
Scalable Job Scheduling on a Distributed
Environment

Marco Fiscato, 1637487

Supervisors: G.Pierre, P.Costa

Vrije Universiteit Amsterdam
Master in Parallel and Distributed Computer Systems

October 13, 2008

ii

Contents

1 Introduction 3

2 Related Works 7
2.1 Condor . 7
2.2 Koala . 8
2.3 Organic Grid . 9
2.4 SAGA: Scheduling Applications using Genetic Algorithm . 11
2.5 Zorilla . 13
2.6 Gossip Based Grid Scheduling 14

3 Decentralized Scheduling Algorithm 17
3.1 Introduction . 17
3.2 System Model . 18
3.3 Implementation . 18
3.4 Overview . 19
3.5 Maintained Overlays . 19
3.6 Policies . 22
3.7 Scheduling Algorithm . 24
3.8 Resources Reservation . 28

4 Algorithm Evaluation 31

5 Conclusions 35

iii

iv CONTENTS

List of Figures

3.1 A peer structure: on the left the gossiped information are
shown, while on the right there are the maintained overlays. 21

3.2 1. First a scheduling query asking for N executors is re-
ceived by a node . 25

3.3 2. This then selects a pivot and gathers nodes 26
3.4 3. A tentative schedule is calculated using the genetic

algorithm . 26
3.5 4. A new pivot is selected 27
3.6 5. A new better tentative schedule is found, the old one is

discarded and the resources freed. 27

4.1 Quality of the schedule found against the number of iter-
ations . 33

1

2 LIST OF FIGURES

Chapter 1
Introduction

Grids are currently composed of a limited number of resources, admin-
istered under few administrative domains. Even though large Grid de-
ployments exist, they are rarely composed of more than some thousand
computing nodes distributed over a modest number of sites. Even in such
medium-scale environments it is no simple task to identify N machines si-
multaneously available to run a job for a given duration, especially when
N is greater than the size of the largest cluster on the Grid. This prob-
lem, named scheduling, is often addressed relying on local schedulers or
meta-schedulers when dealing with multiple computing clusters. This
second class may also try to co-allocate nodes across sites, even though
this is not generally the case.

Moreover, Grids are changing. Computing power and bandwidth to-
day are getting cheaper and cheaper, even commodity hardware can now
achieve performances that before were only available in more expensive
dedicated hardware and we can surely expect this trend to steadily con-
tinue in the future. We also observe an ever-increasing interest gained by
voluntary computing projects like Boinc[2] and Folding@Home[1]. Here
individual users or institutions donate some of their CPU cycles and
bandwidth to a scientific project, allowing researchers to process more
data than ever. So far, however, these projects have been limited to
operate in the scope of the task-farm model, not being offered a real

3

4 CHAPTER 1. INTRODUCTION

distributed computing facility.

In general we observe a trend towards a more dynamic environment,
with many more administrative domains and a much greater number
of computing nodes. It is our opinion that the Grids of the future are
not going to look as the ones we are using today. They will instead be
characterized by a very high number of heterogeneous resources commu-
nicating over non dedicated channels and with a much higher degree of
unreliability.

In this scenario it is clear that the nature and the size of these sys-
tems make them incompatible with traditional solutions. There is the
need for a different and more sophisticated approach to resource discov-
ery and scheduling. It is unfeasible to centralize the management of such
a system. The number of resources involved would require a great ef-
fort just to be indexed, their fluctuant availability would also require a
large amount of monitoring and we can argue that a real global view of
the system could not be achieved. There are also some political issues
related to such a centralized environment. It is important to note that
these systems usually span across countries and are used by a number of
independent (and often competing) research groups and companies. In
such a scenario it is cumbersome to agree on a centralized authority. A
distributed approach would definitely result in a simpler management of
the infrastructure than meta-schedulers.

In such an Internet-scale kind of system failure will be the common
case: due to its size, a fraction of Internet paths and hosts will be un-
available at any time. Another important challenge is represented by
the number and heterogeneity of administrative domains involved, rang-
ing from big data centers to single desktop machines. It is difficult in
such an environment to keep track of and organize all the administrative
domains and it would be useful to find a way to abstract from this.

Finally we have to consider the wide range of applications that could
be run on such a system, all of which will have different demands and
requirements to be satisfied. Computationally intensive tasks, like scien-
tific simulations, might not be interested in the location of the computing
nodes as long as the waiting time is minimized, while other more net-
work demanding applications might want nodes to be as close as possible

5

to each other in order to reduce communication overhead. In this per-
spective we cannot employ traditional scheduling techniques based on
heuristics, due to the variety of possible scheduling queries. It would be
better, instead, to offer a generic optimization approach able to achieve
good results for any given request.

A previous work in our group was focused on the solution of the same
problem[11], but it presented a number of limitations due to the use of a
single randomized overlay and a single ”as soon as possible” query policy.

In this thesis we address all these issues by employing a novel ap-
proach. We start by building a pure P2P system in which every resource
is autonomous and not subject to a higher authority. It means that every
computing node is considered as an independent resource, not as a mem-
ber of a cluster. This allows to abstract from the administrative domain
during the process of scheduling. What is really important is the node
future availability, defined by the list of future jobs already accepted by
the node, and its position, which is defined by its network coordinates.

In order to be able to spread this information quickly and reliably we
make use of epidemic protocols. Every node is participating in a number
of overlays and spreads information about itself by gossiping with other
nodes. This approach has proved to be effective both in regard of node
discovery as well as for failure detection, thus making it very suitable for
this kind of environment.

In order to deal with the problem of query optimization, our solution
employs a novel approach in which the user specifies a policy describ-
ing the wanted characteristics of the computing nodes in the form of a
group scoring function, which is then optimized by the system using a
genetic computing approach. This allows maximum flexibility in terms of
possible queries that a user can submit, while still achieving good perfor-
mance at all times. It is important to note that the user is provided with
constant feedback on how well the query is performing, by being able to
monitor in real time the improvements obtained by the algorithm.

