/second 259

Table 5.1: State of the system parameters when SLA is violated (1 AP, 1 DB)

however, that none of them reaches its maximum hardware limit and thus, none
of them is the bottleneck generating the current performance loss.

The moment of time the system starts losing its performance has a special
meaning as the web application is hosted by Apache. As discussed in Section 4.2,
because Apache is a process-based web server, the number of threads (denoted
by the MaxClients parameter) that can be created by the web server is limited
and depends on the amount of memory allocated to the server (according to
formula 4.1). A thread is responsible to respond to all requests sent over the
same TCP connection but can serve only one connection a time. Because of this
one-to-one relationship between one TPC connection and one Apache thread, the
MaxClients parameter sets a limit on the number of active connections that can
be concurrently served successfully by the machine provisioning the application
tier. In this experiment, the web server’s setup specified in Section 3.2 states the
limit for the MaxClients parameters to 150.

When the number of users concurrently accessing the web server is approach-
ing this value, a sudden performance degradation is encountered. This big per-
formance loss is caused by the fact that the number of users trying to connect
to the web server exceeds the values of the MaxClients parameter such that,
for the new users that are trying to access the application, there is no available
thread to handle their requests. As a consequence, these users are placed in a
waiting queue until some Apache threads finish their current tasks and become
available to handle them.

AJAX web applications offering support for real-time interaction between
users, such as the Wordpress live chatting application, normally take maximum
advantage of the keep-alive feature of the HTTP version 1.1 protocol and main-
tain very long-lived TCP connections. For instance, in the case of the chatting
application, each TCP connection is used to carry up to 100 pairs of application-
specific requests and their corresponding responses, such that the lifetime of these
connections is long (i.e. up to 50 seconds). This aspect generates long waiting
queues when the number of concurrent users exceeds the value specified by the
MaxClients parameter and leads to the situation when these users have to wait
unacceptable amounts of time, and most of the times, they even start quitting
and have a poor experience. In the worst case, one user is waiting in the queue

CHAPTER 5. PERFORMANCE MODEL 34

Figure 5.2: Response time of the AJAX application when increasing the number
of users. The application tier is reprovisioned with one more resource (2 AP, 1
DB).

for an amount of time equal to the maximum lifetime of a persistent TCP connec-
tion. This is unacceptable as studies revealed that usually users leave the page if
its response time is greater than few seconds.

Taking all these into consideration and also the observation that the machine
that is provisioning the database tier is even less loaded, it is obvious that the
application tier is the one that need to be reprovisioned with one more machine
because of its impossibility to handle the current workload as there are no enough
Apache threads to serve all incoming requests.

Figure 5.2 extends Figure 5.1 by presenting the user perceived performance
after the application tier is reprovisioned with one more machine. We continue to
increase the number of users, respectively the workload seen by the web servers.
As all resources provisioning the web server are homogeneous (belonging to a grid
environment) and they have the same configuration and setup, the load balancer
will uniformly distribute the workload between the two machines provisioning
the application tier. Each one of these machines can handle up to 150 concurrent
active TCP connections.

Moreover, because of the nature of the analyzed application, there is no com-

CHAPTER 5. PERFORMANCE MODEL 35

munication or relationship between the two machines provisioning the application
tier. Furthermore, none of them is aware of the other’s existence, facts that heav-
ily influence the application’s performance profile as a whole.

Because the workload is uniformly distributed between the two machines, the
workload generated by 150 users that initially overwhelmed the web server is
successfully handled after the reprovisioning and thus, the user perceived perfor-
mance returns to good values. This good performance is maintained until the
number of users accessing the application exceeds 300. At this moment, each one
of the two machines provisioning the application tier handles almost half of the
connections and requests (i.e. around 150). In this situation, the performance loss
is caused, as previously, by the same hardware limitation of the number of active
connections that can be concurrently handled by each one of the instances. The
current states of the system parameters for each one of the machines provisioning
the applications’ tiers are similar to the one presented in Table 5.1, proving that
the system is overwhelmed again because of the impossibility of the application
tier to handle more active TCP connections, such that a new machine should be
assigned to it.

