
Robust Performance Control for Web Applications in the Cloud

Hector Fernandez1, Corina Stratan1 and Guillaume Pierre2

1Vrije Universiteit Amsterdam, The Netherlands
2IRISA / University of Rennes 1, France

{hector.fernandez, corina.stratan}@vu.nl, guillaume.pierre@irisa.fr

Keywords: Cloud computing, PaaS, Resource provisioning, Web applications.

Abstract: With the success of Cloud computing, more and more websites have been moved to cloud platforms. The elas-
ticity and high availability of cloud solutions are attractive features for hosting web applications. In particular,
the elasticity is supported through trigger-based provisioning systems that dynamically add/release resources
when certain conditions are met. However, when dealing with websites, this operation becomes more prob-
lematic, as the workload demand fluctuates following an irregular pattern. An excessive reactiveness turns
these systems into imprecise and wasteful in terms of SLA fulfillment and resource consumption. In this pa-
per, we propose three different provisioning techniques that expose the limitations of traditional systems, and
overcomes their drawbacks without overly increasing complexity. Our experiments conducted on both public
and private infrastructures show significant reductions in SLA violations while offering performance stability.

1 INTRODUCTION
One of the major innovations provided by Cloud

computing platforms is their pay-per-use model
where clients pay only for the resources they actu-
ally use. This business model is particularly favor-
able for application domains where workloads vary
widely over time, such as the domain of Web appli-
cation hosting. Web applications in the cloud can re-
quest and release resources at any time according to
their needs.

However, provisioning the right volume of re-
sources for a Web application is not a simple task.
Web applications are usually composed of multiple
types of components such as Web servers, applica-
tion servers, database servers and load balancers that
distribute the incoming traffic across them. Complex
performance behavior of these components makes it
difficult to find the optimal resource allocation, even
when the application workload is perfectly stable.
The magnitude of the problem is further increased by
the fact that Web application workloads are often very
unstable and hard to predict. In the case of a sudden
load increase there is a necessary tradeoff between re-
acting as early as possible to minimize the duration
when the application underperforms because of insuf-
ficient processing capacity, and a slower approach to
avoid situations where the load has already decreased
when the new resources become available.

Faced with this difficult scientific challenge, the

academic community has proposed a wide range of
sophisticated resource provisioning algorithms (De-
jun et al., 2011; Muppala et al., 2012; Urgaonkar
et al., 2008; Vasić et al., 2012). However, we observe
a wide discrepancy between these academic proposi-
tions and the very simple mechanisms that are cur-
rently available to cloud customers. These mecha-
nisms are usually based on lower or upper thresholds
on resource utilization. Crossing one of the thresh-
olds triggers a pre-defined resource provisioning ac-
tion such as adding or removing one machine.

We postulate three possible reasons why sophis-
ticated techniques are not more widely deployed: (i)
the gains of using sophisticated provisioning strate-
gies are too low to be worth the effort; (ii) imple-
menting and evaluating these techniques is a difficult
exercise, which is why real cloud systems rely on sim-
pler techniques; and (iii) academic approaches mostly
focus on unrealistic evaluations using simple applica-
tions and artificial workloads (Do et al., 2011; Islam
et al., 2012).

This paper investigate which of these possible
causes are the real problems, and aims to propose au-
tomatic scaling algorithms which provide better re-
sults than the simple ones without overly increasing
complexity. We implemented and installed several re-
source provisioning mechanisms in ConPaaS, an open
source platform-as-a-service environment for hosting
cloud applications (Pierre and Stratan, 2012). Our



Figure 1: ConPaaS system architecture.

techniques use several levels of thresholds to predict
future performance degradations, workload trend de-
tection to better handle traffic spikes and dynamic
load balancing weights to handle resources hetero-
geneity. We exercised these algorithms in realistic
unstable workload situations by deploying a copy of
Wikipedia and replaying a fraction of the real access
traces to its official web site. Finally, we report on (i)
implementation complexity; and (ii) potential gains
compared to the threshold-based solution.