We propose a novel organizational model for Grids based on P2P
approach, in which users have the possibility of requesting computing
nodes specifying a policy describing the group characteristics of these
nodes according to the nature of the submitted job.

6 CHAPTER 1. INTRODUCTION

This thesis is structured as follows: chapter 2 discusses some other
schedulers which have already been deployed, chapter 3 describes in de-
tails the working of the algorithm and chapter 4 provides present the
results of the experiments run to evaluate the performance of the algo-
rithm.

Chapter 2
Related Works

Many solutions have been developed to solve the scheduling problem.
This section surveys existing systems and evaluates their characteristics.
Local schedulers, like Condor, were developed to schedule jobs in a single
compute farm. Meta-schedulers were then introduced to allow multiple
sites to cooperate. An example of such a system is KOALA. The difficulty
of allocating jobs larger than the maximum size of the biggest cluster and
the need for a more efficient organization of the Grid led to the creation
of other solutions such as the Organic Grid, Zorilla and SAGA.

2.1 Condor

Condor is a specialized workload management system for compute-intensive
jobs. It allows the submissions of jobs like a regular batch scheduler.
Jobs are placed in a queue and subsequently scheduled on the available
resources. The choice of when and where to place a job is defined in a
policy expressing the requirements and preferences of the job. The frame-
work also offers the possibility of monitoring jobs during execution and
to be notified upon completion. One of the important features offered
by Condor is the possibility of exploiting CPU cycles in idle machines.
Once a machine inserted in a computing pool is detected as idle it be-
comes eligible for job execution. In many circumstances Condor is able to

7

8 CHAPTER 2. RELATED WORKS

transparently produce a checkpoint and migrate a job to a different ma-
chine which would otherwise be idle. An extension of the system, called
Condor-G has been developed to allow the use of Condor in Grid-like
environments. It leverages the resource management facilities offered by
the Globus toolkit, and integrates as the scheduling component for the
Grid. This allows to span jobs not only across the local cluster, but also
to exploit remote resources, thus characterizing it as a meta-scheduler.
Condor-G combines the inter-domain resource management protocols of
the Globus Toolkit and the intra-domain resource and job management
methods of Condor to allow the user to harness multi-domain resources as
if they all belonged to one personal domain. Another important feature of
Condor is stability. Its first implementation is more than 15 years old and
the community revolving around the project kept it continuously growing
and improving. Even though Condor, especially when used with Globus,
is a viable solution for medium sized computing pools, it still does not
provide the scalability needed to move to the next generation of Grids.
In a scenario characterized by a high number of independent adminis-
trative domains setting up and maintaining the Globus infrastructure
becomes over complicated because of the difficulties in the management
of permissions. The issues related to resource discovery and allocation
are somehow addressed, but it still proposes a centralized solution, which,
as explained before, is not compatible with the large-scale scenario that
we will be dealing with.

2.2 Koala

Koala[4][5] is a centralized grid scheduler featuring co-allocation and fault
tolerance. In this model a job is submitted to the scheduler, which will
try to schedule it, possibly on different clusters according to the local
availability. Two main job-placement policies can be specified: Close-To-
File and Incremental Claiming Policy. In the Close-To-File policy the job
is placed in nodes that are close to the input data, in order to minimize
the transfer overhead. The Incremental Claiming Policy, instead, gives
the possibility for high priority jobs to preempt low priority ones before

2.3. ORGANIC GRID 9

they start executing. Note that this is far from what a real preemptive
scheduler, which can interrupt jobs to give precedence to others with more
priority. This is more of an specific feature developed to fit the KOALA
model. One of the key features of KOALA is its meta-scheduling model.
In this model a meta-scheduler monitors the state of several clusters and
relies on the local schedulers for job submission. This hierarchical model
uses a strict notion of cluster, as an independent site, with a specific
scheduler. Whenever useful it tries to co-allocate the job, thus splitting
it over a number of clusters. Even though, in principle, this behavior
is desirable, in reality it is difficult to obtain true co-allocation, because
of concurrent requests, especially when the number of nodes required is
bigger than the biggest cluster.

Even though KOALA is a fairly advanced solution for Grid scheduling
it still presents a number of issues. First of all, it only offers two policies,
which may not be adequate in many scenarios. Because of the adopted
model, only a limited number of new policies could be added, still not
allowing full control by the user. Another aspect to consider then, is
the scalability issues inherited from the centralized model. Monitoring
is going to be cumbersome: as the number of resource grows it becomes
virtually impossible for a single entity to keep track of all the available re-
sources at all times. Also when the number of scheduling requests grows,
a centralized solution would represent the bottleneck of the system.

2.3 Organic Grid

A more decentralized approach to job scheduling is proposed by the Or-
ganic Grid[6]. This infrastructure is biologically inspired and exploits
autonomous scheduling. This solution shares many assumptions with
ours. First of all it assumes a fully decentralized organization of the
Grid, completely abandoning the meta-scheduler logic and relies instead
on a P2P network. It also realistically drops the assumption of being
able to obtain a global view of the system. In such a large and unre-
liable network the maintenance of this global knowledge would become
prohibitively expensive and might even not be possible. A lot of stress

