
Chapter 5
Replicating for Performance: Case Studies

Maarten van Steen and Guillaume Pierre

Abstract In this chapter we take a look at the application of replication techniques
for building scalable distributed systems. Unlike using replication for attaining de-
pendability, replicating for scalability is generally characterized by higher replica-
tion degrees, and thus also weaker consistency. We discuss a number of cases il-
lustrating that differentiation of replication strategies, for different levels of data
granularity, is needed. This observation leads us to conclude that automated replica-
tion management is a key issue for future research if replication for scalability is to
be successfully deployed.

5.1 Introduction

Building scalable distributed systems continues to be one of the more challenging
tasks in systems design. There are three independent and equally important perspec-
tives on scalability [20]:

• Size scalability is formulated in terms of the growth of number of users or data,
such that there is no noticeable loss in performance or increase in administrative
complexity.

• A system is said to be geographically scalable when components can be placed
far apart without seriously affecting the perceived performance. This perspective
on scalability is becoming increasingly important in the face of distributing a
service across the Internet.

• Administrative scalability describes the extent to which a system can be put
under the control of multiple administrative organizations without suffering from
performance degradation or increase of complexity.

In this chapter, we will concentrate on size and geographical scalability, in partic-
ular in relation to the perceived performance of a system. More specifically, we
are interested in scalability problems that manifest themselves through performance
degradation. To keep matters simple, in the following we will refer to scalability in
only this more narrow context.

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 73–89, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

74 M. van Steen and G. Pierre

To address scalability problems, there are essentially only two techniques that
we can apply. Following the terminology as proposed in [5], we can partition the
set of processes and the collection of data those processes operate on, and spread
those parts over different nodes of the distributed system. An excellent example of
where this scaling technique has been successfully applied is the Web, which can
be viewed as a huge, distributed information system. Each Web site is responsible
for handling its own part of the entire data set, allowing hundreds of millions of
users to access the system simultaneously. As we will discuss later, numerous sites
need further partitioning as a single machine can not handle the stream of requests
directed to them.

Another illustrative example of where partitioning has been successfully applied
is in the Internet’s Domain Name System. By October 2008, the entire name space
had been partitioned across an estimated 11.9 million servers1. These servers col-
laborate in resolving names, and in such a way that many requests can be handled si-
multaneously. However, an important reason why DNS generally performs so well,
is also because much of its data has been cloned, or more formally, replicated.

Cloning processes and associated data is useful for addressing geographical scal-
ability problems. The principle is simple: by placing services close to where they
are needed, we can reduce performance degradation caused by network latencies,
and at the same time by placing a service everywhere it is needed, we address size
scalability by dividing the load across multiple servers. In the following, we shall
often use the term replication instead of cloning.

A main issue with replication is that it requires each update to be carried out
at each replica. As a consequence, it may take a while before all replicas are the
same again, especially when updates need to be carried out at many replicas spread
across a large network such as the Internet. More problematic is when multiple
updates need to be carried out concurrently, as this requires global synchronization
if we wish to guarantee that in the end the replicas are indeed the same. Global
synchronization requires the execution of an agreement protocol. Such an execution
is generally not scalable: too many parties may need to communicate and wait for
results before an update can be finally committed. An important consequence is that
if we apply replication as a scaling technique, then we generally need to compromise
on consistency: copies cannot be kept the same at all time.

This observation is not new. For example, it is well known among architects of
very large Web-based systems such as Amazon, Google, and eBay that scalability
can be attained only by “embracing inconsistency”2. A keyword here is eventual
consistency: in the absence of further updates, replicas will converge to the same
state (see also [34]). Accepting eventual consistency as the best possible option is
needed when dealing with cloned services. The problem is that there is no way that
one can guarantee the combination of strong consistency, availability, and coping
with partitionable networks at the same time. This so-called CAP conjecture was
postulated by Eric Brewer in 2000 and proved correct two years later [9]. For large-

1 http://dns.measurement-factory.com/surveys/200810.html
2 eBay’s Randy Shoup at his presentation at Qcon, London, 2008.

http://dns.measurement-factory.com/surveys/200810.html

5 Replicating for Performance: Case Studies 75

scale distributed systems, it simply means that one cannot guarantee full systemwide
consistency of update operations unless we avoid cloning services.

Unfortunately, there are no general, application-independent rules by which we
can specify to what extent inconsistencies can be tolerated. In other words, replica-
tion for scalability is inherently coupled to the access, usage, and semantics of the
data that are being replicated. For example, caching in DNS generally works because
name-to-address bindings are relatively stable, allowing caches to be refreshed only
once every few hours. Such dependencies, in turn, have led to a myriad of solutions
regarding replication strategies. In addition, determining the appropriate granularity
of the data to be replicated turns out to be crucial.

In this chapter, we will take a closer look at replication as a scaling technique,
and in particular consider those situations in which scalability can be achieved only
if the replication degree is relatively large. Such replication is necessarily coupled to
applications, but also requires that we can tolerate inconsistencies between replicas.
For these reasons, we follow an approach by discussing several cases, each dealing
in its own with inconsistencies. In particular, we will argue that in order to achieve
performance, we need to automatically decide on (1) which data needs to be repli-
cated, (2) at which granularity, and (3) according to which replication strategy.