2 CONPAAS OVERVIEW
ConPaaS is an open-source runtime environ-

ment for hosting applications in Cloud infrastruc-
tures (Pierre and Stratan, 2012). In ConPaaS, an ap-
plication is designed as a composition of one or more
elastic and distributed services. Each service is ded-
icated to host a particular type of functionality of an
application. ConPaaS currently supports seven dif-
ferent types of services: two web application hosting
services (PHP and JSP); a MySQL database service;
a NoSQL database service; a MapReduce service; a
TaskFarming service; and a shared file system service.

Each ConPaaS service is made up of one manager
virtual machine (VM) and a number of agent VMs.
Agent: The agent VMs hosts the necessary com-
ponents to provide the service-specific functionality.
Based on the performance requirements or the appli-
cation workload, agent VMs can be started or stopped
on demand.
Manager: Each service is controlled by one manager
VM. The manager is in charge of centralizing moni-
toring data, controlling the allocation of resources as-
signed to the service, and coordinating reconfigura-
tions so no loss of service is experienced when adding
or removing resources.

Figure 1 shows the architecture of the ConPaaS
deployment for a typical PHP web application backed

by a MySQL database. The application is deployed
using two ConPaaS services: the PHP service and the
MySQL service. As illustrated in Figure 1, the man-
ager VM of each ConPaaS service includes a perfor-
mance monitoring and a resource provisioning sys-
tem. The monitoring component is based on Gan-
glia (Ganglia monitoring system, ), a scalable dis-
tributed monitoring system. The monitoring data is
collected by the manager VM. For the PhP service, we
implemented modules that extend Ganglia’s standard
set of monitoring metrics for measuring the request
rate and response times of requests.

Each ConPaaS service can plug-in its own auto-
matic resource provisioning policies, taking into ac-
count specificities of the service such as the structure
of the service deployment, the complexity of the re-
quests and service-specific monitoring data. So far
our focus has been on the web hosting service, for
which we implemented a number of automatic re-
source provisioning policies.

3 WIKIPEDIA APPLICATION
Most academic resource provisioning systems are

evaluated using synthetic applications and workloads
such as TPC-W, RuBiS and RuBBoS. However, these
traditional benchmarks do not exhibit features of
real Web applications such as traffic unstability as
well as heterogeneous and constantly-changing re-
quest mixes (Cecchet et al., 2011). Instead of bas-
ing our evaluations on unrealistic workloads, we used
the WikiBench benchmark (van Baaren, 2009). This
benchmark uses a full copy of Wikipedia as the
web application, and replays a fraction of the actual
Wikipedia’s access traces.

Hosting a copy of Wikipedia in ConPaaS requires
two different services: a PHP web hosting and a
MySQL service. The MySQL service is loaded with
a full copy of the English Wikipedia articles as of
2008, which has a size of approximately 30GB. In the
PHP service, the configuration was composed of one
load balancer, one static web server and one or more
PHP servers. We then use WikiBench to replay access
traces from 2008 (Urdaneta et al., 2009). The trace
contains requests for static and dynamic pages. When
replaying it, the most important performance bottle-
neck is the application logic of the application: PHP
requests are processed an order of magnitude slower
than simpler static web pages. In this article we there-
fore focus on the automatic scaling of the PHP tier.

As an example, in Figure 2(a), we show the PHP
workload sampled from one trace, as the number of
PHP requests per minute during approximately one
day. Besides the obvious variations in number of re-



 100

 150

 200

 250

 300

 350

 400

10 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

P
H

P
 R

e
q
u
e
s
ts

 p
e
r 

m
in

u
te

Time (min)

(a) Workload intensity

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

10 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Ph
P 

Re
sp

on
se

 T
im

e 
(m

s)

Time (min)

PhP response time, 75-25th percentiles

(b) PHP request complexity
Figure 2: One day of Wikipedia trace

quests per minute, requests are also heterogeneous in
complexity. To illustrate this heterogeneity, in Fig-
ure 2(b) we present the distribution of the response
time values for the PHP requests during the execution
of the trace shown in Figure 2(a). For this experiment
we used a fixed number of 5 PHP servers, which are
sufficient for handling the workload from the access
trace even at its peaks; this is why in this case the
response time is not influenced by the intensity of the
workload. However, the results show a relatively wide
dispersion of the response time. The main reason for
this dispersion is that the Wikipedia articles vary in
complexity, requiring different amounts of informa-
tion that needs to be retrieved from the database and
assembled in a page.