10 CHAPTER 2. RELATED WORKS

is put into the self-organization of peers. The Organic Grid encapsulates
computation into mobile agents that deliver it to the available machines.
Once an application is started at a node, it is spread to others, which are
called in to contribute resources. New mobile agents are created that,
under their autonomous control, readily colonize the available resources
and start computing. The authors show that this approach can be em-
ployed in many different algorithmic scenarios. In order to demonstrate
the capabilities of their system they implemented two very different ones:
the NCBI BLAST code for sequence alignment and the popular parallel
matrix multiplication. As explained, when a job is initiated at a node, it
quickly tries to spread the load to other nodes. In this regard we could say
that scheduling is taken care of by the infrastructure, since as new com-
putation is needed, more helper nodes will be contacted. This definition
of resource scheduling however, is different than the one we employ. Here
only a currently unloaded node will accept computation, thus resembling
a resource allocator more than a resource scheduler. At the beginning
of a job in the Organic Grid, helper nodes are chosen in a way that is
completely oblivious of distance. During the course of the computation
agents behavior encourages the propagation of computation among well-
connected nodes, while discouraging the inclusion of distant (i.e. less
responsive) agents. This selection is based on a particular version of the
emergence principle called Local Activation, Long-range Inhibition. In-
stead of using distance as a metric, performance is used instead. Agents
are free to flow from one node to the other, carrying computation around
and trying to optimize the overall performances of the application. They
are linked together in a tree fashion, in which the root is represented by
the initiator node. This tree overlay is incrementally restructured while
the computation is in progress, by pushing fast nodes up towards the root
of the tree. This system shares many assumptions and techniques with
ours. It employs a P2P network and self-organization among its peers.
Scheduling a job can be done at any node, but while in our system this
is not influencing the choice of the executors nodes, in the Organic Grid
we would expect the contrary. Submitting a job at a particular node will
change the location of the helper nodes, at least in the initial phases. It
is important to point out that a significant difference also exists in the

2.4. SAGA: SCHEDULING APPLICATIONS USING GENETIC ALGORITHM11

definition of job scheduling. In the Organic Grid computation starts as
soon as it is submitted, grabbing available resources as it goes. We pro-
pose instead a solution which is more similar to a classical grid scheduler,
in which a job is delayed until a good set of resources becomes available.
In our definition of scheduling a computation does not need to be started
immediately. It can also reserve resources in the future if the global
quality of the reserved resources is better.

Even though the Organic Grid represents an interesting approach to
the problem of scheduling on very large grids, it does not represent yet
an acceptable solution. It does not allow real job scheduling and it does
not provide enough control to the user on where jobs should be allocated.

2.4 SAGA: Scheduling Applications using

Genetic Algorithm

Another solution to the scheduling of in an heterogeneous grid is SAGA
(Scheduling Application using Genetic Algorithms)1[9]. They start from
the consideration that the problem of scheduling heterogeneous tasks
on heterogeneous resources is intractable, thus making room for a good
heuristic solution. The scenario in which the scheduler operates is the
same as the one we consider in our study, and probably represents the
most difficult scenario to be addressed efficiently. It assumes that jobs are
submitted to the scheduler at random intervals, also specifying different
sets of resources to be allocated for a variable amount of time. Despite
the difficulty of addressing the scheduling problem in such a complex
system, a solution would be extremely valuable in a real world deploy-
ment, giving maximum flexibility and usability to the user. The first
problem to address when dealing with large-scale heterogeneous grids is
the monitoring of the resources. As we already explain it is very unlikely
to be able to keep track of such a large set of resources in a centralized
way, and we might argue that a global view is probably impossible to
achieve. To deal with this problem SAGA relies on a distributed grid

1Note that this work is unrelated to SAGA (the Simple API for Grid Applications).

12 CHAPTER 2. RELATED WORKS

monitoring tool called MonALISA. This is a monitoring platform specif-
ically designed to obtain real-time information in a heterogeneous and
dynamic environment such as a Grid. By the mean of this service a node
is able to obtain a global view of the system, in a very scalable way. It is
difficult to state how scalable this solution is and, even though it proved
to be valuable in many real world deployments[10]. The second main
idea behind this solution is the use of a genetic algorithm to quickly ap-
proximate the schedule for a job. We also employ a genetic algorithm to
solve this optimization problem. It is known that the scheduling of jobs
as we intend it is a NP-complete problem, this means that there is no
real solution to it in reasonable time and that some kind of optimization
needs to be used. Evolutionary computing offers a valid approach to the
solution of this problem, offering to calculate near-optimal solutions in
very short time. In this scenario the time constraint becomes crucial.
When a possible schedule is selected for the job it needs to be evaluated
and improved quickly. This is necessary in order to be able to evaluate as
many solutions as possible, as well as for avoiding the schedule to expire.
The SAGA system also assigns roles to the nodes and distinguishes be-
tween schedulers and executors. It means that a certain number of nodes
are selected to cooperate in the scheduling action and, once the sched-
ule has been calculated, the Executors will be reserved to the job. This
division of duties based on roles is also similar to the one employed by
our system. When a job is submitted the schedulers calculate which
resources to allocate based on the information retrieved from the Mon-
ALISA monitoring system. They can employ different strategies even
though experiments show that cooperation and decentralization lead to
the best results.
SAGA probably represent the most similar system to the one we are
proposing in this thesis, sharing many assumptions and solutions. De-
spite the similarities, though, many differences remain. The main con-
cerns we have are due to the assumption that a global view can be
achieved at all times. We strongly disagree with this assumption and
thus our system addresses the same problem, but by only relying on the
local knowledge collected by the peers. Among all the considered sys-
tems, this probably represents the closest solution to our own and the

2.5. ZORILLA 13

most promising of the alternatives.

2.5 Zorilla

Zorilla[7] is a P2P middleware developed within the IBIS project2. Zorilla
is a replacement for other middlewares like Globus, to be used together
with IBIS. The main difference between Zorilla and other systems is its
P2P nature, thus breaking down the classical notion of cluster. It takes
care of all the organization and maintenance of the overlay by making
use of gossiping. It is possible to schedule jobs on Zorilla, which will
take care of locating the necessary resources and deploying the job on
them. As soon as a job is submitted the middleware starts the schedul-
ing algorithm. This begins exploring the network starting from the node
where the job was submitted. It contacts neighbour nodes trying to find
available ones, iteratively expanding the set with other nodes close to the
ones already contacted. As soon as it has found a sufficient number of
idle nodes, the job can start.
The main advantage of Zorilla over other systems is its P2P nature. Not
relying on a single entity for organization, but solely on inter-peer commu-
nications, it can theoretically scale to a very large number of computing
nodes. Another strength of the system is the possibility of submitting
a job at any location, thus eliminating the bottleneck represented by
a centralized point of submission. Moreover, even though a scheduling
action can be started at any node, the choice of this initial nodes does
affect the choice of peers for computation. In general we could argue that
submitting at different nodes will result in different schedules. The main
drawback of Zorilla lies in its scheduling algorithm[8]. It uses, in fact, a
bounded flooding mechanism for resource discovery. Every node keeps a
cache of its nearby nodes. Once a scheduling request is submitted this
is forwarded to all the neighbours, and so on, until N suitable nodes are
discovered. It is obvious how this approach presents some serious scala-
bility issues. In general, on a very loaded Grid, all nodes of the system

2IBIS is a more high-level environment whose goal is to create an efficient Java-
based platform for grid computing.