To keep matters simple, we assume that updates are coordinated such that write-
write conflicts will not occur. In effect, this means that concurrent updates are serial-
ized such that all replicas will process all updates in the same order. This assumption
is realistic: in many practical settings we see that potential conflicts on some data set
are avoided by having a coordinator for that data set. This coordinator sees all write
requests and orders them accordingly, for example, by first timestamping requests
before they are passed on to replicas. Furthermore, we focus on scalable Web-based
distributed systems, which makes it easier to compare the various trade-offs regard-
ing replication for scalability. Note that many issues we bring up are also applicable
to other types of distributed systems, such as large-scale enterprise information sys-
tems. We ignore replication for wireless distributed systems, including large-scale
systems based on sensor networks, mobile ad hoc networks, and so on. These type of
distributed systems are becoming increasingly important, but often require specific
solutions when it comes to applying scaling techniques.

In the remainder of this chapter, we start with discussing the large variety of pos-
sible replication strategies in Section 5.2. This is followed by a discussion on the
data granularity at which these strategies must be applied in Section 5.3. Different
forms of consistency guarantees are discussed in Section 5.4, followed by replica-
tion management (Section 5.5). We come to conclusions in Section 5.6.

5.2 Replication Strategies

A replication strategy describes which data or processes to replicate, as well as
how, when, and where that replication should take place. In the case of replication
for fault tolerance, the main distinguishing factor between strategies is arguably
how replication takes place, as reflected in a specific algorithm and implementation
(see also [35]). Replication for scalability also stresses the what, where and when.

76 M. van Steen and G. Pierre

Moreover, where algorithms for fault-tolerance replication strategies are compared
in terms of complexity in time, memory, and perhaps messages, the costs of a repli-
cation strategy employed for performance should be expressed in terms of usage of
resources, and the trade-off that is to be made concerning the level of consistency.

The costs of replication strategies are determined by many different factors. In
particular, we need to consider replica placement, caching versus replication, and
the way that replicated content is updated. Let us briefly consider these aspects in
turn (see also [30]), in order to appreciate replica management when performance is
at stake.

5.2.1 Replica Placement

Replica placement decisions fall into two different categories: decisions concerning
the placement of replica servers, and those concerning the placement of replicated
data. In some cases, the decisions on server placement are irrelevant, for example,
when any node in a distributed system can be used for replica placement. This is, in
principle, the case with data centers where the actual physical location of a replica
server is less important. However, in any distributed system running on top of a
large computer network such as an intranet or the Internet, where latencies to clients
and between servers play a role, server placement may be an important issue and
precedes decisions on data placement.

In principle, server placement involves identifying the K out of N best locations
in the network underlying a distributed system [22, 25]. If we can assume that clients
are uniformly distributed across the network, it turns out that server placement deci-
sions are relatively insensitive to access patterns by those clients, and that one need
only take the network topology into account when making a decision. An obvious
strategy is to place servers close to the center of a network [3], that is, at locations
to which most communication paths to clients are short. Unfortunately, the problem
has been proven to be NP-hard, and finding good heuristics is far from trivial [12].
Also, matters become complicated when going to more realistic scenarios, such as
when taking actual traffic between clients and servers into account [10].

Once replica servers are in place, we have the facilities to actually place repli-
cated data. A distinction should be made between client-initiated and server-initiated
replication [31]. With server-initiated replication, an origin server takes the deci-
sion to replicate or migrate data to replica servers. An origin server is the main
server from which content is being served and where updates are coordinated. This
technique is typically applied in Content Delivery Networks (CDNs) [23], and is
based on observed access patterns by clients.

Client-initiated replication is also known as client-side caching. The most impor-
tant difference with server-initiated replication is that clients can, independently of
any replication strategy followed by an origin server, decide to keep a local copy
of accessed data. Client-initiated replication is widely deployed in the Web for all
kinds of content [11]. It has the advantage of simplicity, notably when dealing with
mostly-read data, as there is no need for global coordination of data placement.
Instead, clients copy data into local caches based completely on their own access

5 Replicating for Performance: Case Studies 77

patterns. Using shared caches or cooperative caches [1], highly effective data repli-
cation and placement can be deployed (although effectiveness cannot be guaranteed,
see [36]).

As an aside, note that caching techniques can be deployed to establish server-
initiated replication. In the protocol for the Akamai CDN, a client is directed to
a nearby proxy server. The proxy server, configured as a traditional Web caching
server, inspects its local cache for the referred content, and, if necessary, first fetches
it from the origin server before returning the result to the client [19].

5.2.2 Content Distribution

Once replicas are in place, various techniques can be deployed for keeping them
up-to-date. Three different aspects need to be considered:

State versus function shipping: A common approach for bringing a replica up-to-
date is to simply transfer fresh data and overwrite old data, with variations based
on data compression or transferring only differences between versions (i.e., delta
shipping). As an alternative to this form of passive replication, a replica can also
be brought up-to-date by locally executing the operation that led to the update,
leading to active replication [28]. This form of update propagation is known as
function or operation shipping, and has proven to be an alternative when com-
munication links are slow [17].