We also conclude from this experiment that, since
the response time of the application varies and can-
not be properly predicted even when the request rate
is known, a provisioning algorithm aiming to keep
the application’s response time under a certain limit
should take into account several monitoring parame-
ters beyond the request rate and the response time.

4 PROVISIONING ALGORITHMS

We evaluate three resource provisioning algo-
rithms: a trigger-based algorithm representing a base-

Algorithm 1: Trigger-based provisioning
Data: Pre-defined metric threshold ranges, SLO threshold
Result: Scaling decisions

1 while auto-scaling is ON do
2 Collect monitoring data of each metric, datai;
3 if no recent scaling operation then
4 if avg(datai)>=SLO threshold maxi for at least one metric then
5 ADD resources;
6 else if avg(datai)<SLO threshold mini for all metrics then
7 REMOVE resources;
8 end
9 end

10 Wait until the next reporting period (5 minutes) ;

11 end

line comparable to systems currently in production,
and two new algorithms based on feedback tech-
niques that alleviate the drawbacks of trigger-based
systems by reacting in advance to traffic changes.

4.1 Trigger-based provisioning

Existing cloud infrastructures adjust the amount of
allocated resources based on a number of standard
monitoring parameters. These are simple trigger-
based systems which define threshold rules to in-
crease or decrease the amount of computational re-
sources when certain conditions are met. As an ex-
ample, the Auto Scaling system offered by Amazon
EC2 (Amazon Elastic Compute Cloud (EC2), ) can be
used to define rules for scaling out or back an appli-
cation based on monitoring parameters like CPU uti-
lization, network traffic volume, etc. Similar trigger-
based techniques are also used in platforms such as
RightScale (RightScale, ) or OpenShift (OpenShift, ).

For the sake of comparison, we designed and im-
plemented a trigger-based provisioning mechanism in
ConPaaS. This technique monitors the percentage of
CPU usage and application response time metrics,
and assigns a lower and upper threshold for each met-
ric. It then creates or deletes VMs whenever one of
the threshold is crossed, as described in Algorithm 1.
Analogous to traditional trigger-based systems, the
thresholds are statically defined by the user before ex-
ecution.

Even though this algorithm is simple and widely
used in cloud platforms, we will show that it is too
reactive. This is due to two main factors:

1) Workload heterogeneity: For some web sites,
the workload fluctuates following an irregular pat-
tern, with occasional short traffic spikes. An exces-
sively reactive algorithm cannot handle these situa-
tions well, and will cause frequent fluctuations in the
number of allocated resources; this has negative ef-



fects on the stability and performance of the system.
Considering the pricing model of cloud providers that
charges users on a per-hour basis, trigger-based sys-
tems increase the infrastructure cost because they fre-
quently terminate resources before this hour price
boundary.
2) Resources heterogeneity: The performance of vir-
tual instances provided by current clouds is largely
heterogeneous, even among instances of the same
type (Dejun et al., 2009). Simple trigger-based pro-
visioning systems do not take this heterogeneity into
account, thus providing less efficient resource alloca-
tion.

We believe that trigger-based provisioning mech-
anisms can be improved without drastically increas-
ing their complexity. We now present two techniques
which aim at solving the aforementioned drawbacks
by relying on predictive and more accurate methods.

4.2 Feedback provisioning

To handle the workload heterogeneity and mitigate
the reactiveness of trigger-based techniques, we de-
signed and implemented an algorithm that relies on
three simple mechanisms: integration of several met-
rics and automatic weighting of each metrics accord-
ing to its predictiveness; estimating the overall work-
load trend; and definition of two levels of threshold
ranges instead of one.