14 CHAPTER 2. RELATED WORKS

could be contacted. Also, the algorithm cannot be characterized as a real
scheduler, since it only grabs resources as they are found available, but
does not take into account future availability. The model is also limited
to an ”as soon as possible (and close)” policy, which may not suit the
needs of the user.

2.6 Gossip Based Grid Scheduling

The work that more than any other else is related to the one here pro-
posed is the ”decentralized grid scheduler”, proposed by Caglar Oner in
his master thesis[11]. Our work is directly influenced by the findings of
this previous effort and tries to address some of its shortcomings, as well
as to extend its model. The two works try to address the same problem
in the same scenario: to allocate N nodes simultaneously available in the
future, assuming exclusive use of them. We assume there is no possibility
of achieving a true global knowledge of the system. Instead every node
maintains some local information which is exploited during the schedul-
ing action. In the case of Oner’s work every node is connected to some
other nodes, in a randomized overlay. This means that every node keeps
a cache of K nodes (with K<<TotalNodes), chosen arbitrarily by the
underlying protocol. The maintenance of this overlay is realized with
the Cyclon gossip protocol[12]. This is an epidemic algorithm, which has
proven to be very robust even in presence of massive failure of nodes in
the network, preserving the connectivity of the overlay.
The system does not employ any specific scheduler. Instead any node can
become the entry point for the submission of a job. This peer is the only
one responsible for the computation of the final schedule, even though it
exploits the information stored at other peers in order to calculate the
final result. It starts by constructing the first tentative schedule grabbing
the first P nodes at random, fetching them from its local random cache.
Then at every gossip iteration with another peer, it tries to merge the
new known peers one by one into the current tentative schedule. When,
by replacing one of the peers with a new one, the obtained schedule im-
proves this becomes the new tentative one. After a certain number of

2.6. GOSSIP BASED GRID SCHEDULING 15

iterations the schedule is finalized. This happens because the calculated
tentative schedule is about to expire, meaning that its starting time is
approaching the current wall-clock time. When selecting the executors
nodes, the system is only concerned with the starting time, thus only
employing an ”As Soon As Possible” policy. However in such a large sys-
tem, where resources are also largely distributed in space it seems naive
to optimize only on starting time. Many parallel algorithms make use
of massive inter-node communication. In this case reducing the overall
latency among executors nodes becomes crucial for the performance of
the algorithm.
Building on this previous work we try to extend the criteria used for ex-
ecutors selection, for instance taking latency also into account. Further-
more our solution extends the concept of scheduling policy, by letting the
user specify exactly how the executors should be chosen, and by providing
some internal data structures that can be exploited in the optimization
process. We also argue that the mechanism for improving the tentative
schedules is not efficient enough. The main drawback associated with
this approach is its difficulty to evolve. Once a tentative schedule has
been calculated it tends to remain stable. It is unlikely in fact that a
single new peer is able to improve the overall quality of the schedule. On
the other end, it would probably be a better idea, especially in the scope
of multiple optimizations criteria, to have a larger cluster to merge and
calculate from.
This system represents the base for the work of this thesis. We started
by analyzing the strength and the weaknesses of the system and build-
ing from it. We extended the policy model in order to give maximum
flexibility to the user when specifying the characteristics of the requested
executors, for instance by adding the opportunity of taking latency into
account on the side of starting time. We also extended the overlay model,
by adding to the simple randomized one, some others in which informa-
tion is selective (as the overlay of close by nodes). Also we proposed a
different approach to the computation of the schedule, which does not
rely only on gossip, but proactively constructs it by gathering informa-
tion from other nodes. In the end, a genetic algorithm is employed in the
computation of the schedule in order to achieve near-optimal results in

16 CHAPTER 2. RELATED WORKS

reasonable time.

Chapter 3
Decentralized Scheduling Algorithm

3.1 Introduction

The system described in this thesis allows the scheduling and deployment
of parallel applications on a distributed environment. A scheduling query
requests N machines for a certain time T, on which to have exclusive
access for job execution. It also gives the possibility of specifying a policy
describing the features that this group of nodes should have as a whole.
Throughout this document the entities taking part in the process will
be referred to as submitter, the node where a job request is issued, and
executors, the nodes actually carrying out the computation for the job.
The scheduling action can be performed by any node in the system.
Typically the work is carried out locally by the submitter, but can also be
split among several nodes in a cooperative fashion. After the scheduling
phase is concluded a set of N machines will be allocated for the job for
the requested amount of time TS, starting at T0. Then the input files
and the actual program are copied to the executors, which at time T0

will start the computation. Upon completion the submitter receives the
generated output files and the job ends. It is important to note that the
system enforces mutual exclusion of jobs, meaning that an executor will
always be running at most one job at any time.

17

18 CHAPTER 3. DECENTRALIZED SCHEDULING ALGORITHM

3.2 System Model

The system described is very different than regular Grids. These are
usually composed by few local clusters linked together in a bigger en-
tity. Examples of this kind of systems are Grid-5000 and the DAS-3.
In these systems resources are organized by a meta-scheduler at global
level, which relies on the local schedulers of the clusters to obtain in-
formation about load and to reserve resources to jobs. In this kind of
environments there is a big difference between nodes within a cluster and
nodes in different ones. In the first case communication is supposed to
be very quick due to the very small latency and the presence of dedicated
links between them, while, when dealing with nodes in separate cluster,
latency is usually larger and the channel public. In the new Grid scenario
that we delineated the distribution of resources is much more diverse and
there is basically no assumptions we can make about the geometry of
the system. In general we can consider resources to be equally scattered
around the globe and communication to be happening over the Internet.
Because of this peculiarity it becomes useful to extend the query model
in order to take latency into consideration. Many distributed applica-
tions are characterized by heavy communication patterns, in this cases
minimizing the inter-node latency is crucial for the performance of the
algorithm. When scheduling this kind of jobs the optimization should not
only be on starting time, but it should also aim at minimizing inter-node
distances. In general the criteria should minimize the global duration of
jobs, from submission to completion.