Pull versus push protocols: Second, it is important to distinguish between proto-
cols that push updates to replica servers, or the ones by which updates are pulled
in from a server holding fresher updates. Pushing is often initiated by a server
where an update has just taken place, and is therefore generally proactive. In
contrast, pulling in updates is often triggered by client requests and can thus be
classified as on-demand. Combinations of the two, motivated by performance
requirements, is also possible through leases by which servers promise to push
updates until the lease expires [6].

Dissemination strategies: Finally, we need to consider which type of channels to
use when delivering updates. In many cases, unicasting is used in the form of
TCP connections between two servers. Alternatively, multicasting techniques
can be deployed, but due to lack of network-level support we generally see
these being used only at application level in (peer-to-peer) content delivery net-
works [37]. Recently, probabilistic, epidemic-style protocols have been devel-
oped as an alternative for content delivery [14, 7].

Clearly, these different aspects together result in a myriad of alternatives for imple-
menting replication strategies. Note also that although such implementations could
also be used for replicating for fault tolerance, emphasis is invariably on efficiently
delivering content to replica servers, independently of requirements regarding con-
sistency.

78 M. van Steen and G. Pierre

5.2.3 Strategy Evaluation

With so many ways to maintain replicas, it becomes important to compare and eval-
uate strategies. Unfortunately, this is easier said than done. In fact, it can be argued
that a blatant omission in the scientific approach to selecting replication strategies
is a useful framework for comparing proposals (although such an attempt has been
made [13]). The difficulty is partly caused by the fact that there are so many perfor-
mance metrics that one could consider. Moreover, metrics are often difficult if not
impossible to compare. For example, how does one compare a replication strategy
that results in low perceived latencies but which consumes a lot of bandwidth, to
one that saves network bandwidth at the cost of relatively poor response times?

An approach followed in the Globule system (and one we describe below), is to
make use of a general cost function (which is similar to a payoff or utility function
in economics). The model considers m performance metrics along with a (nonde-
creasing) cost ck(s) of the kth metric. The cost ck(s) is dependent on the deployed
replication strategy s. Combined, this leads to a total replication cost expressed as

rep(s) =
m

∑
k=1

wkck(s)

where wk is the (positive) weight associated with making costs ck(s). With this
model, it becomes possible to evaluate and compare strategies, with the obvious
goal to minimize the total costs of replication. Note that there may be no obvious
interpretation in what the total costs actually stand for. Also, it is up to the designers
or administrators of the system in which data are being replicated to decide on the
weights. For example, in some cases it may be more important to ensure low latency
at the cost of higher usage of bandwidth. Besides latency and network bandwidth,
typical performance metrics include used storage, energy consumption, monetary
costs, computational efforts, and the “cost” of delivering stale data.

5.3 Replication Granularity

We now take a closer look at a number of cases where replication is used to improve
the scalability of a system. In all cases, the improvement comes from adapting the
system in such a way that it can simultaneously support several replication strate-
gies, and differentiate among these strategies for smaller units of data than before.
Concretely, in our first example, we will demonstrate that supporting a replication
strategy on a per-page basis for sites storing static Web pages leads to higher scal-
ability and better performance. In our second example, this kind of differentiation
and higher granularity will be shown to also benefit cloning of Web services. As a
last example, we take a look at an extensive analysis of Wikipedia traces. The over-
all conclusion is that replicating for performance requires differentiating replication
strategies for smaller data units than is presently common.

5 Replicating for Performance: Case Studies 79

5.3.1 Example 1: Content Delivery Networks

An important class of large-scale distributed systems is formed by content deliv-
ery networks (CDNs) Internet. Specific content, such as a collection of Web pages,
is serviced by what is known as an origin server. As mentioned before, an origin
server is responsible for handling updates as well as client requests. Also, it pro-
vides replica servers with content to which client requests can then be redirected.
The size of a typical CDN may vary between a few tens of servers to tens of thou-
sands of servers.

In order to guarantee availability and performance, replication of content plays a
key role in any CDN. Besides the general issues discussed above concerning where
to place replicas and how to keep them up-to-date, it turns out that the granularity of
the data to consider for replication is equally important. For example, applying a sin-
gle replication strategy to an entire Web site leads to much worse performance than
replicating each Web page separately according to a page-specific strategy. Further-
more, even for seemingly stable Web sites, we have found that access patterns orig-
inating from a site’s clients, change enough to warrant continuous monitoring and
adaptation of per-page replication strategies. We briefly report on one such study.

Pierre et al. [21] conducted experiments to examine to what extent differentiating
replication strategies could make a difference in the overall performance of a Web
site. To that end, they considered several sites consisting of only static Web pages.
Experiments were conducted by choosing a single replication strategy for an entire
site, as well as experiments in which each document, i.e. Web page, would be sub-
ject to its own replication strategy. In the experiments, clients were traced to their
autonomous system (AS), measuring latency as well as bandwidth. In addition, they
kept an accurate account of updates on documents. Using these data, a what-if anal-
ysis was performed using a situation in which so-called edge servers were assumed
to be placed in the various ASes as sketched in Figure 5.1.

Edge
server

Edge
server

Edge
server

Origin
server

Client Client

Client

ClientClient Client

Client

ClientClient

Client

Client

Client

Client

Client

Client

Clients in an
unknown AS

AS 1 AS 2 AS 3

AS of document’s
origin server

Fig. 5.1 Set-up of the CDN experiment with Web sites having static Web pages.

