
Secure Data Aggregation Through Proactive
Defense

Shuo Chen
VU University Amsterdam

Tsinghua University Beijing
Email: leo.chen.cipher@gmail.com

Guillaume Pierre
VU University Amsterdam

Email: gpierre@cs.vu.nl

Chi-Hung Chi
Tsinghua University Beijing

Email: chichihung@mail.tsinghua.edu.cn

Abstract—Gossip based aggregation protocols are a promising
approach to monitoring large-scale decentralized IT infrastruc-
tures. Compared to traditional approaches they exhibit good
properties of scalability, tolerance of churn, and communication
overhead. Gossip-based protocols can compute statistical aggre-
gates such as the average, sum or statistical distribution of an
attribute across a large system. However, such protocols are ex-
tremely vulnerable to malicious attacks, and even a small number
of attackers in the system can largely undermine aggregation
results. This paper presents a secure protocol for computing
attribute averages. In this system, each node autonomously judges
whether its neighbors are malicious, and may subsequently stop
any interaction with them. A node appearing malicious to its
neighbors quickly gets excluded from the system. Instead of
defining malicious behavior (and excluding nodes that follow the
definition of maliciousness), our system defines correct behavior
(and excludes any node that behaves differently). This allows
in principle our system to address arbitrary types of attacks.
Simulations based on real-world attribute data demonstrate that
our system offers good resistance against four different types of
attacks.

I. INTRODUCTION

Monitoring large-scale decentralized IT infrastructures such
as computing grids and peer-to-peer overlays is difficult.
Instead of collecting information from each node individually
into some central location, a more scalable alternative relies
on gossip-based protocols to efficiently obtain data aggregates
– such as the mean of some attribute values across the
system, its statistical distribution, or the rank of a node in a
given order [1]–[4]. Gossip-based aggregation protocols, like
many P2P systems, are very resilient to failures and churn,
but very vulnerable against malicious attacks. However, P2P
monitoring schemes will not be viable unless they can tolerate
the presence of malicious nodes with no major damage.

Past research on secure gossiping has mainly focused on
preserving the connectivity of the overlay network and main-
taining the message passing integrity [5], [6]. This paper
focuses on the data aggregation layer of the classical mean
value algorithms [1], [2]. At each periodic gossip cycle each
node contacts another node and averages its value with that
of the other node. Node values converge exponentially fast
towards the global mean.

In such a system, value attacks consist for malicious nodes
of distorting the aggregation results by exchanging wrong
values at one or more gossip cycle. Value attacks are hard

to detect and prevent. At least one relatively weak “baseline”
attack cannot be prevented without the help of application-
specific knowledge or trusted hardware: malicious nodes can
report a wrong attribute value at the beginning of the aggre-
gation but otherwise follow the protocol correctly. We aim at
devising secure aggregation protocols such that no other value
attack can significantly outperform this baseline attack.

A previous approach to this problem identifies malicious
nodes by making nodes sign each interaction cryptographi-
cally [7]. By checking signed interaction logs, one can prove
that a node is malicious and spread the proof to exclude it
from the overlay. This approach however remains vulnerable
against colluding attacks where malicious nodes help to cover
up the status change of other malicious nodes.

Instead of patching the system to deal with specific attacks,
we explore here a different approach where each node is
autonomously responsible for deciding that a neighbor be-
haves in a suspicious manner, and subsequently refusing to
interact with it. No coordination between nodes is necessary.
Suspicions are based on a strict definition of correct behavior:
although no single interaction is sufficient to mark a node
as suspicious, a interaction sequence that does not follow the
known convergence properties of the aggregation protocol is
quickly identified. A malicious node gets gradually blacklisted
by all its neighbors, which effectively excludes it from the
overlay as a whole. To avoid such exclusion, malicious nodes
must weaken their attacks and revert to the baseline attack.

This mechanism may work only under four necessary con-
ditions. First, peers must have persistent identities so that they
cannot leave the system and rejoin using a different identity.
Second, a malicious node must be disallowed to interact with
a new neighbor at each gossip cycle. We enforce repeated
interactions between nodes by assigning a static set of neigh-
bors to each node. Third, each node must be able to verify
its neighbors’ claims autonomously over multiple interactions.
We use the known convergence properties of the gossip
aggregation protocol to verify each neighbors’ claims, then
combine past verifications using Dempster-Shafer’s law [8].
Finally, our algorithms can have false positives so we must
allow excluded nodes to rejoin the overlay. After a given
period of time, blacklisted nodes may be accepted again if
they behave well.