3.3 Implementation

This system is based on the p2p library ELEOC(Epidemic Library for
Easy Overlay Construction) that allows the easy creation of p2p networks
in which peers are linked by one or more overlays maintained using a
gossip algorithm. At the moment the system is developed in Java. This
allows to exploit the ”write once, run everywhere” characteristic of this
language, making it possible to execute the system on a wide range of
architectures and operating systems. In practice it is possible to schedule

3.4. OVERVIEW 19

for execution applications written in any language, even though at the
present time only Java applications are supported. It is easy to safely
deploy these applications because of the security mechanisms offered by
Java, like sandboxing, while for applications written in other languages
a different confinement approach should be used, like virtual machines.

3.4 Overview

The system is designed as a pure p2p system in which all nodes are
equally able to schedule as well as to run jobs. Because of the nature and
the size of the resource pool it is unfeasible to rely on a global view of the
system. It would be impossible to track all resources at all times, first
of all because of their number, which is supposed to be very large, also
because of their fluctuant availability and their geographical distribution.
We also assume a part of the machines will be unavailable at any time,
because of the instability of Internet links. The system, instead, takes
a different approach and assumes there is no global view of the system.
The only information available is the one contained in the overlay caches
of the nodes, meaning their direct neighbors in every overlay. Every node
participates in a number of overlays, each one connecting it to other nodes
with certain characteristics. By linking nodes in specific overlays we can
maintain useful information on the system (or on a part of it), that can
be used to schedule jobs. For instance, nodes can be linked in a proximity
overlay, in which every node keeps track of its closest nodes according to
some distance metric1, for example latency. In this way every node can
be constantly aware of its K ”closest” nodes.

3.5 Maintained Overlays

Whenever a scheduling query is submitted a node becomes the submitter
for that job. This means that all the computation needed to calculate

1The system employs Network Coordinates[14] to position nodes in an euclidean
space in which the distance between two nodes is an approximation of the real-world
latency between them.

20 CHAPTER 3. DECENTRALIZED SCHEDULING ALGORITHM

the schedule is performed locally by this node2. We assume there is no
possibility of obtaining a reliable global knowledge of the system. The
algorithm relies only on the local knowledge maintained by every node.
Every peer, in fact, participates in a number of overlays, each containing
a cache of other nodes chosen according to some metric. The algorithm
exploits this local knowledge in order to calculate a tentative schedule.
Instead of relying on a global view of the system it repeatedly use a par-
tial view of the system constructed from these local caches. A node is
always participating at least in one randomized overlay, kept up to date
using the Cyclon gossip protocol. Furthermore a node can maintain other
caches, containing nodes with similar characteristics chosen according to
some criteria. Here a slightly different gossip protocol is used, called
Vicinity[13]. For instance, it can be useful to keep a cache of the K clos-
est nodes, meaning those node with the lowest latency from the peer.
This sort of neighborhood is very useful when the scheduling query aims
at minimizing the latency among the executors, like in the case of net-
work intensive applications. Another optimization criterion which is very
popular is the As Soon As Possible. This is usually the case for CPU in-
tensive applications, where the inter-node communication is close to zero,
such as parametric simulation. In this scenario it doesn’t really matter
where the code is executed, while it is more interesting to minimize the
waiting time for the user. In this situation it is useful to maintain a cache
of nodes ready to execute in the near future. Since the system doesn’t
restrict the execution time slot to any length, it is necessary to keep more
than one overlay for this purpose. For example we can link nodes with
an available time slot of at least one hour starting soon, then another
cache for slots of at least six and twelve hours. Maintaining slots of one
hour it is possible to schedule jobs up to an hour. It is intuitive that it
is easier to schedule shorter jobs, while it is becomes much harder when
the length of the job gets closer to the length of the time slot for that
cache. In general when the number of required executors is high and the
required execution time is close to the length of the cache time slot, it
becomes more difficult to find a schedule. It is then preferable to use

2As we will see this process can be parallelized since there are no dependencies
between iterations of the algorithm.

3.5. MAINTAINED OVERLAYS 21

Figure 3.1: A peer structure: on the left the gossiped information are
shown, while on the right there are the maintained overlays.

another cache with a greater time slot length. Differently than in the
case of proximity, where every overlay is different, these time slot caches
will all be the same at every nodes, or at least similar, in case the number
of available nodes is much bigger than the cache size. This is particularly
useful on very loaded grids, since every node will be aware of the few
unloaded ones.

These are just some of the possibilities when choosing the overlays to
be maintained locally by the nodes. In this work we focus on optimization
criteria for network intensive and for CPU bound applications. In the
same way it is possible to maintain other overlays, customized for specific
applications or scenarios. It is important to note, though, that in order to
work these overlays have to be deployed on a sufficiently large number of
nodes. It would be not enough to start an overlay locally because, for how
the Vicinity algorithm works, it is necessary to have a big enough number
of nodes participating in an overlay in order for it to converge. This

22 CHAPTER 3. DECENTRALIZED SCHEDULING ALGORITHM

consideration is particularly useful in the context of voluntary computing.
In this case a certain number of nodes, potentially very big, is interested
in running the same code, an example could be the SETI@Home project.
These nodes are all participating in a collaborative project and thus share
the same goals. Deploying a customized overlay in this situation would
result in a great improvement in the schedules, because all the nodes
participating in the project could be grouped according to the best metric
for the specific application.