80 M. van Steen and G. Pierre

Table 5.1 Evaluated caching and replication strategies.

Abbr. Name Description

NR No replication No replication or caching takes place. All clients forward their
requests directly to the origin server.

CV Verification Edge servers cache documents. At each subsequent request,
the origin server is contacted for revalidation.

CLV Limited validity Edge servers cache documents. A cached document has an
associated expiration time before it becomes invalid and is
removed from the cache.

CDV Delayed verification Edge servers cache documents. A cached document has an
associated expiration time after which the primary is contacted
for revalidation.

SI Server invalidation Edge servers cache documents, but the origin server invalidates
cached copies when the document is updated.

SUx Server updates The origin server maintains copies at the x most relevant edge
servers; x = 10, 25 or 50

SU50+CLV Hybrid SU50 & CLV The origin server maintains copies at the 50 most relevant edge
servers; the other edge servers follow the CLV strategy.

SU50+CDV Hybrid SU50 & CDV The edge server maintains copies at the 50 most relevant edge
servers; the other edge servers follow the CDV strategy.

Clients for whom the AS could not be determined were assumed to directly contact
the origin server when requesting a Web page. In all other cases, client requests
would be assumed to pass through the associated AS’s edge server. With this setup,
the caching and replication strategies listed in Table 5.1 were considered.

The traces were used to drive simulations in which different strategies were ex-
plored, leading to what is generally known as a what-if analysis. As a first experi-
ment, a simple approach was followed by replicating an entire Web site according to
a single strategy. The normalized results are shown in Table 5.2. Normalized means
that the best results were rated as 100. If bandwidth for a worse strategy turned out
to be 21% more, that strategy was rated as 121. Stale documents returned to clients
are measured as the fraction of the different documents requested.

What these experiments revealed was that there was no single strategy that would
be best in all three metrics. However, if the granularity of replication is refined to
the level of individual Web pages, overall performance increases significantly. In
other words, if we can differentiate replication strategies on a per-page basis, op-
timal values for resource usage are much more easily approached. To this end, the
cost-based replication optimization explained above was explored. Not quite sur-
prisingly, regardless the combination of weights for total turnaround time, stale doc-
uments, and or bandwidth, making replication decisions at the page level invariably
led to performance improvement in comparison to any global replication strategy.
Moreover, it turned out that many different strategies needed to be deployed in or-
der to achieve optimal performance. The study clearly showed that differentiating
replication strategies at a sufficient level of granularity will lead to significant per-
formance improvements. The interested reader is referred to [21] for further details.

5 Replicating for Performance: Case Studies 81

Table 5.2 Normalized performance results using the same strategy for all documents, measuring
the total turnaround time, the fraction of stale documents that were returned, and the total consumed
bandwidth. Optimal values are highlighted for each metric.

Site 1 Site 2

Strategy Turnaround Stale docs Bandwidth Turnaround Stale docs Bandwidth

NR 203 0 118 183 0 115

CV 227 0 113 190 0 100

CLV 182 0.61% 113 142 0.60% 100

CDV 182 0.59% 113 142 0.57% 100

SI 182 0 113 141 0 100

SU10 128 0 100 160 0 114

SU25 114 0 123 132 0 119

SU50 102 0 165 114 0 132

SU50+CLV 100 0.11% 165 100 0.19% 125

SU50+CDV 100 0.11% 165 100 0.17% 125

5.3.2 Example 2: Edge-Server Computing

The previous example dealt only with static Web pages. However, modern CDNs
require replication of dynamic pages and even programs [23, 24]. In general, this
means that the architecture needs to be extended to what is known as an edge-server
system. In such a system, the origin server is supported by several servers situated
at the “edge” of the network, capable of running a (partial) replica of the origin
server’s database, along with programs accessing those data. There are essentially
four different organizations possible, as shown in Figure 5.2.

The simplest organization is to clone only the application logic to the edge
servers, along with perhaps some data. In this case, requests are processed locally,
but if necessary, data are still fetched from the origin server. This scheme is typ-
ically used to address size scalability by reducing the computational load of the
origin server. However, it will not be sufficient if performance costs are dominated
by accesses to the database. If data has been copied to the edge server, it is assumed
to be mostly read-only and any updates can be easily dealt with offline [24].

With full replication, the database at the origin server is cloned to the edge servers
along with the logic by which data are accessed and processed. Instead of fully
cloning the database, it is also possible to clone only those parts that are accessed
by the clients contacting the particular edge server. In practice, this means that the
origin server needs to keep track of access traces and actively decide which parts of
the database require replication.

An alternative scheme is to deploy content-aware caching. In this case, the
queries that are normally processed at the origin server are assumed to fit specific
templates, comparable to function prototypes in programming languages. In effect,
templates implicitly define a simple data model that is subsequently used to store
results from queries issues to the origin server. Whenever a query addresses data

82 M. van Steen and G. Pierre

Authoritative

database
Schema Schema

full/partial data replication

full schema replication/

query templates

Content-aware

Database

copy

Web
server

Web
server

query

response

Content-blind

cache

cache

Client

Edge-server side Origin-server side

Appl
logic

Appl
logic

Fig. 5.2 Different ways to organize edge-server computing.

that has already been cached, the result can be retrieved locally. To illustrate, con-
sider a query for listing all books by a given author of which the result is cached
at the edge server from which the query originated. Then, when a subsequent query
is issued for listing all books by that same author, but for a specific time frame, the
edge server need, in principle, only inspect its local cache. This approach is feasible
only if the edge server is aware of the templates associated with the queries.