The contribution of this paper is twofold. First, we intro-
duce a proactive defense mechanism to protect gossip-based
aggregation from both known and unknown attacks. Second,
we provide simulation evidence to support the effectiveness of
our mechanism against four typical types of attack such that
no other value attack can significantly outperform the baseline
attack.

The rest of this paper is structured as follows. Section 2
describes the context of previous works. Section 3 discusses
our proactive defense mechanism model. Section 4 presents
the protocol in details, then Section 5 evaluates it again a
range of different value attacks. Finally, Section 6 concludes.

II. RELATED WORK

Gossip-based aggregation was first introduced in hierarchi-
cal overlays as an efficient and easy way to collect information
through a large-scale system [9], [10]. This approach has great
scalability. However, maintaining a hierarchy overlay in a dy-
namic network can be complex and costly and these protocols
report aggregates to a single head node only. Gossip-based
aggregation over unstructured overlay is a robust yet simple
alternative in dynamic network environments [1], [2], [11].
Those aggregation algorithms run in turns. Nodes periodically
update their own status, typically a numerical value, based on
other nodes’ status engaged in a gossip process. These status
update mechanisms are carefully designed such that node sta-
tus converge toward the desired aggregate. Such an approach
is robust to failure and churn. It converges exponentially fast
to a globally consistent state with a high probability. However,
it is also very vulnerable to malicious attacks: a small number
of malicious nodes can easily undermine the whole system.

Several approaches have been proposed to secure gossip.
These approaches focus on two different levels: connectivity,
and application. Some attacks target the peer connectivity by
poisoning the peer sampling process. To address this attack,
a secure peer sampling service is needed to generate random
peer samples of the system even if there exists a significant
number of malicious nodes [5], [6], [12]. Our protocol assumes
the existence of such protocols and focuses on application-
level security. At the application level, approaches focus on
specific attacks like free riding in a peer-to-peer streaming
service [13]. Our approach focuses on a very different problem
but it borrows the pair selection mechanism to defend the
aggregation process against frequency attack where malicious
node try to initiate as many gossip as possible. Specifically
for the averaging protocol, the damage is potentially very
important [14].

To our knowledge, there exists only one paper on security
for gossip-based aggregation protocols [7]. In this approach,
the exchanged status is logged in an undeniable manner using
cryptographic methods each time two nodes interact. Any node
can verify the history of a suspicious node, and possibly prove
it to be malicious. However, besides the relatively high cost
of this protocol, it is also vulnerable to a new kind of attack
where several malicious nodes collude to provide each other
with a “legitimate” history while refuse to provide part of it

to normal nodes. On the other hand, we aim to defend this
family of protocols against any type of attacks.

III. MODEL

A gossip-based protocol runs in periodic cycles during
which each mode initiates an information exchange with
another node. A fix number of cycles constitute an epoch. For
each epoch, the protocol restarts itself with potentially new
node attributes to aggregate.

Our secure aggregation protocol relies on four essential
elements that we discuss next.

A. Persistent Identity Assignment

To build a secure aggregation system, persistent identities
are required so that peers cannot leave the system and rejoin
using a different identity. Without this, no matter how good
a defense is, detected malicious nodes could leave and rejoin
under a new identity. Many mechanisms could provide each
node with an unforgeable identity, for instance a trusted
certificate authority with public-key cryptography [15]. Here
we take a simple approach by assuming hosts have a single
static IP address, which serves as their identity.

B. Enforced predictable repeated interaction

Frequency attacks, where a malicious node gossips as often
as it can, are an effective way for malicious nodes to increase
the contamination of a wrong aggregate value. The main
difficulty is for a honest node to decide if a received gossip
request is legitimate without global knowledge of previous
gossips issued by the same initiator node. We address this
problem by enforcing predictable repeated interaction between
nodes. This mechanism offers two important properties: first,
a peer cannot choose its neighbors itself; second, both the
initiator and the responder in the gossip process can check if
the interaction is valid according to the protocol. We achieve
this in two steps.