Weighted metrics: As pointed out in (Singh et al.,
2010), provisioning decisions solely made on the
basis of request rate or percentage of CPU usage
can incur errors by under- or over-provisioning an
application. We propose instead to use a collection
of metrics (e.g. response time, request rate and
CPU usage) likely to indicate the need to scale
the system. Our algorithm continuously measures
the correlation between each metric’s values and
the actual scaling decisions. This method enables
to better adapt the scaling decisions to the current
workload requirements by identifying how metrics
affect to the processing time. We thus assign a weight
to each metric (correlation coefficient) according to
its predictiveness. For example, when hosting the
MediaWiki application, the hosting system needs to
deal with requests having a wide diversity of comput-
ing complexity, and with significant variations in the
ratios of simple vs. complex requests. Our algorithm
therefore associates a higher weight to the CPU usage
metric than to the request rate, as it affects to the
response times.

Workload’s trend estimation: a difficult problem in
any autoscaling system is the fact that any decision

Algorithm 2: Feedback provisioning
Data: Pre-defined metric threshold ranges, SLO threshold
Result: Scaling decisions

1 Create a queue to store historical workload, q;
2 Establish two-level thresholds: pred thr and reac thr ;
3 while auto-scaling is ON do
4 Initialize variables s bck ands out to 0;
5 Collect monitoring data (last ∼5min), data;
6 Add the most recent response time value to q;
7 Estimate workload trend (last ∼30min) of q, td;
8 - Increasing, td = 1; Decreasing, td = 0; Stable, td = -1;
9 for each metric in data do

10 // Compute the weight wi of metrici

11 wi = correlation coefficient(metrici, response time);
12 if avg(metrici) >= pred thr maxi then
13 // Increment chances of scaling out
14 s out = s out + wi;

15 else if avg(metrici) < pred thr mini then
16 // Increment chances of scaling back
17 s bck = s bck + wi;
18 else
19 // Decrease the chances
20 s bck =s bck - wi; s out =s out - wi;

21 end
22 end
23 if no recent scaling operation then
24 if avg(metrici) >= reac thr maxi and td = 1 and s out > s bck

then
25 ADD resources;

26 else if avg(metrici) < reac thr mini and td = 0 and s out <
s bck then

27 REMOVE resources;

28 end
29 Reset s bck ands out to 0 ;

30 end
31 Wait until next reporting period (5 minutes);

32 end
33 end

has a delayed effect. Provisioning extra resources
can take a couple of minutes before they are ready to
process traffic. Besides, cloud computing resources
are usually charged at a 1-hour granularity so the
scaling decision has consequences at least during the
first hours after provisioning. It is therefore important
to estimate the medium-term trend of response times
in addition to any short-term bursts. We therefore
estimate the response time trend using past values
over a period of the same order of magnitude (30
min in our experiments). We classify workloads
in one out of three categories: stable, increasing or
decreasing.

Two-level thresholds: Initially, the users define a
fixed threshold range based on their performance re-
quirements (max and min required response time), de-
noted by SLO thresholds (Service Level Objective) in



Figure 3: Two-level thresholds

Figure 3. However, these upper and lower bounds
only indicate the resource under-utilization or when
a SLO violation occurs. Thus, to prevent in advance
these performance degradations, additional bound-
aries have to be defined. This mechanism establishes
two levels of threshold ranges for each metric (CPU
and response time) based on the bounds defined in the
SLO by the user.

In Figure 3, these two extra thresholds called
predictive and reactive, both with upper and lower
bounds, create two ”head-rooms” between the SLO
threshold and them. The predictive head-room H1 is
intended to alert of future workload alterations when
a metric exceeds its predictive bounds, thus increas-
ing proportionally to its weight the chances to trigger
scaling actions (denoted by s bck and s out in Algo-
rithm 2 lines 12-17). Otherwise, the scaling chances
will drop in the same proportion (Line 20). The re-
active head-room H2 is used to trigger scaling actions
if the workload presents a increasing or decreasing
variation (Lines 24-26), which may cause SLO vio-
lations if it keeps such a trend. This mechanism in
conjunction with the workload trend estimation allow
to better analyze the evolution of performance fluctu-
ations, and as a consequence improves the accuracy
of our decisions by reacting in advance. In the future,
these two-levels of thresholds could be adjusted de-
pending on the hardware configuration of each provi-
sioned VM, as introduced in (Beloglazov and Buyya,
2010).