Finally, edge servers can follow a content-blind caching scheme by which a query
is first assigned a unique key (e.g., through hashing the query including its parameter
values), after which the results are cached under that key. Whenever the exact same
query is later issued again, the edge server can look up the previous result from its
cache.

All these schemes require that edge servers register for updates at the origin
server. In principle, this means that the cloned data at an edge server can be kept
identical with that stored at the origin server. For scalability purposes, updates may
not be propagated simultaneously to all edge servers, but instead an update is de-
livered only when there is a need to do so. This may happen, for example, because
cloned data are requested by an edge server’s client.

For scalability purposes, it is often convenient to let the edge server decide when
updates are actually fetched from the origin server. In effect, an edge server will
allow its clients to operate on stale data for some time. As long as clients are un-
aware that some updates have taken place, they will rightfully perceive the cloned
data to be consistent. This approach toward delaying update propagation has been
used in the file sharing semantics of the Coda distributed file system [15]. Problems

5 Replicating for Performance: Case Studies 83

Edge Computing

Content-aware

Full Replication

Content-blind

Edge Computing

Content-blind

Content-aware

Full Replication

Edge Computing

Content-blind

Content-aware

Full Replication

(a) Flashcrowd (b) Web browsing (c) Web ordering

Fig. 5.3 Performance of edge-server systems for different workloads. The x-axis shows increased
client-side browsing activity, whereas the y-axis shows response times.

with such schemes occur when clients are allowed to switch between edge servers.
In that case, it may happen that a client observes a version Dt of same data at one
edge server, and later a previous version Dt−1 of that data at another edge server.
Of course, this is not supposed to happen. One solution that has been extensively
explored in the Bayou system, is to support client-centric consistency models [32].
Simplifying matters somewhat, these models guarantee that data are kept consistent
on a per-client basis. In other words, an individual client will always see the same
or fresher data when issuing requests, regardless through which edge server it is ac-
cessing that data. However, guaranteeing client-centric consistency requires keeping
track of what clients have accessed, which imposes an extra burden on edge servers.

Having a choice from different replication and caching strategies immediately
brings up the question which strategy is the best one. Again, in line with the re-
sults discussed for simple CDNs, there is no single best solution. Sivasubramanian
et al. conducted a series of trace-driven simulations using different workloads for
accessing Web services. The results of these experiments are shown in Figure 5.3,
of which a detailed report can be found in [29]. Again, what these studies show is
that differentiating strategies is important in order to achieve higher performance.
In addition, edge-server computing also puts demands on which edge servers clients
are allowed to access in order to circumvent difficult consistency problems. Similar
results have been reported by Leff et al. [18] in the case of Java-based systems, and
distributed objects [8].

5.3.3 Example 3: Decentralized Wikipedia

As a final example, consider the increasingly popular Wikipedia system. This sys-
tem is currently organized in a near-centralized fashion by which traffic is mostly
directed to one of two major sites. Each site maintains a database of so-called wikis:
a collection of (hypertext) pages marked up in the wikitext markup language. The
Wikipedia system provides a Web-based interface by which a Wiki document is
returned in HTML form for display in standard Web browsers.

A serious problem for the Wikimedia organization hosting the various wiki’s is
that the increase in traffic is putting a significant burden on their infrastructure. Be-
ing a noncommercial and independent organization means that financial support is

84 M. van Steen and G. Pierre

Table 5.3 Wikipedia workload analysis and impact for decentralization.

Type of page % Requests Strategy to follow

Pages that are read-only in practice and
are mostly read (>75%) in default HTML
format.

27.5% HTML caching or replication with the degree of
replication depending on the popularity of the page.

Pages that are almost read-only and
have a significant fraction (>25%) of
reads in alternate formats.

10.9% Wikitext replication in combination with HTML
caching. The degree of replication should depend
on the popularity of the page.

Maintained pages that are mostly read
(>75%) in default HTML format.

46.7% HTML replication with a replication factor controlled
by the popularity of the page.

Maintained pages that have a significant
fraction (>25%) of reads in alternate for-
mats.

8.3% Wikitext replication with a replication factor con-
trolled by the popularity of the page. HTML caching
can be considered if the read/save ratio is consid-
erably high.

Nonexisting pages. 8.3% Negative caching combined with attack detection
techniques.

always limited. Therefore, turning over to a truly collaborative, decentralized orga-
nization in which resources are provided and shared by the community would most
likely significantly relieve the current infrastructure allowing further growth.

To test this hypothesis, Urdaneta et al. conducted an extensive analysis of
Wikipedia’s workload, as reported in [33]. The main purpose of that study was to
see whether and how extensive distributed caching and replication could be applied
to increase scalability. Table 5.3 shows the main conclusions.