First we build a static topology on top of a secure peer sam-
pling service such as Brahms [5]. We then construct a similar
ring mesh structure as in [16]. For each link i of a node, a
secure collision-resistant hash function hashring(ip address, i)
maps the node’s IP address to an identification number. The
identification number for a certain link number is mapped to a
ring i. Each node is allowed to gossip only with its predecessor
and successor in the ring. Thus for n rings, each peer has
exactly 2n neighbors. In this way, each node has a fixed
number of verifiable neighbors which are pseudo-randomly
sampled from all the peers. This overlay structure can be
efficiently built using simple gossip protocols like [17].

Second, to eliminate the possibility of frequency attack,
a node must not be able to gossip with any of its neigh-
bors at any time. At turn l in a gossip epoch, a peer is
authorized to initiate a gossip only with its successor in
ring hashgossip(ip address, l)%n. With this enforcement, both
parties are able to check autonomously that the gossip is
legitimate.

This method for constructing ’static’ overlays has two
advantages. First, a node’s list of neighbors changes only if
one of these neighbors leaves the system. Should a node leave
the system and rejoin anew, it would end up with the set of
neighbors. On the other hand, this static overlay topology is
naturally resilient to churn as a departed node gets quickly
replaced by one of the departed node’s own former neighbors.

Second, this overlay can be built in a secure manner: each
node can judge independently if a new node it finds belongs to
its list of neighbors or not. Since the overlay relies on a secure
peer sampling service, attackers cannot prevent honest nodes
from discovering each other. The n rings structure provide
each node with 2n neighbors so that even the malicious nodes
play dead to part of honest nodes to break the overlay also
would not work. So this process could not be compromised
by malicious behaviors.

C. Verifying one neighbor’s claims

Each node must be able to verify its neighbors’ claims
autonomously over multiple interactions. We rely for this
on known convergence properties of the aggregation algo-
rithm [1]. The variance value across different peers reduces
each turn:

Variancei−1

Variancei
= E(2−φ) =

1
2
√
e

(1)

where φ is the number of times for a peer engaged in the gossip
process in turn i, E is the mathematical expectation function
and e is the natural log base. In a gossip cycle, if every peer
selects its own gossip target randomly, the distribution of the
number of gossips per peer can be approximated by a Poisson
distribution with mean equal to 2. The estimate system wide
variance therefore reduces by a factor of 1/2 each time it
gossips with another peer.

The aggregation protocol can also be viewed as a value
diffusion process [2]. After a few initial gossip turns, the value
distribution comes close to a binomial distribution, which
can be further simplified as a normal distribution. Thus the
difference between two values held by different peers should
also follow a normal distribution.

Using these two properties, each node can judge statistically
whether another node’s value is suspicious or not. The proba-
bility that a value contributed by node b is not drawn from the
legitimate distribution can be estimated by node a as follows:

Suspiciona→b = erf (
|Va − Vb|√

2Vea
) (2)

where Vea is the expected variance from peer a, Va, Vb are
the contributed values for peer a and b and erf () is the Gauss
error function [18].

At the beginning of each epoch, each node exchanges initial
values with each of its neighbors to get a first estimate of the
variance of values across the whole system. This estimate is
subsequently updated according to the expected convergence
properties of the aggregation algorithm.

In our system, a single suspicious exchange is not sufficient
to blacklist a node; but subsequent suspicion values can

quickly combine to build high confidence in a decision to
blacklist a node.

We use Dempster-Shafer law to combine multiple suspicion
values to arrive at a degree of belief that takes into account all
the available evidence [8]. Using Dempster-Shafer’s law, the
combination of multiple suspicion values provides a single
probability estimation called belief. In our system, if a belief
value is larger than a threshold θ, the peer considers its
neighbor as malicious and thus ceases any gossip interaction
with it. Such a decision to blacklist a suspicious node is an
entirely autonomous decision from the adjacent node. If the
blacklisted node is malicious, then we expect all its neighbors
to eventually blacklist it.

Dempster-Shafer combination assumes that different sus-
picion values are independent from each other. However, an
attacker can somewhat contaminate subsequent iterations (e.g.,
by behaving well for λ cycles, then exploiting the gained
trust to issue large damages). We address this in two steps.
First, each node maintains a window of the n most recent
interactions with its neighbors. The choice of n depends on a
tradeoff between the recovery system readiness and the neces-
sary number of aggregated values to build sufficient confidence
in the system. Second, instead of allowing suspicion values to
use the full range of [0, 1], we restrict each suspicion value
into a smaller range [α, 1−α]. Otherwise, a single interaction
where two nodes expose the same value with suspicions value
0 would overrides any other (potentially malicious) interaction.
This restricted suspicion value range should also be symmet-
ric around 0.5 such that a honest aggregation process does
not generate an unbalanced suspicions value distribution and
subsequently break down the overlay connections.