To sum up, the feedback algorithm triggers a scal-
ing action when a series of conditions are satisfied:
(i) no previous scaling actions have been taken over
the last 15min; (ii) the recent monitoring data have to
exceed the predictive and reactive threshold ranges;
(iii) the workload trend has to follow a constant pat-
tern (increasing/decreasing). Although the combina-
tion of these techniques improves the accuracy of our
measurements, the heterogeneous nature of the VM
instances requires more flexible provisioning algo-
rithms, as pointed out in (Jiang, 2012).

4.3 Dynamic load balancing weights

The problem we consider here is the heterogeneity of
cloud platforms. Different VMs have different perfor-
mance characteristics, even when their specifications
from the cloud vendor are the same. This issue can be
addressed through various load balancing techniques,
like assigning weights to the backend servers or tak-
ing into account the current number of connections
that each server handles. Furthermore, the perfor-
mance behavior of the virtual servers may also fluc-
tuate, either due to changes in the application’s usage
patterns, or due to changes related to the hosting of
the virtual servers (e.g., VM migration).

In order to address these issues in ConPaaS we
implemented a weighted load balancing system in
which the weights of the servers are periodically re-
adjusted automatically, based on the monitoring data
(e.g. response time, request rate and CPU usage).
This method assigns the same weight to each back-
end server at the beginning of the process. The
weights are then periodically adjusted (in our exper-
iments, every 15min) proportionally with the differ-
ence among the average response times of the servers
during this time interval. By adding this technique
to the feedback-based algorithm, we noticed a perfor-
mance improvement when running the benchmarks.

5 EVALUATION
To compare the provisioning algorithms described

above, we ran experiments on two infrastructures: a
homogeneous one (the DAS-4, a multi-cluster system
hosted by universities in The Netherlands (Advanced
School for Computing and Imaging (ASCI), )) and a
heterogeneous one (Amazon Elastic Compute Cloud
(EC2), ). The goal of our experiments was to compare
the algorithms by how well they fulfill the SLOs and
by the amount of resources they allocate.

Testbed configuration: As a representative sce-
nario, we deployed the MediaWiki application using
ConPaaS on both infrastructures, and we ran the Wik-
ibench tools with a 10% sample of a real Wikipedia
access trace for 24hours. We configured the exper-
iments as follows: a monitoring window of 5min, a
SLO of 700ms at the service’s side (denoted by a red
Line in Figures) and the same statistically-chosen per-
formance threshold ranges for response time and CPU
utilization. Note that, the weighted load-balancing
provisioning technique was only evaluated on the het-
erogeneous platform Amazon EC2, as it only brings
improvements in environments where VMs may have
different hardware configurations.



Figure 4: Response time on DAS4 – Trigger-based.

5.1 Homogeneous Infrastructure

Our experiments on DAS-4 rely on OpenNebula
as IaaS (Sotomayor et al., 2009). To deploy the
Wikipedia services, we used small instances for the
PHP service (manager and agents) and a medium in-
stance for the MySQL service (agent). In DAS-4,
OpenNebula’s small instances are VMs equipped with
1 CPU of 2Ghz, and 1GiB of memory, while medium
instances are equipped with 4 CPU’s of 2Ghz, and
4GiB of memory.