Although most requests to Wikipedia are for reading documents, we should dis-
tinguish between their rendered HTML forms and data that is read from the lower-
level wikitext databases. However, it is clear that there are still many updates to
consider, making it necessary to incorporate popularity when deciding on the repli-
cation strategy for a page. Surprisingly is the fact that so many nonexisting pages
are referenced. Performance can most likely be boosted if we keep track of those
pages through negative caching, i.e. storing the fact that the page does not exist, and
thus avoiding the need to forward a request.

5.4 Replicating for Performance versus Consistency

From the examples discussed so far, it is clear that differentiating replication strate-
gies and considering finer levels of replication granularity in order to improve per-
formance will help. However, we have still more or less assumed that consistency
need not be changed: informally, clients will always be able to obtain a “fresh” copy
of the data they are accessing at a replica server. Note that in the case of content
delivery networks as well as edge-server computing, we made the assumption that
clients will always access the same server. Without this assumption, maintaining
client-perceived strong consistency becomes more difficult.

Of course, there may be no need to sustain relatively strong consistency. In their
work on consistency, Yu and Vahdat [38] noted that consistency can be defined along
multiple dimensions:

5 Replicating for Performance: Case Studies 85

Numerical deviation: If the content of a replicated data object can be expressed
as a numerical value, it becomes possible to express the level of consistency
in terms of tolerable deviations in values. For example, in the case of a stock
market process, it may be allowed to let replicas deviate to a maximum of 1%
before update propagation is required, or likewise, that values are not allowed to
differ by more than $0.02.
Numerical deviations can also be used to express the number of outstanding up-
date operations that have not yet been seen by other replica servers. This form of
consistency is analogous to allowing transactions to proceed while being ignorant
of the result of N preceding transactions [16]. However, this type of consistency is
generally difficult to interpret in terms of application semantics, rendering them
practically useless.

Ordering of updates: Related to the number of outstanding update operations, is
the extent to which updates need to be carried out in the same order everywhere.
Tolerating deviations in these orders may lead to conflicts in the sense that two
replicas cannot be brought into the same state unless specific reconciliation al-
gorithms are executed. Consistency in terms of the extent that out-of-order ex-
ecution of operations can be tolerated is highly application specific and may be
difficult to interpret in terms of application semantics.

Staleness: Consistency can also be defined in terms of how old a replica is allowed
to be in comparison to the most recent update. Staleness consistency is naturally
associated with real-time data. A typical example of tolerable staleness is formed
by weather reports, of which replicas are generally allowed to be up to a few
hours old.

This so-called continuous consistency is intuitively simple when dealing with de-
viations in the value of content, as well as in the staleness of data. However, prac-
tice has shown that as soon as ordering of operations come into play, applica-
tion developers generally find it difficult to cope with the whole concept of data
(in)consistency. As mentioned by Saito and Shapiro [27], we would need to deal
with a notion of bounded divergence between replicas that is properly understood
by application developers. Certainly when concurrent updates need to be supported,
understanding how conflict resolution can be executed is essential.

Researchers and practitioners who have been working on replication for per-
formance seem to agree that, in the end, what needs to be offered to end users and
application developers is a perception of strong consistency: what they see is always
perceived as what they saw before, or perhaps fresher. In addition, if they are aware
of the fact that what they are offered deviates from the most recent value, then at the
very least the system should guarantee eventual consistency. This observation had
already led researchers in the field of distributed shared memory (DSM) to simplify
the weaker consistency models by providing, for example, software patterns [4]. In
other cases, only simple primitives were offered, or weaker consistency was sup-
ported at the language level, for example in object-based DSM systems, which pro-
vided an workable notion of weak consistency (called entry consistency [2]).

86 M. van Steen and G. Pierre

+/-

Web hosting system

Metric

estimation

Analysis

+/-+/- +/-

Reference input

Initial configuration

Uncontrollable parameters (disturbance / noise)

Observed output

Measured outputAdjustment triggers

Corrections

Replica

placement

Consistency

enforcement

Request

routing
Data

granularity

Fig. 5.4 The feedback control loop for automated replica management.

5.5 Replication Management

What all these examples illustrate is that when applying replication for performance,
there is no single best solution. We will need to take application semantics into
account, and in general also stick to relatively simple consistency models: well-
ordered updates and eventual consistency (be it in time or space).

This brings us immediately to one of the major issues in replication for perfor-
mance: because acceptable weak consistency is dependent on application seman-
tics, we are confronted with a serious replication management problem, which is
now also application dependent. By replication management we mean deciding on
a replication strategy and ensuring that the selected strategy can be implemented
(e.g., by ensuring that appropriate replica servers are in place). As we have dis-
cussed above, not only do we need to choose from multiple strategies, we also need
to figure out at which level of data granularity we should differentiate strategies.

Manually managing replication for performance in large-scale systems is a
daunting task. What is needed is a high degree of automated management, effec-
tively meaning that we are required to implement a feedback loop as shown in Fig-
ure 5.4. The control loop shows four different adjustment measures: replica place-
ment (where to replicate), consistency enforcement (how and when to replicate),
request routing (how to route requests to replicas), and deciding on data granularity
(what to replicate).

Notably the deciding on the granularity of data is important for efficient analysis
and selection of strategies. For example, by grouping data items into the largest
possible group to which the same strategy can be applied, fewer comparisons to
reference input is needed thus improving the throughput of feedback.