As a consequence, we reprovisioned the application tier with one more ma-
chine. After this reprovisioning, each one of the three instances will serve about
one third of the concurrent active TCP connections (i.e. around 100) and their
corresponding requests. Furthermore, the user perceived performance will return
to good values.

In conclusion, because of the AJAX’s particular characteristics and because
all machines are homogeneous, the number of users that can be successfully served
by the application tier linearly depends on the number of machines provisioning
this tier.

ThAS(n) = ct · n (5.4)

Bassically, whenever the number of users concurrently accessing the appli-
cation is below the number of Apache threads the web server can create, the
application tier offers good response times. Otherwise, because of the long-lived
persistent connections, its response time violates the SLA. From this perspective,
considering that the database tier has infinite capacity, the application tier works
similar to a switch:

RAS(n) =

{
∼ ct, if U ≤ ThAS(n)

∞, otherwise
(5.5)

We continued to analyze the web application’s performance profile when in-
creasing even more the number of concurrent users accessing it. Currently, the ap-
plication tier is provisioned with three resources that uniformly split the workload
among them while the database tier is provisioned with one resource. Figure 5.3

CHAPTER 5. PERFORMANCE MODEL 36

Figure 5.3: Response time of the AJAX application when increasing the workload.
The application tier is reprovisioned with one more resource (3 AP, 1 DB).

extends the previous two figures and presents the further user perceived response
time of the application when continuing to increase the number of concurrent
users over 300.

As observed, the workload increasing generates a progressive performance loss
that starts violating the imposed SLA when the number of users is approaching
to 390. This workload is successfully served by the machines provisioning the
application tier (that are uniformly splitting it among them). In this moment,
the performance loss is generated by the database tier, currently provisioned
with one machine. This machine must respond to (read and insert) requests
issued by all users and cannot serve them into an acceptable amount of time such
that to avoid the SLA violation. In this situation, the database tier should be
reprovisioned with one more machine.

5.2 Database tier performance model

As a consequence of the last reprovisioning decision, the permanent state of the
Wordpress live chatting application is replicated across multiple database servers.

CHAPTER 5. PERFORMANCE MODEL 37

Figure 5.4: Provisioning the database tier.

Each GET request issued by an AJAX engine on the behalf of an user generates
one Read query to the database tier. As MySQL ensures strong consistency
among all database replicas, this read query can be addressed to any replica.
Moreover, because all resources provisioning the database tier are homogeneous,
read queries are uniformly distributed across all database replicas. On the other
hand, POST requests generate two Insert queries but, for consistency reasons,
they must be issued at every replica.

Considering that the application’s database tier is provisioned with N homo-
geneous resources, each one of them must process a fraction 1

N
Read queries.

In the meantime, however, to ensure strong consistency, each resource processes
all Insert queries (Figure 5.4). Because of this, anyway, at some point, increas-
ing N , the number of resources provisioning the database tier, won’t bring more
benefits when the number of Insert queries alone saturate the database servers’
capabilities. More scalable solutions such as NoSQL datastores were designed to
overcome the scalability problem of relational databases such as MySQL but this
discussion is out of the scope of this thesis.

The performance model of MySQL databases is a well-studied subject in the
literature. It presents the characteristics of a queuing system. However, the main
AJAX features we are interested in our research do not impact the performance
profile of the database tier such that detailed study on the performance profile of
relational databases is not required. This relational database might be replaced
by a NoSQL datastore, as well.

In terms of thread management, MySQL is different from Apache because
it does not use a thread pool model but a thread cache instead. Thread cache

CHAPTER 5. PERFORMANCE MODEL 38

is different from thread pool in the sense that thread cache does not pre-create
threads at system startup, but the threads are managed in a dynamic fashion.
When workload is heavy such that the number of required concurrent threads
exceeds the cache size, it creates new threads to serve extra requests. After
that only the cache size number of threads are reused and maintained alive.
[15] proposes a model using load-independent multi-station queuing center to
model MySQL where the number of stations is the averaged number of all worker
threads of MySQL during a run.