D. Overlay Recovery

In our system, it is impossible to guarantee that a honest
node never gets blacklisted by some of its neighbors. For
such a node, losing a few links is not a major issue but this
can eventually slow down the aggregation. We must therefore
allow blacklisted nodes to be eventually “forgiven” and to
rejoin the overlay. However, if malicious nodes can determine
the moment when they are rejoin the overlay they can start
distorting the system again. Instead, we decided that nodes
would not be notified of being blacklisted: when a node
blacklists another, it continues interacting with it normally
but simply does not update its computed value listed on they
interactions.

We use a simple approach to gradually make excluded nodes
rejoin overlay. When a node blacklists another, it continues
interacting with it normally, but ceases to update its own value
according to interactions with the blacklisted node. It however
keeps on updating its suspicion value towards the other node
with suspicion value 0.5, which means “full uncertainty”.
After each turn one (presumably low) suspicion value gets
removed from the window of suspicion values, and replaced
with a neutral one. After a number of “punishment” rounds,
the suspicious neighbor gets reintegrated in the overlay.

Fig. 1. Active process
var ← initV ariance()
while value not converged do

Wait for δ time
q ← GetNeighbor()
send Sp, T imep to q
Sq, T imeq ← receive(q)
if believe(q, Sp, Sq) then
updateBelief(CalculateBelief(Sp, Sq, var))
Sp ← updateStates(Sp, Sq)
var ← updateV ar()

else
updateBelief(0.5)

end if
end while

Fig. 2. Passive process
while value not converged do
Sq, T imeq ← receive()
if not checkNeighbor(q, T imeq) then

continue
end if
send Sp, T imep to q
if believe(q, Sq, Sp) then
updateBelief(CalculateBelief(Sp, Sq, var))
Sp ← updateStates(Sp, Sq)
var ← updateV ar()

else
updateBelief(0.5)

end if
end while

This recovery mechanism has an interesting feature: a
blacklisted node does not get informed of being blacklisted.
All excluded nodes (malicious and non-malicious ones) are
eventually forgiven, but malicious nodes cannot know when
they should act maliciously.

E. Result post-processing

Besides distorting final aggregation results, value attacks
often also result in disturbing the convergence of all nodes to
the same final aggregation value. In the worst case scenarios
the system does not converge at all.

We use a simple mechanism to reduce the divergence
between final aggregation results at different nodes. After the
end of the aggregation process, each honest node sample the
final aggregation values of its immediate neighbors and retains
the median of these values.

IV. PROTOCOL

Our protocol is based on a classical gossip-based aggre-
gation scheme where each node has two different processes
as shown in Figure 1 and 2. The active process periodically
initiates a state exchange operation with one of the node’s

neighbors. The passive process waits for incoming connec-
tions. The functions in the protocol work as follows:
updateStates() updates the current state of the node by

computing Sp+Sq

2 . GetNeighbor() selects a neighbor from
the neighbor list based on the mechanism discussed in Sec-
tion III-B. checkNeighbor() checks if the other party can
legitimately issue a gossip to the concerned node: it first
checks if the gossip was initiated by an authorized neigh-
bor at an authorized time; second, it checks based on the
other party’s suspicion history if the other party is a sus-
picious node. updateBelief() updates the suspicion value
towards a neighbor node based on the current states. We
use formula (2) to calculate the suspicion value in function
CalculateBelief() of node a towards node b for current
gossip cycle. This suspicion value is then stored locally. As
described in Section III-C, only the last n suspicion values
are stored for the belief combination. The current belief value
used in believe() function is calculated from stored suspicion
values using Dempster-Shafer’s law as follows:

Confa⊕b =
Confa × Confb

1− Confa − Confb + Confa × Confb
(3)

updateV ar() updates this node’s estimated global variance
based on the analysis of the convergence speed described in
section III-C. The estimated global variance is divided by 2
each time the node gossips. initV ariance() estimates the
global variance from its neighbor’s value at the beginning of
each epoch as described in Section III-C.