However, the real problem that needs to be addressed in this scheme is the re-
alization of the analysis component. In content delivery networks such as Globule
where data items have an associated origin server, this server is an obvious candi-
date to carry out the analysis. Doing so will lead to a natural distribution of the load

5 Replicating for Performance: Case Studies 87

across the system. In this case, an origin server simply logs requests, or collects
access traces from replica servers that host content it is responsible for.

Such a scheme cannot be universally applied. Consider, for example, the case of
a collaborative, decentralized Wikipedia system. Unlike content delivery networks,
there is no natural owner of a Wikipedia document: most pages are actively main-
tained by a (potentially large) group of volunteers. Moreover, considering that ex-
tensive replication is a viable option for many pages, many requests for the same
page may follow completely independent paths, as is often also the case in unstruc-
tured peer-to-peer networks [26]. As a consequence, knowledge on access patterns
is also completely distributed, making analysis for replication management more
difficult in comparison to that in content delivery networks.

There seems to be no obvious solution to this problem. What we are thus witness-
ing is the fact that replication for performance requires differentiating replication
strategies at various levels of data granularity and taking application semantics into
account when weak consistency can be afforded. However, this replication manage-
ment requires the instantiation of feedback control loops of which it is not obvious
how to distribute their components. Such a distribution is needed for scalability pur-
poses.

5.6 Conclusions

Replicating for performance differs significantly from replicating for availability or
fault tolerance. The distinction between the two is reflected by the naturally higher
degree of replication, and as a consequence the need for supporting weak consis-
tency when scalability is the motivating factor for replication. In this chapter, we
have argued that replication for performance requires automated differentiation of
replication strategies and at different levels of data granularity.

In many cases, this automated differentiation implies the instantiation of decen-
tralized feedback control loops, an area of systems management that still requires
much attention. If there is one conclusion to be drawn from this chapter, it is that
research should focus more on decentralized replication management if replication
is to be a viable technique for building scalable systems.

Acknowledgements This chapter could not have been written without the hard research work
conducted by a number of people at (one time working at) VU University. We thank Michal Szy-
maniak, Swaminathan Sivasubramanian, and Guido Urdaneta for their contributions.

References

1. Annapureddy, S., Freedman, M., Mazieres, D.: Shark: Scaling File Servers via Coopera-
tive Caching. In: Second Symp. Networked Systems Design and Impl. USENIX, USENIX,
Berkeley, CA (May 2005)

2. Bershad, B., Zekauskas, M., Sawdon, W.: The Midway Distributed Shared Memory System.
In: COMPCON, pp. 528–537. IEEE Computer Society Press, Los Alamitos (1993)

3. Bondy, J., Murty, U.: Graph Theory. Springer, Berlin (2008)

88 M. van Steen and G. Pierre

4. Carter, J., Bennett, J., Zwaenepoel, W.: Techniques for Reducing Consistency-Related Com-
munication in Distributed Shared Memory Systems. ACM Trans. Comp. Syst. 13(3), 205–
244 (1995)

5. Devlin, B., Gray, J., Laing, B., Spix, G.: Scalability Terminology: Farms, Clones, Partitions,
Packs, RACS and RAPS. Tech. Rep. MS-TR-99-85, Microsoft Research (Dec. 1999)

6. Duvvuri, V., Shenoy, P., Tewari, R.: Adaptive Leases: A Strong Consistency Mechanism
for the World Wide Web. In: 19th INFOCOM Conf., pp. 834–843. IEEE Computer Society
Press, Los Alamitos (Mar. 2000)

7. Eugster, P., Guerraoui, R., Kermarrec, A.M., Massoulié, L.: Epidemic Information Dissemi-
nation in Distributed Systems. IEEE Computer 37(5), 60–67 (2004)

8. Gao, L., Dahlin, M., Nayate, A., Zheng, J., Iyengar, A.: Application Specific Data Replication
for Edge Services. In: 12th Int’l WWW Conf., ACM Press, New York (2003)

9. Gilbert, S., Lynch, N.: Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-tolerant Web Services. ACM SIGACT News 33(2), 51–59 (2002)

10. Ho, K.-H., Georgoulas, S., Amin, M., Pavlou, G.: Managing Traffic Demand Uncertainty in
Replica Server Placement with Robust Optimization. In: Boavida, F., Plagemann, T., Stiller,
B., Westphal, C., Monteiro, E. (eds.) NETWORKING 2006. LNCS, vol. 3976, pp. 727–739.
Springer, Heidelberg (2006)

11. Hofmann, M., Beaumont, L.: Content Networking: Architecture, Protocols, and Practice.
Morgan Kaufman, San Mateo (2005)

12. Karlsson, M., Karamanolis, C.: Choosing Replica Placement Heuristics for Wide-Area Sys-
tems. In: 24th Int’l Conf. on Distributed Computing Systems, Mar. 2004, pp. 350–359. IEEE
Computer Society Press, Los Alamitos (2004)

13. Karlsson, M., Karamanolis, C., Mahalingam, M.: A Framework for Evaluating Replica
Placement Algorithms. Tech. rep., HP Laboratories, Palo Alto, CA (2002)

14. Kermarrec, A.M., Massoulié, L., Ganesh, A.: Probabilistic Reliable Dissemination in Large-
Scale Systems. IEEE Trans. Par. Distr. Syst. 14(3), 248–258 (2003)