The Wordpress web application we considered as proof of concept maintains
long-lived persistent TCP connections only between users and the application
tier. Any request issued by the application tier to the database tier is sent using
a fresh TCP connection. The PHP extension for MySQL supports persistent
connections but by default they are disabled in the new mysqli extension, maybe
because of the additional caveats that have to be treated. One is that, when using
table locking on a persistent connection, if the script cannot release the lock, then
subsequent scripts using the same connection will block indefinitely. Moreover,
when using transactions, a transaction block will also carry over to the next script
which uses that connection if the script execution ends before the transaction
block does. Also, another problem with MySQL persistent connections is that
the connection will stay open even if the user leaves the page and the connection
goes out of scope.

5.3 Evaluation

This section evaluates the correctness of the performance model previously de-
signed. To accomplish this task, we modified some of the parameters considered,
as it will be described in Section 5.3.1. In the initial configuration of the web
server, each one of its tiers is provisioned with only one machine.

5.3.1 Experimental setup

We evaluated our performance model considering a different experimental setup
of the Wordpress live chatting application, as described in Table 5.2. The table
presents only the values of parameters that differ from the ones presented in
Table 3.1. The AJAX engine placed on the client side issues also two GET
requests/second and POST requests are generated with an uniform distribution.
As a result of the current configuration, on each persistent TCP connection are
sent up to 150 pairs of requests and their corresponding responses such that
the lifetime of the active connection is increased to 90 seconds. Moreover, each
application server can successfully serve 200 active connections.

CHAPTER 5. PERFORMANCE MODEL 39

MaxKeepAliveRequests 150
MaxClients 200

Table 5.2: Web server’s configuration

ESTABLISHED state 90 s
TIME WAIT state 60 s

Table 5.3: TCP connection lifetimes

Figure 5.5: Model validation

5.3.2 Model validation

Figure 5.5 presents the web application’s performance when increasing the work-
load. The user perceived performance offered by this initial configuration of the
web server starts to violate the SLA (Tint ≤ 0.3 seconds) when the number of
users U exceeds 200. This situation, however, is confirmed by the formula 5.5

CHAPTER 5. PERFORMANCE MODEL 40

that describes the performance model of the application tier: currently, the con-
dition of the first branch of the formula is no more satisfied (i.e. U > 200, n = 1)
and thus, the application tier is no more capable to successfully handle all active
TCP connections that would be created by the users accessing the application.
As a consequence, the application should be reprovisioned with one more machine
in order to double the number of Apache threads.

The workload will be uniformly distributed among the two application servers
and all queries will be solved by the machine provisioning the database tier. We
continue to increase the number of users after this reprovisioning. The applica-
tion presents gradual performance degradation and the imposed SLA starts to
be violated when the number of users is close to 400. On the one hand, the
application tier must be reprovisioned as U ' 400, n = 2 and the condition of the
first branch of the formula 5.5 is not satisfied. On the other hand, the current
request rate (' 800 requests/second) exceeds the maximum throughput of the
database server such that the database tier should be reprovisioned. After taking
these actions, the application’s services are provisioned with two and respectively
three machines and the user perceived performance returns to good values.

Increasing even more the number of users, the workload will be successfully
handled by the database tier but, when approaching 600, will generate too many
active TCP connections and will cause the server to respond with unpredictable
delays.

As seen, changing the setup of the AJAX application considered as proof of
concept creates similar behavior and performance profile to the one discussed
at the beginning of this chapter. The AJAX’s features have a similar impact
on the server’s performance and determine the same linear relation between the
number of concurrent active users that can be successfully served and the number
of machines provisioning the application tier.