In general, when it is not feasible to deploy a custom overlay and the
optimization criterion is not among the default ones, it is always possible
to rely on the randomized overlay. We will show that the performance,
even if lower, is still acceptable.

3.6 Policies

When selecting a tentative schedule the system needs to evaluate its
goodness. Different applications have different needs and a good sched-
ule for one may not be as good for another. In order to define a criterion
for the goodness of a tentative schedule the system employs a mecha-
nism based on policies. These are user-defined criteria that can evaluate
a group of nodes and assign them a score. At the core of a policy is the
group scoring function, which receives in input a set of nodes and returns
a number expressing their goodness. In our system a low value is con-
sidered better than a high one. Many requirements could be useful when
dealing with different applications. Because of this the query model of
the system has been extended in order to try to fit all user requirements.
As a matter of fact, the chosen approach resembles a black-box model,
by letting the user specify how she wants the executors to be, in the form
of a group scoring function, to be minimized by the system. In practice
the user queries the system by specifying the number of requested nodes,
the amount of time needed for the job, and a policy. In the simple case of
an As Soon As Possible policy, for instance, the group scoring function
could be expressed as: the waiting time to start the job3. In the context

3All nodes obviously start at the same time.

3.6. POLICIES 23

of network intensive applications instead, the policy becomes: As Close
As Possible and the group scoring function could be expressed as: the
sum of the distances to the center of the group. In real world applications
the group scoring function would probably be a combination of the two
described, in which the starting time and the latency are both taken into
account, in some proportions.

Low latency and short waiting time are probably going to be the most
common optimizations. For many applications though, these criteria
could be not sufficient. A user might want, for instance, to schedule a
job that needs to be replicated globally, thus needing peers as far as
possible to each other. In this case it is easy to understand that the
wanted behavior can be achieved by simply reversing the formula above.
Another possible constraint could be put on which nodes to avoid for
computation, for example a company might not want to run code on a
competitor’s machines. This can be achieved with a simple change in the
policy, which would invalidate a group in the presence of a blacklisted
member. Also, a user might want to take hardware characteristics into
account, when choosing executors. In this case the group scoring function
is going to award points according to the hardware configuration of the
members of a group.

From this description it should be evident that almost any kind of
grouping policy can be specified when querying the system. The user has
simply to submit a group scoring function describing the wanted group
scoring function and the system will try to minimize it. This means that
of all considered groups, the one returned as the executor pool, is going
to be the one for which the policy function scores the minimum.

A policy, besides the group scoring function, also includes a set of
significant overlays. These are the overlays that are thought to be more
likely to contain nodes with the right characteristics, and thus, with the
higher chances of producing a good schedule. An ”As Close As Possible”
policy, for instance, is more likely to produce good results when it works
on nodes coming from the proximity overlay, meaning those nodes that
are already known to be close to each other, than with nodes coming
from the random overlay. Sometimes there is no specific overlay that fits
perfectly the requirements of the policy. In this cases it is possible to

24 CHAPTER 3. DECENTRALIZED SCHEDULING ALGORITHM

approximate, by specifying a combination of overlays, or in the worst of
cases, just including the randomized one.

We will see in the next section, how this information is exploited by
the system during the scheduling action.

3.7 Scheduling Algorithm

When a scheduling request is received at a node, this node becomes
the submitter for that job, the node that will take care of calculating the
schedule. The sequence of steps required to calculate a tentative schedule
is iterated several times. At every iteration the system tries to improve
the tentative schedule. It is important to note that these iterations are
all independent from each other and, thus, could be carried out also by
different cooperating peers.

Looking at every iteration we can divide the algorithm in the following
steps: Fetch/Merge, where a group of nodes with similar characteristics
is gathered, and Calculate, where the best schedule is found among that
group. The algorithm starts by selecting a random node from its Cyclon
cache, we call this the pivot for this iteration. This node is contacted
in order to obtain the dump of one or more of its caches, according
to what specified in the given policy. For instance when using a ”As
Close As Possible” policy, we are interested in the nodes contained in its
proximity cache. Since these overlay caches have a static size (usually 20),
it is likely that more nodes will be needed before it is possible to calculate
the schedule. This initial group, out of which a tentative schedule will
be calculated, needs necessarily to be be larger than the size of the final
schedule. In general we can say that, if looking for N machines, we need
to gather at least α × N nodes, where α is a system parameter greater
than 14. In order to reach the threshold of α ×N , other nodes needs to
be contacted to obtain a dump of their caches. These secondary nodes
to be contacted are not chosen randomly though, but instead from the
partial group, since we assume these to have already some characteristics
in common. Then, when the other caches are fetched, they are merged

4Experiments show a good trade off is given by α = 2.

3.7. SCHEDULING ALGORITHM 25

Figure 3.2: 1. First a scheduling query asking for N executors is received
by a node

with the partial group and the duplicates are removed. This process
continues until α×N different nodes are collected.

At this point we need to select the best set of N nodes among the
gathered ones, the ones representing a tentative schedule. This process
consists of selecting the N best nodes out of K(α × N), according to
the given policy. The space of possible solutions here is very large and
impossible to explore exhaustively. In fact we need to consider all the
possible combinations of N nodes out of K, which is N !/(N − k)!k!. This
formula contains factorials and its result becomes very large quickly as
the value of N increases. Since it is unfeasible to calculate the best solu-
tion in reasonable time, we need to employ some kind of approximation.
In order to do so, the system uses a genetic algorithm, which is able to
obtain a near-optimal solution in polynomial time. Note that we have
no guarantee that the found solution is the best one, but we know it is
among the best ones. The choice of employing this kind of technique is
due to the need of calculating solutions fast, a typical trade-off where the
quality constraint is loosened in order to gain speed for the algorithm.
Once a solution is calculated it is then compared against the current best
one calculated by a previous iteration of the scheduling algorithm. If

26 CHAPTER 3. DECENTRALIZED SCHEDULING ALGORITHM

Figure 3.3: 2. This then selects a pivot and gathers nodes

Figure 3.4: 3. A tentative schedule is calculated using the genetic algo-
rithm

3.7. SCHEDULING ALGORITHM 27

Figure 3.5: 4. A new pivot is selected

Figure 3.6: 5. A new better tentative schedule is found, the old one is
discarded and the resources freed.