SLO enforcement. Figure 4 and Figure 5 represent
the degree of SLO fulfillment of the trigger-based
and feedback algorithms, indicating the average of
response times obtained during the execution of the
Wikipedia workload trace. In Figure 4 and Figure 5,
each cross represents the average of response time ob-
tained at monitoring window. The results from Fig-
ure 4 show that the trigger-based provisioning algo-
rithm provokes an important amount of SLO viola-
tions at certain moments in time, due to its exces-
sively reactive behavior. As we mentioned, this al-
gorithm fails easily during traffic spikes, as it adds or
removes VMs without evaluating the workload trend.
The feedback algorithm, as shown on Figure 5, han-
dles the traffic spikes better and can minimize the
amount of SLO violations; specifically, there were
31.72% less SLO violations in comparison with the
trigger-based algorithm.

Resource consumption. To better understand the be-
havior of both algorithms, we shall also focus on the
resource consumption illustrated on Figure 6. The
excessively reactive behavior of the trigger-based al-
gorithm can be noticed in the time intervals around
t=350min and t=820min, where two scaling opera-
tions under-provision the system during a short pe-
riod of time. These provisioning decisions provoked
the SLO violations that are visible in Figure 4 in the
same intervals of time. Besides affecting the sys-

Figure 5: Response time on DAS4 – Feedback.

Figure 6: Resource consumption on DAS4.

tem’s stability, such short fluctuations in the number
of provisioned resource also raise the cost of host-
ing the application since more VM instantiations will
be triggered. When using the feedback algorithm,
the system makes provisioning decisions by analyzing
the workload’s trend. Scaling actions are only trig-
gered when having constant alterations in the work-
load, thereby providing a more efficient resource us-
age. We can see that the provisioning decisions on
Figure 6 match well with the workload variations de-
picted on Figure 2(a).

Discussion. Both algorithms are best-effort regarding
the SLO fulfillment, and thus they do not handle well
short alterations of the workload (with duration in the
range of minutes). The heterogeneity of the PHP re-
quests, as well as the VM scheduling time (2-5min),
are in part responsible of these SLO violations.

5.2 Heterogeneous Infrastructure

Our experiments on Amazon EC2 used small in-
stances for the PHP service (manager and agents) and
a medium instance for the MySQL service (agent).
EC2 small instance are equipped with 1 EC2 CPU,
and 1.7GiB of memory, while medium instances are



Figure 7: Resource consumption on EC2.

equipped with 2 EC2 CPU’s, and 3.75GiB.

SLO enforcement. Figure 8, Figure 9 and Figure 10
show the system performance of the trigger-based,
feedback and dynamic load-balancing weights algo-
rithms, respectively. As depicted on Figure 8, the
performance of the trigger-based algorithm is even
more unstable than in the case of the homogeneous
infrastructure. Two of the three peaks in response
time, at t=300min and t=820min, can be explained
by the variations in the Wikipedia workload shown in
Figure 2(a). However, there is a third peak between
t=400min and t=500min that corresponds to an inter-
val of time in which the workload trace shows a sig-
nificant drop in the request volumes. During this pe-
riod of time, the algorithm attempts to scale back the
system but the new lower number of resources cannot
handle the load, and the system is scaled out again.
As this algorithm does not keep any history informa-
tion, after a short time it attempts again to scale back
the system, with the same result; thus, some oscilla-
tions occur in the number of allocated resurces, caus-
ing also SLO violations.

Figure 9 and Figure 10 show that the feedback and
dynamic load-balancing algorithm reduce the number
of SLO violations and provide a more stable perfor-
mance pattern. Specifically, with the feedback algo-
rithm we obtained 41.3% less SLO violations than
with the trigger-based algorithm, while the dynamic
load balancing algorithm had 47.6% less violations
than the trigger-based one. This improvement of 6.3%
responds to an efficient distribution of the incoming
traffic across the allocated resources.

Resource consumption. As explained above, the
trigger-based algorithm sometimes initiates series of
scaling back operations quickly followed by scaling
out operations, due to the fact that it does not use any
history information that could prevent these oscilla-
tions. This can be seen on Figure 7, in the time inter-
val between t=400min and t=500min. The feedback

and dynamic load balancing algorithms have similar
and more stable patterns of resource consumption,
which show the benefits of using trend estimations
and two-level threshold ranges.