Chapter 6

Provisioning AJAX Applications

To be capable to keep up with the demand and to successfully handle work-
load variations or flash crowds, major web applications should be able to request
on-the-fly new resources. These requests are based on resource provisioning algo-
rithms that use the mathematical performance profile of each service composing
the web application to determine the optimal configuration of the server accord-
ing to the workload. The reprovisioning task can be based on the ”what-if”
analysis such that each service can be responsible for its own provisioning as
proposed in [6]. When the imposed performance target is no more achieved, the
service that would bring the most benefit when reprovisioning will be reprovi-
sioned. This chapter discusses particular aspects and issues raised by the use
of the AJAX technology in the context of resource provisioning. In contrast to
classical applications, AJAX creates even more interesting challenges because of
some of its characteristics and because of the long-lived persistent TCP connec-
tions maintained with users.

Among the use of the ”what-if” analysis to reprovision the application, there
are other tunings and approaches relevant in the context of resource provisioning
the application.

6.1 Resource provisioning and web server’s pa-

rameters

As previously seen, the server’s performance when serving an AJAX application
heavily depends on the amount of memory allocated to the server because it con-
trols the number of active connections that can be concurrently served. From the
resource provisioning perspective however, it would be beneficial that each ma-
chine provisioning the application tier to be capable to serve as many concurrent
users as possible. Considering that machines are requested to a grid or a cloud

41

CHAPTER 6. PROVISIONING AJAX APPLICATIONS 42

and their amount of memory is fixed, the performance can still be improved by
trying to maintain as small as possible the size of the worker process. According
to formula 4.1, this would lead to an increase of the MaxClients parameter. De-
pending on the application’s particular aspects, this parameter can be increased
until the bottleneck moves to the CPU usage or the network traffic.

As seen previously, tuning the server’s parameters configuring persistent con-
nections (that were discussed in Table 3.1) can greatly impact the performance.
Among these parameters, KeepAliveT imeout and MaxKeepAliveRequests have
the biggest impact on server’s performance. According to the current workload,
web servers could dynamically tune these parameters to be able to serve it with
minimal costs.

The KeepAliveT imeout parameter enables the closing of connections when
the user becomes idle and as a result, reduces the number of concurrent active
connections. Depending on the application’s particularities, tuning this parame-
ter could help improving the performance and minimizing the number of machines
provisioning the application. Anyway, in the context of AJAX applications sup-
posing real-time interactions between users, normally the AJAX engine requests
very frequently updates such that no connection will be recognized as been idle.
In this situation, a greater impact has the MaxKeepAliveRequests parameter
that controls the number of requests that can be sent over the same connection.
Increasing the value of this parameter leads to an increase of the active connec-
tion lifetime but in the mean time it is important to recycle each process because
Apache threads gradually increase their memory allocation as they run. Because
of this, there is a tradeoff between the lifetime of an active connection and the
number of concurrent active connections that can be handled. However, there
is no configuration of these parameters that fits to each and every application
but the application’s characteristics are the one that determine them. Because of
their complexity, there is no perfect solution applying to all AJAX applications.

6.2 Reprovisioning and deprovisioning issues

Moreover, AJAX applications create even more interesting challenges when repro-
visioning them. As previously discussed in Section 4.2, in the context of process-
based web servers, such as Apache, that was considered as proof of concept in
our research, a thread of the web server is responsible to handle all requests sent
over a TCP connection during its entire active lifetime. As a consequence of this
fact, even if the application tier has been reprovisioned in the meanwhile with
new machines, the already established TCP connections cannot be relocated to
these new machines. They will continue to be served by the same machines as
before the reprovisioning. Only the new incoming connections would benefit from

CHAPTER 6. PROVISIONING AJAX APPLICATIONS 43

the new provisioned machines.
The very first implication of this aspect is the fact that the uniform balancing

between all machines provisioning the application tier will take much more time
than in the case of classical web applications and depends on the moment of time
the reprovisioning decision is taken. Moreover, just after the reprovisioning, if
the workload does not follow the predicted increase, no user will benefit from the
reprovisioning.

A similar situation is encountered when one decides to deprovision some of
the resources previously allocated to the application tier. To maintain a good
user experience, a machine previously assigned to the application tier can be
deprovisioned only after all connections handled by all its Apache threads were
terminated.