V. EVALUATION

We evaluate our proactive defense mechanism using simu-
lations where a given fraction of nodes is malicious and tries
to distort the results as much as possible. We evaluate our
algorithm in the presence of four attack models of various
severity. We do not use synthetic value attributes (whose
distribution would be known in advance) but real world node
attributes from the SETI@home project [19]. Our evaluation
results demonstrate that no attack (including very powerful
ones) could do significant larger damage compared to the
(unavoidable) baseline attack.

A. Methodology

Several parameters regulate the static overlay maintenance
process and the proactive defense aggregation protocol. In our
simulations, we assign 20 neighbors to each node in the static
random overlay. The suspicion range parameter α is set to
0.05. The window size for the past suspicion value is set to
5. The malicious threshold θ is set to 0.9.

We evaluate our algorithm against four attacks of different
severity:
Baseline Attack Each malicious node initially selects a wrong
value, then follows the protocol correctly. Theoretically, no se-
cure mechanism can detect such behavior without application-
specific knowledge.
Blind Attack Each malicious node acts independently and
injects wrong values into the system each round. Such values

TABLE I
VALUE DRAG UNDER DIFFERENT ATTACKS WITH NO RESULT

POST-PROCESSING

of malicious nodes 5% 10% 15% 20% 30%
Baseline attack (wos)a 4.62% 9.24% 13.86% 18.48% 27.72%
Baseline attack (ws)b 0.64% 3.2% 7.3% 12.4% 23.8%

Blind attack 0.78% 3.67% 8.75% 14.9% 26.9%
Colluding attack 1.50% 5.16% 9.72% 14.8% 23.7%

Supernatural attack 2.17% 6.21% 11.6% 16.7% 27.77%

aBaseline attack in a system without security mechanisms
bBaseline attack in a system with security mechanisms

derive from the attacker’s estimation of the range of the values
that its victim would accept. Malicious nodes do not collude
so this estimated acceptable range is constructed only from
past interactions experienced by the attacker with its own
neighbors. Although malicious nodes do not collude, they all
try to distort the result in the same direction (i.e., they do not
cancel each other’s effects).
Colluding Attack This attack is similar to the blind attack
except that all malicious nodes in the system collude to
improve their estimation of their victims’ acceptable ranges.
Supernatural Attack This attack is a worst-case scenario in
which the attackers “magically” know the exact entire internal
state of their victims.

Our simulations measure the disturbance that malicious
nodes can apply to the aggregation result:

V alueDrag =
|Vresult avg − Voriginal avg|

Vmax − Vmin
(4)

This metric allows to measure the influence of malicious
nodes, irrespectively from the actual aggregated result of the
system. Also, it allows to compare the secure approach with
that of a completely unprotected one. A value drag of 0%
represents the ideal case where malicious nodes have no
influence on the aggregation result.

B. SETI@home data aggregation

We simulate a system with 10,000 nodes, and give each
node a value drawn from public log files of the SETI@home
project. We aggregate values that represent the memory size
of SETI@home nodes. These values range from 0 to 9× 109.
The average value is 6.84×108. Each aggregation lasts for 15
cycles. We execute 50 aggregation epochs (aggregating newly
drawn values each time) to give nodes enough time to build
confidence values about their neighbors.

A system with no malicious node at all observes a value
drag of 0.61% because some honest nodes with outlier values
get excluded by their neighbors. This value is however compa-
rable to that of an unsecured system under a simple Baseline
attack.

Table I shows the value drag of our system for different
fractions of malicious nodes in the system and different types
of attacks. Clearly, a large number of malicious nodes has
more effect than a small one. For the baseline attack (that
our mechanisms are not specifically designed to address), the
security measures however allow to mitigate the value drag by

TABLE II
VALUE DRAG UNDER DIFFERENT ATTACKS WITH RESULT

POST-PROCESSING

of malicious nodes 5% 10% 15% 20% 30%
Baseline attack (wos)a 4.62% 9.24% 13.86% 18.48% 27.72%
Baseline attack (ws)b 0.76% 3.2% 7.3% 12.7% 26.8%

Blind attack 0.63% 3.36% 8.97% 15.74% 30.5%
Colluding attack 1.39% 5.06% 9.76% 15.2% 26.6%

Supernatural attack 1.65% 5.79% 11.44% 17.26% 32.12%

aBaseline attack in a system without security mechanisms
bBaseline attack in a system with security mechanisms

eliminating the most extreme contributed values. For example,
10% of malicious nodes can only drag the aggregation value
by 3.2%.