28 CHAPTER 3. DECENTRALIZED SCHEDULING ALGORITHM

it is found to be better than the old one, it becomes the global best.
At every iteration an attempt is made to improve the tentative sched-
ule. All the iterations are independent and can be carried out locally by
threads or remotely by other helper nodes. When the starting time for
the best schedule is approaching the wall-clock time the whole procedure
terminates and the tentative schedule becomes definitive.

3.8 Resources Reservation

In the described system it is possible that one resource is included in more
than one schedule, when several scheduling queries are performed at the
same time on the Grid. The whole calculation, in fact, is performed by
the submitter and the executor is largely left out of the procedure. It
might happen, for instance, that two or more submitters decide to in-
clude the same executor in their schedule, but when finalizing, only one
will be able to execute in that timeslot at that executors. This clearly
leads to inconsistency of schedules and thus to an overall decrease in the
reliability of the system. We need to have a mean of making an executor
aware of its role, so that it can update its future schedule accordingly,
and at the same time, we need a way to avoid the phenomenon of over-
booking. The employed strategy is fairly simple and only requires a small
booking procedure. As we have seen, many tentative schedules are gener-
ated when executing a scheduling query, and every time one is calculated
this is checked against the temporary best one, replacing it in case of
improvement. It is easy to picture and practice also shows, that this
replacement only happens frequently at the beginning, while becoming
less and less probable as the algorithm proceeds. Exploiting this consid-
eration we decided to always reserve the best temporary schedule, as soon
as it is found, without waiting for the end of the scheduling calculation.
It means that a submitter reserves the executors as soon as it finds a
better schedule, to replace the old best. Obviously as it reserves the new
one, it also needs to release the old one. By doing so, a node is booked
in a certain time slot as soon as it is included in a schedule, which is
considered the best so far, and released as soon as a better one is found.

3.8. RESOURCES RESERVATION 29

Because of the possibility that some resource will become unavailable
during the reservation process, a two-phase commit transaction is used.
Even though this system tends to over reserve resources, this is only for
a limited time, but it has the benefit of preventing overbooking.

30 CHAPTER 3. DECENTRALIZED SCHEDULING ALGORITHM

Chapter 4
Algorithm Evaluation

In order to evaluate the performance of the system we would like to com-
pare its results against the theoretical optimal ones. It is known that
the scheduling of jobs is a NP-complete problem. This means that for
large size of the Grid it becomes unfeasible to calculate the best possi-
ble scheduling for a job. Every centralized scheduler needs to make use
of some heuristics, we chose to rely on a genetic algorithm. To be able
to evaluate the performance of the decentralized algorithm we compare
it with its centralized version. This will give us results which are not
influenced by the quality of the chosen genetic algorithm. One of the
assumption we made throughout this work is that a global view of the
system cannot be achieved. For testing purposes though, we can work
around this limitation since some attributes of the nodes are known and
static. For instance we can use position, expressed as the Internet Coor-
dinates of the nodes. Using these coordinates we evaluate the quality of
queries on the system based on the As Close As Possible policy. Instead
of choosing random values we opted for a more realistic solution by ex-
ploiting a dataset based on a previous work[14]. We used coordinates of
real nodes, in order to achieve more realistic results. A scheduling query
of this kind tries to obtain N nodes that have the minimum latency
among each other. This is particularly useful when dealing with net-
work intensive applications characterized by a high degree of inter-node

31

32 CHAPTER 4. ALGORITHM EVALUATION

communication. Since the position of nodes is known by construction
we can run a centralized version of the algorithm and compare it with
its decentralized counterpart. This means that the genetic algorithm is
run on the whole set of nodes. The best result out of several runs then
represents our baseline or optimal value. In principle we would like the
decentralized version of the algorithm to perform as close as possible to
the centralized one. Another important characteristic to evaluate is the
speed of convergence. The decentralized algorithm should find close to
optimal schedules in a small number of iterations. Furthermore the algo-
rithm should be stable for different size of the network. This means that
its performance should not change significantly as the network size grows.
For our experiments we emulated two networks of different scale: one of
800 and the other of 10000 nodes. We run the experiments on the DAS-3
cluster. We submitted queries for 64 and 128 nodes, since this is usually a
big enough request to require co-allocation on many traditional clusters.
We also distinguish two cases: one only using the randomized overlay
and one exploiting the custom proximity overlay. We calculate a ratio
between the goodness value found by the decentralized algorithm and
the optimal result calculated by its centralized counterpart. This gives
an idea of how much these results differs, with one being the optimal
value.

We can see from the graphs that the system behaves really well for
both sizes of the network, especially when the custom overlay is employed.
The decentralized algorithm performs as good as the centralized one,
always finding almost the same results. Moreover we can see that a very
small number of iteration is necessary to find this optimal result, showing
very good convergence properties. By looking at the different sizes of the
network then, we can see that this number of iterations doesn’t really
change. This allows us to conclude that the quality of the resulting
schedule and the convergence speed are not influenced by the number of
resources in the system.
We also tested the same algorithm, but just using the information of the
randomized overlay. This gives us an idea of how a generic query would
behave in absence of a suitable custom overlay. It also gives us an idea
of how much a query is improved by the presence of a specific overlay. In

33

this case the quality of the schedule is not close to optimal and its quality
degrades when the size of the network grows. The subset of nodes present
in the randomized cached in general will never be the same as the one in
a custom overlay and thus will always lead to lower quality of the results.
In this case it is obvious that nodes chosen randomly have a very low
probability of also being close to each other. Since we are trying to select
nodes as close as possible, it is understandable that the quality of the
calculated schedule is also lower. One good property that is maintained
is the speed of convergence. Even if the network grows we can still expect
the system to stabilized in a reasonable number of iterations.

