Service-Oriented Data Denormalization
for Scalable Web Applications

*
Zhou Wei

Tsinghua University
Beijing, China

zhouw@few.vu.nl

Chi-Hung Chi
Tsinghua University
Beijing, China
chichihung@mail.tsinghua.edu.cn

ABSTRACT

Many techniques have been proposed to scale web applications.
However, the data interdependencies between the database queries
and transactions issued by the applications limit their efficiency.
We claim that major scalability improvements can be gained by re-
structuring the web application data into multiple independent data
services with exclusive access to their private data store. While
this restructuring does not provide performance gains by itself, the
implied simplification of each database workload allows a much
more efficient use of classical techniques. We illustrate the data de-
normalization process on three benchmark applications: TPC-W,
RUBIS and RUBBoS. We deploy the resulting service-oriented im-
plementation of TPC-W across an 85-node cluster and show that
restructuring its data can provide at least an order of magnitude
improvement in the maximum sustainable throughput compared to
master-slave database replication, while preserving strong consis-
tency and transactional properties.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; C.4 [Performance of systems]: Design studies; H.3.4 [Infor-
mation Storage and Retrieval]: Systems and Software.

General Terms

Performance.

Keywords

Scalability, Web applications, data denormalization.

1. INTRODUCTION

The world-wide web has taken an important place in everyday’s
life. Many businesses rely on it to provide their customers with
immediate access to information. However, to retain a large num-
ber of customers, it is important to guarantee a reasonable access

* Zhou Wei and Jiang Dejun also work at Vrije Universiteit Am-
sterdam. This work is supported by the China National Science
Foundation Project #90604028 and 863 project #2007AA01- Z122.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2008, April 21-25, 2008, Beijing, China.

ACM 978-1-60558-085-2/08/04.

*
Jiang Dejun
Tsinghua University
Beijing, China
jlangdj@few.vu.nl

Guillaume Pierre
Vrije Universiteit
Amsterdam, The Netherlands
gpierre@cs.vu.nl

Maarten van Steen
Vrije Universiteit
Amsterdam, The Netherlands
steen@cs.vu.nl

performance regardless of the request load that is addressed to the
system. Web application hosting systems therefore need the ability
to scale their capacity according to business needs. Many research
efforts have been made to provide scalable infrastructures for static
content. However, scaling web applications that dynamically gen-
erate content remains a challenge.

Web applications are commonly used to generate dynamic con-
tent that is personalized to individual clients. Each user’s request
triggers the execution of specific business logic, which issues any
number of queries to an underlying database before returning a re-
sult to the client. Queries can simply extract information from the
database, but UDI queries will also Update, Delete or Insert infor-
mation to the database. Queries may also be grouped into database
transactions.

Many techniques have been proposed to improve the scalabil-
ity of Web applications. Scaling application-specific computation
is relatively easy as requests can be distributed across any number
of independent application servers running identical code. Simi-
larly, one can reduce the network bottleneck between the applica-
tion and database servers [33]. The main challenge, however, is
to scale access to application data. Besides classical techniques
such as master-slave database replication, new techniques exploit
knowledge of the application data access behavior. Database query
caching relies on high temporal locality, and uses prior knowledge
of data overlap between different query templates to efficiently im-
plement invalidations [2, 4, 21, 30]. A query template is a parame-
trized SQL query whose parameter values are passed to the system
at runtime. Partial replication techniques use similar information
to reduce the data replication degree and limit the cost of database
updates [14, 29]. However, we observe that these techniques work
best under very simple workloads composed only of a few differ-
ent query templates. When the number of templates grows, an in-
creasing number of constraints reduces their efficiency: database
caching mechanisms need to invalidate more cached queries upon
each update to maintain consistency, and partial replication is in-
creasingly limited in the possible choices of functionally correct
data placements.

In this paper, we claim that scalable Web applications should
not be built along the traditional monolithic three-tier architecture.
Instead, restructuring the application data into independent data
services, each of which having exclusive access to its private data
store, allows one to reduce the workload complexity of each of the
services. While this restructuring by itself does not lead to any per-
formance improvements, it does allow for a more effective applica-

tion of the aforementioned optimization techniques, thus leading to
significantly better scalability. Importantly, this does not imply any
loss in terms of transactional or consistency properties.

Restructuring a monolithic Web application composed of Web
pages that address queries to a single database into a group of inde-
pendent Web services querying each other requires to rethink the
data structure for improved performance — a process sometimes
named denormalization. Future Web applications should prefer-
ably be designed from the start along a service-oriented architec-
ture. However, for existing monolithic applications we show how
one can denormalize the data into data services.