The colluding and supernatural attacks are significantly
more effective than the baseline attack. This is caused by
the fact that shared information between colluding malicious
nodes results in a more precise estimation of the range of
values that ’victim’ nodes would accept as plausible. Building
a colluding attack however requires powerful attackers capable
of deploying and coordinating large numbers of nodes.

The supernatural attack is the strongest of all considered
attacks, but its implementation in real life is probably impos-
sible. It is worth mentioning that even such powerful attack
makes less damage against our security mechanism than the
baseline attack with no security measure. This is in line with
our initial goal that no attack can be more effective than
the baseline. Note that colluding attacks were not considered
in [7].

Finally, by comparing Table I and Table II we can see
that the result post-processing mechanism discussed in Sec-
tion III-E does not significantly affect the value drag of the
system.

One possible limitation of this work is that malicious nodes
have more opportunity to disturb the aggregation if the initial
distribution of value extends to the full range of acceptable
values. In such a case, it is impossible for the system to distin-
guish a honest outlier from a malicious node. We however note
that the experiments shown in this section are based on real-
world machine properties (their amount of installed memory)
which has a standard deviation in the same order of magnitude
as the average value (mean=6.84 × 108, stddev=4.70 × 108).
We can therefore consider that our system performs reasonably
well, even in a realistic but difficult scenario.

C. Convergence Properties

In a system with no attacker, all nodes from the overlay end
up with a final aggregation value very close from each other.
However, the presence of a value attack can also compromise
the convergence properties of the aggregation algorithm.

We measure the statistical dispersion of aggregation values
across honest nodes using the interdecile range metric [20]: the
interdecile range is defined as the relative difference between
the 90th percentile and the 10th percentile of aggregation

TABLE III
INTERDECILE RANGE UNDER DIFFERENT ATTACKS WITH NO RESULT

POST-PROCESSING

of malicious nodes 5% 10% 15% 20% 30%
Baseline 0.69% 1.58% 3.17% 4.94% 5.98%

Blind 0.87% 3.05% 5.89% 8.91% 10.06%
Colluding 1.46% 3.41% 4.92% 6.54% 9.63%

Supernatural 2.96% 5.75% 8.08% 10.3% 16.0%

TABLE IV
INTERDECILE RANGE UNDER DIFFERENT ATTACKS WITH RESULT

POST-PROCESSING

of malicious nodes 5% 10% 15% 20% 30%
Baseline 0.21% 0.53% 1.02% 1.54% 3.33%

Blind 0.24% 0.80% 1.86% 3.08% 6.94%
Colluding 0.41% 1.02% 1.62% 2.55% 7.12%

Supernatural 0.77% 1.66% 2.46% 3.71% 13.8%

results across the overlay. The lower the interdecile range, the
more concentrated the aggregation results are.

InterdecileRange =
V90th − V10th

Vmax − Vmin
(5)

Table III shows the interdecile ratio before the final result
post-processing for different attacks and proportions of ma-
licious nodes in the overlay. Using our system, most nodes
converge to values relatively close to each other, while only a
few ‘victim’ nodes located next to malicious nodes end up with
very different values (and consequently end up being expelled
from the overlay).

Table IV shows the effectiveness of the result post-
processing mechanism: the interdecile range values are con-
sistently much lower than in Table III, showing that the final
aggregation values are very close from each other among
honest nodes.

VI. CONCLUSION

We have presented a proactive defense mechanism for
gossip-based data aggregation. In our mechanism, each node is
responsible for autonomously judging its neighbors’ behaviors
and blacklisting them if they appear malicious. This judgment
is based on known convergence properties, so any behavior
that does not follow these properties is considered as suspi-
cious. This enables our mechanism to defend against know
and unknown attacks.

Our system does not provide a perfect protection against
value attacks. However, to significantly disturb aggregation
results, attackers would need to use and coordinate large
numbers of malicious colluding nodes. Such attacks were
not considered in [7]. Our mechanism is fully distributed
and only adds minor communication overheads to traditional
aggregation protocols.

We have focused only on securing the protocol to compute
averages. More sophisticated aggregation protocols are based
on this basic one [1], [3] so one may consider securing them
in a similar fashion.