We have seen how the system behaves for a specific policy with and
without specific information available. We determined that the decentral-
ized version of the algorithm performs nearly as good as the centralized

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

S
co

re
 r

at
io

 v
s.

 C
en

tr
al

iz
ed

Iterations

Random Overlay
Proximity Overlay

(a) Requesting 64 nodes among
800

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100

S
co

re
 r

at
io

 v
s.

 C
en

tr
al

iz
ed

Iterations

Random Overlay
Proximity Overlay

1

(b) Requesting 128 nodes
among 800

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

S
co

re
 r

at
io

 v
s.

 C
en

tr
al

iz
ed

Iterations

Random Overlay
Proximity Overlay

(c) Requesting 64 nodes among
10,000

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

S
co

re
 r

at
io

 v
s.

 C
en

tr
al

iz
ed

Iterations

Random Overlay
Proximity Overlay

(d) Requesting 128 nodes
among 10,000

Figure 4.1: Quality of the schedule found against the number of iterations

34 CHAPTER 4. ALGORITHM EVALUATION

one. The system also presents a very good convergence speed. We can
reasonably assume that it would behave in the same way when other poli-
cies are used. One of the key factors to achieve good results is the presence
of additional information contained in the custom overlays. Some basic
ones are already provided in order to address the more common types of
queries, like the As Close As Possible and the As Soon As Possible. In
real systems where the type of queries can be determined, like in cooper-
ative projects, new custom overlays can be deployed in order to achieve
close to optimal results.

Chapter 5
Conclusions

This thesis presented an approach to scalable distributed scheduling. It
addressed the problem of finding N machines concurrently available in
the future on which to schedule the execution of jobs. The main issues
that were tackled are scalability and decentralization. When the number
of resources is very large it becomes unfeasible to employ a centralized
solution based on the global view of the system. Moreover the presence of
many administrative domains makes it difficult to organize and manage
the access and the fair use the system. We also went beyond the logic
of meta-schedulers, that consider the Grid as the sum of its clusters, by
considering every single computing node independently. We proposed a
pure P2P system where any node can accept the submission of jobs and
become the scheduler. An extension on previous models is represented
by the possibility of specifying a policy at submission time. This en-
capsulates the criteria on which the available nodes are chosen in order
to fit requirements of the applications. A prototype of this system has
been built which allows the scheduling of jobs according to two criteria
common to many applications: As Close As Possible and As Soon As
Possible. Two of the main strength of this system are the use of gossip
algorithms to maintain some local knowledge at every node and the use
of a genetic algorithm to exploit this distributed information in order to
calculate the schedule for a job. Another important peculiarity of the

35

36 CHAPTER 5. CONCLUSIONS

system is its use of network coordinates to keep track of the position of
nodes and to evaluate the latencies among them. The system has been
evaluated emulating two network of different sizes: one of 800 and the
other of 10.000 nodes. Experiments were conducted to evaluate the per-
formance of the decentralized algorithm comparing it to its centralized
version. The chosen policy to be evaluated in the experiments has been
the As Close As Possible. We assumed the position of a node to be static
and this allowed us to compare the run a centralized version of the genetic
algorithm on the whole set of nodes. Unfortunately it was not possible
to evaluate the As Soon As Possible policy due to some limitations in the
implementation of the system, but we expect it to behave similarly.
Experiments showed that the decentralized algorithm scales well as the
number of nodes in the system grows. In both scenarios it was able
to find results very similar to its centralized counterpart. It has been
also shown that then number of iterations necessary for the algorithm to
converge is very small and not really affected by the size of the system.
Further studies on the algorithm will be focused on the evaluation of its
performance in regard to different policies and also to a combination of
them.

Bibliography

[1] Webpage: http://folding.stanford.edu

[2] Webpage: http://boinc.berkeley.edu

[3] Webpage: http://www.cs.wisc.edu/condor

[4] Webpage: http://www.st.ewi.tudelft.nl/koala

[5] H.H. Mohamed, D.H.J. Epema
The Design and Implementation of the KOALA Co-Allocating Grid
Scheduler
European Grid Conference, Amsterdam, 2005

[6] A.J.Chakravarti, G.Baumgartner, M.Lauria
Self-Organizing Scheduling on the Organic Grid
IEEE Transactions on Systems, Man, and Cybernetics vol. 35, 2005

[7] Webpage: http://projects.gforge.cs.vu.nl/ibis/zorilla.html

[8] N.Drost, R. van Nieuwpoort, H.Bal
Simple Locality-Aware Co-allocation in Peer-to-Peer Supercomput-
ing
GP2P: Sixth International Workshop on Global and Peer-2-Peer
Computing, Singapore, 2006

37

38 BIBLIOGRAPHY

[9] G.V.Iordache, M.S.Boboila, F.Pop, C.Stratan, V.Cristea
A Decentralized Strategy for Genetic Scheduling in Heterogeneous
Environments
Grid Computing, High Performance and Distributed Applications
(GADA) 2006 International Conference, 2006

[10] I.C.Legrand, H.B.Newman, R.Voicu, C.Cirstoiu, C.Grigoras,
M.Toarta, C.Dobre
MonALISA: An Agent based, Dynamic Service System to Monitor,
Control and Optimize Grid based Applications GMW ’07: Proceed-
ings of the 2007 workshop on Grid monitoring, Monterey, California,
USA, 2004

[11] C.Oner
Decentralized Grid Scheduler
Master Thesis, Vrije Universiteit Amsterdam, 2007

[12] S.Voulgaris, D.Gavidia, M.van Steen
CYCLON: Inexpensive Membership Managment for Unstructured
P2P Overlays
Journal of Network and Systems Management, 2005

[13] S.Voulgaris
Epidemic-Based Self-Organization in Peer-to-Peer Systems
PhD Thesis, Vrije Universiteit Amsterdam, 2006

[14] M.Szymaniak, D.Presotto, G.Pierre, M.van Steen
Practical Large-scale Latency Estimation
Computer Networks: The International Journal of Computer and
Telecommunications Networking, 2008