Discussion. These runs show significant differences
between the trigger-based algorithm on one hand, and
the feedback and dynamic load balancing on the other
hand. The results show that using a few heuristics as
in the last two algorithms can help in improving the
performance and stability of the system. We did not
obtain however significant differences between the
feedback and the dynamic load balancing algorithm.
The last algorithm uses the additional technique of
dynamically adjusting the load balancing weights, but
the VMs participating in the experiments had rela-
tively similar performance and adjusting their weights
only made a small difference. On other infrastructures
that are more heterogeneous than Amazon EC2, the
dynamic load balancing technique may bring a greater
performance improvement.

We also note that the frequent scaling actions
launched by the trigger-based algorithm generally in-
crease the infrastructure cost. An explanation comes
from the frequent creation/removal of VM instances
occurring within a time interval of 1hour. Even
though this trace shows a clear daily variation which
represents the traditional traffic pattern of web appli-
cations, more traces have been utilized to validate our
autoscaling system in (Fernandez et al., 2014)

6 RELATED WORKS
There is a wide literature on issues related to dy-

namic resource provisioning for cloud web applica-
tions. However, most of these models require a deep
understanding in mathematics or machine learning
techniques which are not easily interpreted by non
specialists. Besides the traffic in web applications is
shaped by a combination of different factors such as
diurnal/seasonal cycles that follows an irregular pat-
tern, thus making extremely challenging the design
and development of realistic and accurate provision-
ing mechanisms.

These well-known drawbacks force to IaaS like
Amazon EC2, or PaaS like RightScale and OpenShift,
to design simple trigger-based auto-scaling systems,
instead of relying on approaches from academic re-
search. Unfortunately, these scaling systems are im-
precise and wasteful in terms of resource consump-
tion and cost savings (Ghanbari et al., 2011).

As a consequence, more relevant and realistic aca-
demic approaches have been proposed over the last
years. (Urgaonkar et al., 2008) designed and imple-



Figure 8: Response time on EC2 –
Trigger-based.

Figure 9: Response time on EC2– Feed-
back.

Figure 10: Response time on EC2– Load-
balancing Weights.

mented a predictive and reactive mechanism using
a queuing model to decide the number of resources
to be provisioned, and an admission control mech-
anism to face extreme workload variations. Even
though the use of admission mechanisms enforce the
performance requirements, it reduces the QoS of the
service, and therefore affects user experience. Dif-
ferently, (Muppala et al., 2012) proposed offline
training techniques to gather information about the
resource requirements of the current workload, and
thereby to improve the accuracy of the scaling deci-
sions. In the same vein, DejaVu (Vasić et al., 2012)
and CBMG (Roy et al., 2011) built similar mecha-
nisms to classify the workload need by analyzing re-
cent traffic spikes or the customer behavior. How-
ever, these approaches require additional resources to
identify the workload requirements, and an exhaustive
knowledge of the deployed applications; thus prevent-
ing its integration in existing autoscaling systems.

As a proposal closely related to ours, (Ghanbari
et al., 2011) designed an autoscaling system using
control theoretic and rules-based models. The authors
claimed for simpler provisioning mechanisms in com-
parison with the sophisticated academic approaches.
However, factors such as resource heterogeneity were
not addressed in this system.

7 CONCLUSION
Our study demonstrated that traditional trigger-

based provisioning mechanisms do not handle work-
load variation well and in some situations cause insta-
bility, by changing the number of provisioned VMs
often in short time intervals. This behavior has a neg-
ative effect on the application’s response time, leading
to violations of the SLO.

By using a few techniques that are relatively easy
to implement we showed that we can significantly re-
duce the number of SLO violations and improve the

performance stability. Although there is still room for
improvement in our techniques, from the experimen-
tal results we can draw the conclusion that implement-
ing provisioning mechanisms that go beyond simple
triggers is effective and should be considered when
hosting a cloud application.

ACKNOWLEDGMENTS

This work is partially funded by the FP7 Pro-
gramme of the European Commission in the con-
text of the Contrail project under Grant Agreement
FP7-ICT-257438 and the Harness project under Grant
Agreement 318521.