The maximum delay between the moment of time the decision of deprovi-
sioning the application tier is taken and the moment of time the resource can be
actually deprovisioned in completely safe conditions depends on the lifetime of
both active and idle connection. Anyway, the maintenance of idle connections
is a recommendation of operating systems’ designers but not a mandatory be-
havior such that they can be reduced to short periods and their impact can be
minimized. However, in contrast to the case of classical web applications, the re-
source deprovisioning of AJAX applications is delayed because of the long-lived
persistent TCP connections.

Chapter 7

Conclusions

During the last decades, web applications have evolved from simple applications
sharing static content to very complex ones serving highly dynamic content to
millions of users spread around the world. Nowadays’ web applications’ design
has become more and more complicated because of the new features added in
order to ensure a good user experience and to keep up with the demand even in
the presence of workload variations or flash crowds.

We have seen that the AJAX technique plays an important role among the
new features added by designers of modern web applications in order to improve
the user experience. This technique started from the idea to offer a desktop appli-
cation like experience to users by placing at the client side an intermediary that
incorporates part of the application processing and mediates the users’ interac-
tions with the application asynchronously to the interactions with the web server.
Furthermore, AJAX makes intensive use of the keep-alive feature added by the
version 1.1 of the HTTP protocol by maintaining long-lived TCP connections.

Our study revealed that these new features added by the AJAX technique
greatly impact the performance of the web server such that its performance pro-
file is completely different from the one of a classical web application, proving
that different aspects influence the user perceived performance of the application
or cause the web server to crash. We concluded that AJAX applications should
be studied separately in the context of resource provisioning and different perfor-
mance models should be designed for them. This thesis explored the challenges
posed by AJAX applications by analyzing the AJAX’s impact on server’s per-
formance and by identifying the key elements relevant in the context of resource
provisioning. To the best of our knowledge, it is the very first study addressing
these aspects.

As a consequence of the AJAX applications’ characteristics, we observed that
the web server’s performance profile is much different than the one of classical
applications in that it saves CPU usage by reducing the number of connections

44

CHAPTER 7. CONCLUSIONS 45

establishments and terminations required to provide to users the same applica-
tion specific functionality. This also reduces the size of the tables storing state
information correlated to all active and idle TCP connections and implicitly the
complexity and the processing required by the operations issued on these tables.
Moreover, because of the same reasons, a significant reduction of the network
traffic is encountered. AJAX improves the user perceived performance as the re-
sponse time of the applications most of the times does not incorporates the time
required by a new TCP connection to be established.

We identified the amount of memory allocated to web serving purposes as
a key aspect since it has direct influence on the number of active connections
that can be successfully served concurrently when hosting the application using a
process-based web server, such as Apache, the most popular web server nowadays.
This limitation exists because there is a one-to-one relationship between a thread
of the web server and a TCP connection with a user: a thread serves all requests
sent over a connection during its entire lifetime but the thread can handle only
one connection a time.

In the case of such web applications enabling long-lived TCP connections,
we registered a much higher number of concurrent active connections than in
the case of classical applications such that a greater number of threads will be
busy serving them. Whenever the number of users concurrently accessing the
application exceeds the maximum number of threads that can be created by the
web server, waiting queues become long, cause the users to quit and generate
poor user experience.

AJAX applications serving highly dynamic content and supposes no compu-
tational intensive processing at the server side determine a performance profile
of the web server similar to the one of the web application considered as proof
of concept in our research. When facing workload variations, the performance
degradation is caused by the server’s impossibility to handle the respective num-
ber of concurrent active TCP connections.

After understanding the performance profile imposed by AJAX, we designed
the mathematical performance model of the web server serving the applications.
This model is capable to predict the future performance of each service making up
the AJAX application when adding or removing machines and when increasing or
decreasing the workload. Whenever the performance target is no more achieved
or, in contrast, the web application makes waste of resources, the performance
model is further used by resource provisioning algorithms to determine what is the
service that offers the most benefit when reprovisioning and then to reprovision
it.

Our research focuses of process-based servers, as they are nowadays the most
popular web servers. Our study revealed the fact that the number of concur-
rent users that can be successfully served increases linearly with the number of

CHAPTER 7. CONCLUSIONS 46

resources provisioning the tier influenced by AJAX. This behavior is directly
caused first of all by the internal characteristics of the web server and secondly,
by the fact that only the application service is directly influenced by the AJAX
features.