15. Kistler, J., Satyanaryanan, M.: Disconnected Operation in the Coda File System. ACM Trans.
Comp. Syst. 10(1), 3–25 (1992)

16. Krishnakumar, N., Bernstein, A.J.: Bounded Ignorance: A Technique for Increasing Concur-
rency in a Replicated System. ACM Trans. Database Syst. 4(19), 586–625 (1994)

17. Lee, Y.W., Leung, K.S., Satyanarayanan, M.: Operation Shipping for Mobile File Systems.
IEEE Trans. Comp. 51(12), 1410–1422 (2002)

18. Leff, A., Rayfield, J.T.: Alternative Edge-Server Architectures for Enterprise JavaBeans
Applications. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 195–211.
Springer, Heidelberg (2004)

19. Leighton, F., Lewin, D.: Global Hosting System. United States Patent, Number 6,108,703
(Aug. 2000)

20. Neuman, B.: Scale in Distributed Systems. In: Casavant, T., Singhal, M. (eds.) Readings in
Distributed Computing Systems, pp. 463–489. IEEE Computer Society Press, Los Alamitos
(1994)

21. Pierre, G., van Steen, M., Tanenbaum, A.: Dynamically Selecting Optimal Distribution
Strategies for Web Documents. IEEE Trans. Comp. 51(6), 637–651 (2002)

22. Qiu, L., Padmanabhan, V., Voelker, G.: On the Placement of Web Server Replicas. In: 20th
INFOCOM Conf., Apr. 2001, pp. 1587–1596. IEEE Computer Society Press, Los Alamitos
(2001)

23. Rabinovich, M., Spastscheck, O.: Web Caching and Replication. Addison-Wesley, Reading
(2002)

24. Rabinovich, M., Xiao, Z., Aggarwal, A.: Computing on the Edge: A Platform for Replicating
Internet Applications. In: Eighth Web Caching Workshop (Sep. 2003)

25. Radoslavov, P., Govindan, R., Estrin, D.: Topology-Informed Internet Replica Placement. In:
Sixth Web Caching Workshop, Jun. 2001, North-Holland, Amsterdam (2001)

26. Risson, J., Moors, T.: Survey of Research towards Robust Peer-to-Peer Networks: Search
Methods. Comp. Netw. 50(17), 3485–3521 (2006)

5 Replicating for Performance: Case Studies 89

27. Saito, Y., Shapiro, M.: Optimistic Replication. ACM Comput. Surv. 37(1), 42–81 (2005)
28. Schneider, F.: Implementing Fault-Tolerant Services Using the State Machine Approach: A

Tutorial. ACM Comput. Surv. 22(4), 299–320 (1990)
29. Sivasubramanian, S., Pierre, G., van Steen, M., Alonso, G.: Analysis of Caching and Repli-

cation Strategies for Web Applications. IEEE Internet Comput. 11(1), 60–66 (2007)
30. Sivasubramanian, S., Szymaniak, M., Pierre, G., van Steen, M.: Replication for Web Hosting

Systems. ACM Comput. Surv. 36(3), 1–44 (2004)
31. Tanenbaum, A., van Steen, M.: Distributed Systems, Principles and Paradigms, 2nd edn.

(translations: German, Portugese, Italian). Prentice-Hall, Upper Saddle River (2007)
32. Terry, D., Demers, A., Petersen, K., Spreitzer, M., Theimer, M., Welsh, B.: Session Guaran-

tees for Weakly Consistent Replicated Data. In: Third Int’l Conf. on Parallel and Distributed
Information Systems, Sep. 1994, pp. 140–149. IEEE Computer Society Press, Los Alamitos
(1994)

33. Urdaneta, G., Pierre, G., van Steen, M.: Wikipedia Workload Analysis for Decentralized
Hosting. Comp. Netw. (to be published 2009)

34. Vogels, W.: Eventually Consistent. ACM Queue, pp. 15–18 (Oct. 2008)
35. Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Understanding Replica-

tion in Databases and Distributed Systems. In: 20th Int’l Conf. on Distributed Computing
Systems, Taipei, Taiwan, Apr. 2000, pp. 264–274. IEEE (2000)

36. Wolman, A., Voelker, G., Sharma, N., Cardwell, N., Karlin, A., Levy, H.: On the Scale and
Performance of Cooperative Web Proxy Caching. In: 17th Symp. Operating System Princi-
ples, Kiawah Island, SC, Dec. 1999, pp. 16–31. ACM (1999)

37. Yeo, C., Lee, B., Er, M.: A Survey of Application Level Multicast Techniques. Comp.
Comm. 27(15), 1547–1568 (2004)

38. Yu, H., Vahdat, A.: Design and Evaluation of a Conit-Based Continuous Consistency Model
for Replicated Services. ACM Trans. Comp. Syst. 20(3), 239–282 (2002)

	Replicating for Performance: Case Studies
	Introduction
	Replication Strategies
	Replica Placement
	Content Distribution
	Strategy Evaluation

	Replication Granularity
	Example 1: Content Delivery Networks
	Example 2: Edge-Server Computing
	Example 3: Decentralized Wikipedia

	Replicating for Performance versus Consistency
	Replication Management
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