REFERENCES

Advanced School for Computing and Imaging (ASCI). The
Distributed ASCI SuperComputer 4. http://www.
cs.vu.nl/das4/.

Amazon Elastic Compute Cloud (EC2). http://aws.
amazon.com/ec2.

Beloglazov, A. and Buyya, R. (2010). Adaptive threshold-
based approach for energy-efficient consolidation of
virtual machines in cloud data centers. In Proc.
8th International Workshop on Middleware for Grids,
Clouds and e-Science.

Cecchet, E., Udayabhanu, V., Wood, T., and Shenoy, P.
(2011). BenchLab: An open testbed for realistic
benchmarking of web applications. In Proc. WebApps.

Dejun, J., Pierre, G., and Chi, C.-H. (2009). EC2 perfor-
mance analysis for resource provisioning of service-
oriented applications. In Proc. 3rd Workshop on
Non-Functional Properties and SLA Management in
Service-Oriented Computing.

Dejun, J., Pierre, G., and Chi, C.-H. (2011). Resource provi-
sioning of Web applications in heterogeneous clouds.
In Proc. Usenix WebApps.



Do, A. V., Chen, J., Wang, C., Lee, Y. C., Zomaya, A., and
Zhou, B. B. (2011). Profiling applications for virtual
machine placement in clouds. In Proc. IEEE CLOUD.

Fernandez, H., Pierre, G., and Kielmann, T. (2014). Au-
toscaling in heterogenous in cloud infrastructures. In
Proc. IEEE IC2E, page (to appear).

Ganglia monitoring system. http://ganglia.
sourceforge.net/.

Ghanbari, H., Simmons, B., Litoiu, M., and Iszlai, G.
(2011). Exploring alternative approaches to imple-
ment an elasticity policy. In Proc. IEEE CLOUD.

Islam, S., Keung, J., Lee, K., and Liu, A. (2012). Empirical
prediction models for adaptive resource provisioning
in the cloud. Future Gener. Comput. Syst., 28(1):155–
162.

Jiang, D. (2012). Performance Guarantees For Web Appli-
cations. PhD thesis, VU University Amsterdam.

Muppala, S., Zhou, X., Zhang, L., and Chen, G.
(2012). Regression-based resource provisioning for
session slowdown guarantee in multi-tier internet
servers. Journal of Parallel and Distributed Comput-
ing, 72(3):362–375.

OpenShift. https://openshift.redhat.com/app/flex.
Pierre, G. and Stratan, C. (2012). ConPaaS: a platform

for hosting elastic cloud applications. IEEE Internet
Computing, 16(5):88–92.

RightScale. http://www.rightscale.com//.
Roy, N., Dubey, A., and Gokhale, A. (2011). Efficient

autoscaling in the cloud using predictive models for
workload forecasting. In Proc. IEEE CLOUD.

Singh, R., Sharma, U., Cecchet, E., and Shenoy, P.
(2010). Autonomic mix-aware provisioning for non-
stationary data center workloads. In Proc. ICAC.

Sotomayor, B., Montero, R. S., Llorente, I. M., and Fos-
ter, I. (2009). Virtual infrastructure management in
private and hybrid clouds. IEEE Internet Computing,
13(5):14 –22.

Urdaneta, G., Pierre, G., and van Steen, M. (2009).
Wikipedia workload analysis for decentralized host-
ing. Computer Networks, 53(11):1830 – 1845.

Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., and
Wood, T. (2008). Agile dynamic provisioning of
multi-tier internet applications. ACM Trans. Auton.
Adapt. Syst., 3(1):1–39.

van Baaren, E.-J. (2009). Wikibench: A distributed,
wikipedia based web application benchmark. Master’s
thesis, VU University Amsterdam.

Vasić, N., Novaković, D., Miučin, S., Kostić, D., and Bian-
chini, R. (2012). DejaVu: Accelerating resource allo-
cation in virtualized environments. In Proc. ASPLOS.