This performance model does not stand, however, for other services compos-
ing the application where the direct impact of AJAX features is not felt and
which behave exactly the same regardless of the using or not using of AJAX.
For instance, in the case of the application considered as proof of concept in our
research, the database service presents a classical queuing model.

7.1 Future work

There are few directions in which the current research on AJAX web applications
can be improved and extended by future work.

First of all, as discussed in Section 4.2, web servers have evolved in two main
directions: process-based web servers or event-based web servers. The most im-
portant difference between the two categories consists of the way active TCP
connections are allocated to the web server’s threads to serve them: following
an one-to-one relationship in the case of process-based servers or a multi-to-one
relationship in the case of event-based servers. This design decision has great rel-
evance in the context of AJAX web applications because of the long-lived TCP
connections maintained with the users. As a consequence, future work should
analyze the impact on the performance profile of the design decisions of process-
based web servers.

Moreover, depending on the application’s particular character and also on the
types of interactions exposed to users, some AJAX web applications could take
great advantage of the use of caching. Future work should analyze the benefits
of caching at different tiers of the AJAX web applications and should capture it
into performance models.

As previously discussed in Chapter 3, because of the complexity of the in-
teractions supposed by AJAX web applications, it is important to ensure their
realistic benchmarking in order to be capable to fully capture different aspects
that greatly impact both the server’s performance profile and the user perceived
experience. Among these aspects, one can name the key typing speed, the net-
work latency, the distribution of clients and even the web browsers types used by
users to access the application. Recent research proposes to use real browser when
benchmarking web applications, not to emulate them, such that, future work on
resource provisioning of AJAX web applications should take these aspects into
consideration.

The testing environment considered in our research is a grid such that all

CHAPTER 7. CONCLUSIONS 47

machines provisioning the web application are homogeneous. However, recently,
thanks of its great advantages, cloud computing has become an attractive plat-
form to host web applications but in this context machines are no more homo-
geneous, such that future research on AJAX applications should take this into
consideration.

Last but not least, our research focused on AJAX web applications following
a pull-based model similar to most of the modern applications that are successful
nowadays. However, the category of applications designed in a push fashion also
raises interesting challenges that should be explored by future work.

Bibliography

[1] The Distributed ASCI Supercomputer 4. http://www.cs.vu.nl/das4/.

[2] Tarek Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance guarantees
for web server end-systems: A control-theoretical approach. IEEE Transac-
tions on Parallel and Distributed Systems Journal, 2001.

[3] Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood, and Prashant
Shenoy. Benchlab: An open testbed for realistic benchmarking of web appli-
cations. In Proceedings of the 2nd USENIX Conference on Web Application
Development, 2011.

[4] Edith Cohen, Haim Kaplan, and Jeffrey Oldham. Managing tcp connection
under persistent http. In Proceedings of the eighth international conference
on World Wide Web, pages 1709–1723, New York, NY, USA, 1999. Elsevier
North-Holland, Inc.

[5] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-
lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,
Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly available
key-value store. SIGOPS Oper. Syst. Rev., 41:205–220, October 2007.

[6] Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi. Autonomous resource
provisioning for multi-service web applications. In Proceedings of the Inter-
national World-Wide Web Conference, apr 2010.

[7] Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi. Resource provisioning
of Web applications in heterogeneous clouds. In Proceedings of the 2nd
USENIX Conference on Web Application Development, jun 2011.

[8] Ronald P. Doyle. Model-based resource provisioning in a web service utility.
In Proceedings of the Fourth USENIX Symposium on Internet Technologies
and Systems, 2003.

[9] Ebay. Sales statistics sources for ebay uk and ebay.com, 2009.

48

BIBLIOGRAPHY 49

[10] The Apache Software Foundation. http://www.apache.org/.

[11] Jesse James Garrett. Ajax: A new approach to web applications. In
http://www.adaptivepath.com/ideas/e000385. Adaptive Path, 2008.