REFERENCES

[1] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Trans. Comput. Syst., vol. 23, no. 3,
pp. 219–252, 2005.

[2] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” in Proceedings of the 44th Annual IEEE Sym-
posium on Foundations of Computer Science, Washington, DC, USA,
2003, pp. 482+.

[3] J. Sacha, J. Napper, C. Stratan, and G. Pierre, “Adam2: Reliable
distribution estimation in decentralised environments,” in Proceedings
of the 30th IEEE International Conference on Distributed Computing
Systems (ICDCS), Jun. 2010.

[4] M. Jelasity and A.-M. Kermarrec, “Ordered slicing of very large-scale
overlay networks,” in Proceedings of the 6th International Conference
on Peer-to-Peer Computing, 2006.

[5] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer, “Brahms:
byzantine resilient random membership sampling,” in Proceedings of the
twenty-seventh ACM symposium on Principles of distributed computing
(PODC). New York, NY, USA: ACM, 2008, pp. 145–154.

[6] G. P. Jesi, D. Hales, and M. van Steen, “Identifying malicious peers
before it’s too late: A decentralized secure peer sampling service,” in
SASO ’07: Proceedings of the First International Conference on Self-
Adaptive and Self-Organizing Systems. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 237–246.

[7] M. Jelasity, A. Montresor, and O. Babaoglu, “Towards secure epidemics:
Detection and removal of malicious peers in epidemic-style protocols,”
2003.

[8] G. Shafer, “Perspectives on the theory and practice of belief functions,”
International Journal of Approximate Reasoning, vol. 4, no. 5-6, pp.
323–362+, 1990.

[9] I. Gupta, R. v. Renesse, and K. P. Birman, “Scalable fault-tolerant
aggregation in large process groups,” in DSN ’01: Proceedings of the
2001 International Conference on Dependable Systems and Networks
(formerly: FTCS). Washington, DC, USA: IEEE Computer Society,
2001, pp. 433–442.

[10] R. Van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and
data mining,” ACM Trans. Comput. Syst., vol. 21, no. 2, pp. 164–206,
2003.

[11] A. Montresor, M. Jelasity, and O. Babaoglu, “Decentralized ranking
in large-scale overlay networks,” in Self-Adaptive and Self-Organizing
Systems Workshops, 2008. SASOW 2008. Second IEEE International
Conference on, 20-24 Oct. 2008, pp. 208 – 213.

[12] G. P. Jesi, E. Mollona, S. K. Nair, and M. van Steen, “Prestige-based peer
sampling service: interdisciplinary approach to secure gossip,” in SAC
’09: Proceedings of the 2009 ACM symposium on Applied Computing.
New York, NY, USA: ACM, 2009, pp. 1209–1213.

[13] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi,
and M. Dahlin, “Bar gossip,” in OSDI ’06: Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation.
Berkeley, CA, USA: USENIX Association, 2006, pp. 14–14.

[14] Y. Bachrach, A. Parnes, A. D. Procaccia, and J. S. Rosenschein,
“Gossip-based aggregation of trust in decentralized reputation systems,”
Autonomous Agents and Multi-Agent Systems, vol. 19, no. 2, pp. 153–
172, October 2009.

[15] J. R. Douceur, “The sybil attack,” in IPTPS ’01: Revised Papers from
the First International Workshop on Peer-to-Peer Systems. London,
UK: Springer-Verlag, 2002, pp. 251–260.

[16] H. Johansen, A. Allavena, and R. van Renesse, “Fireflies: scalable
support for intrusion-tolerant network overlays,” in EuroSys ’06: Pro-
ceedings of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006. New York, NY, USA: ACM, 2006, pp. 3–13.

[17] S. Voulgaris, M. Jelasity, and M. van Steen, “A robust and scalable
peer-to-peer gossiping protocol,” in Agents and Peer-to-Peer Computing,
ser. Lecture Notes in Computer Science, vol. 2872. Springer Berlin /
Heidelberg, 2005, pp. 47–58.

[18] Wikipedia, “Error function.” [Online]. Available:
http://en.wikipedia.org/wiki/Error function

[19] “SETI@home statistics,” http://setiathome.berkeley.edu/stats/.
[20] Wikipedia, “Interdecile range,” http://en.wikipedia.org/wiki/Interdecile range.