[12] Clinton W. Smullen III and Stephanie A. Smullen. Ajax application server
performance. In Proceedings of SoutheastCon, IEEE, pages 154 – 158, 2007.

[13] Andrea James. Amazon’s 2-hour crash thwarts shoppers, 2008.

[14] Abhinav Kamra. Yaksha: A self-tuning controller for managing the perfor-
mance of 3-tiered web sites. In In International Workshop on Quality of
Service (IWQoS), pages 47–56, 2004.

[15] Xue Liu, Jin Heo, and Lui Sha. Modeling the 3-tiered web sites. IEEE In-
ternational Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 888–895, 2005.

[16] Jeffrey C. Mogul. The case for persistent-connection http. In Proceedings of
the conference on Applications, technologies, architectures, and protocols for
computer communication, pages 299–313, New York, NY, USA. ACM.

[17] Why NGinx? http://wpnginx.com/why-nginx/.

[18] Wordpress official website. http://wordpress.org/.

[19] Apache optimization. A brief history of keep-alives, 2011.

[20] S. Ranjan, J. Rolia, H. Fu, and E. Knightly. Qos-driven server migration for
internet data centers, 2002.

[21] Youri Roodt. The effect of ajax on performance and usability in web en-
vironments. Research supervised by Hyves, Universiteit van Amsterdam,
Hogeschool van Amsterdam, Vrije Universiteit.

[22] Randy Shoup. ebay’s architectural princi-
ples. In http://qconlondon.com/dl/qcon-london-
2008/slides/RandyShoup eBaysArchitecturalPrinciples.pdf.

[23] Swaminathan Sivasubramanian. Scalable hosting of web applications, 2007.

[24] TCP Specification. http://tools.ietf.org/html/rfc793. September 1981.

[25] WordPress Usage Statistics. http://en.wordpress.com/stats/.

[26] Netcraft WebServer Surveys.

BIBLIOGRAPHY 50

[27] W3 Techs. Web technology surveys, usage of content management systems
for web sites, 2011.

[28] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and
Asser Tantawi. An analytical model for multi-tier internet services and its
applications. In Proceedings of the ACM SIGMETRICS’2005, pages 291–
302, 2005.

[29] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Ch, Pawan Goyal, and Tim-
othy Wood. Agile dynamic provisioning of multi-tier internet applications.
ACM Transactions on Autonomous and Adaptive Systems, 2008.

[30] Pierres Wordspew WordPress Plugins. http://wordpress.org/plugins

[31] BangYu Wu, Chi-Hung Chi, and Zhe Chen. Resource allocation based on
workflow for enhancing the performance of composite service. Services Com-
puting, IEEE International Conference on, 0:552–559, 2007.

	1 Introduction
	2 Related Work
	2.1 Resource provisioning
	2.2 AJAX Web applications
	2.2.1 Introduction
	2.2.2 Impact of AJAX on server performance

	3 Methodology
	3.1 Application Benchmark
	3.1.1 Functionality
	3.1.2 Web Server's Architecture
	3.1.3 Performance metric

	3.2 Experimental Setup

	4 AJAX impact on server performance
	4.1 Comparative study of AJAX and non-AJAX scenarios
	4.1.1 Experimental Setup
	4.1.2 Differences regarding the number of TCP connections
	4.1.3 Differences regarding the network traffic
	4.1.4 Differences regarding the memory usage
	4.1.5 Differences regarding the CPU usage
	4.1.6 Differences regarding the user perceived performance
	4.1.7 Conclusions

	4.2 The choice of web server software
	4.2.1 Process-based Web servers
	4.2.2 Event-based Web servers

	5 Performance model
	5.1 Application tier performance model
	5.2 Database tier performance model
	5.3 Evaluation
	5.3.1 Experimental setup
	5.3.2 Model validation

	6 Provisioning AJAX Applications
	6.1 Resource provisioning and web server's parameters
	6.2 Reprovisioning and deprovisioning issues

	7 Conclusions
	7.1 Future work

	Bibliography