To demonstrate the effectiveness of our proposal, we study three
web application benchmarks: TPC-W [32], RUBIS [3] and RUB-
BoS [26]. We show how these applications can be restructured into
multiple independent data services, each with a very simple data
access pattern. We then focus on the UDI-intensive data services
from TPC-W and RUBIS to show how one can host them in a scal-
able fashion. For RUBBos, this is almost trivial. Finally, we study
the scalability of TPC-W, the most challenging of the three bench-
marks, and demonstrate that the maximum sustainable throughput
grows linearly with the quantity of hosting resources used. We were
thus able to scale TPC-W by an order of magnitude more than tra-
ditional systems.

This paper is structured as follows. Section 2 presents related
work. Then, Section 3 details our system model and the issues that
we need to face. Section 4 presents the process of data denormal-
ization, while Section 5 shows how individual data services can be
scaled. Section 6 presents performance evaluations. Finally, Sec-
tion 7 concludes.

2. RELATED WORK

In the past years, many techniques have been proposed to im-
prove the scalability of web applications. The simplest one is edge-
server computing where requests are distributed among several edge
servers running the same code [9, 24]. Although this technique is
very effective at scaling the computation part of the applications,
the main challenge is to scale the access to the application data.

Replication is a common technique to improve the throughput
of a RDBMS. Many RDBMS replication solutions aim at replicat-
ing data across multiple servers within a cluster [5, 18, 23, 25].
Database replication allows one to distribute read queries among
the replicas. However, in these solutions, all UDI queries must first
be executed at a master database, then propagated and re-executed
at all other “slave” databases using 2-phase commit or snapshot
isolation mechanisms. A few commercial database systems such
as Oracle allow one to optimize the re-execution of UDI queries at
the slaves by transferring a log of the execution at the master. How-
ever, these techniques do not improve the maximum throughput as
they require a single master server to execute all UDI queries. The
throughput of the master server then determines the total system’s
throughput.

As extensively discussed in [31], a number of techniques have
been developed specifically to scale Web applications. Most of
these techniques exploit the fact that Web applications issue a fixed
number of query templates to the database. Several systems pro-
pose to cache the result of database queries at the edge servers.
Static knowledge of conflicts among different query templates al-
lows one to invalidate caches efficiently when a database update
occurs. However, such systems work best under workloads with
high query locality, few UDI queries, and few dependencies be-
tween query templates. Furthermore, the efficiency of caches does
not grow linearly with the quantities of resources assigned to it, so
caches alone cannot provide arbitrary scalability.

Another approach based on query templates relies on partial data-
base replication, where not all tables get replicated to all database
servers [14]. This allows one to reduce the number of UDI queries
that must be issued to each database server. However, although
this technique allows one to improve the system throughput, its ef-
ficiency is constrained by the templates that query multiple tables
simultaneously (because of join queries or database transactions).
In contrast, our proposal also relies to a certain extent on partial
data replication, but at a much finer granularity which allows one
to reduce the data placement constraints.

In [11], the authors propose an edge computing infrastructure
where the application programmers can choose the best suited data
replication and distribution strategies for the different parts of ap-
plication data. By carefully reducing the consistency requirements
and selecting the replication strategies, this approach can yield con-
siderable gains in performance and availability. However, it re-
quires that the application programmers have significant expertise
in domains such as fault-tolerance and weak data consistency. In
contrast, we strive to present a systematic method to denormalize
and restructure data, with no implied loss in consistency or trans-
actional properties. Note that, although we only focus on perfor-
mance issues in this paper, improving availability can be realized
by applying classical techniques to each individual service.

Several recent academic and industrial research efforts have fo-
cused on the design of specialized data structures for scalable and
highly available services [6, 10, 13]. These systems usually pro-
vide a simple key-based put/get interface and focus on scalability
and availability properties rather than rich functionality or trans-
actional properties. These design choices mean that these systems
implicitly or explicitly assume that an application has been decom-
posed into separate entities with very simple data access patterns.
In contrast, this paper demonstrates how one can design a Web ap-
plication along such a service-oriented architecture with simplified
workload.

Data fragmentation techniques have been commonly used in the
design of distributed relational database systems [15, 19, 20, 22].
In these works, tables are partitioned either vertically or horizon-
tally into smaller fragments. Partitioning schemes are determined
according to a workload analysis in order to optimize access time.
However, these techniques do not fundamentally change the struc-
ture of the data, which limits their efficiency. Furthermore, changes
in the workload require to constantly re-evaluate the data fragmen-
tation scheme [17]. We consider that dynamic environments such
as Web applications would make such an approach impractical. In
contrast, we propose a one-time modification in the application data
structure. Further workload fluctuations can be handled by scaling
each service independently according to its own load.

Even though data denormalization is largely applied to improve
the performance of individual databases, few research efforts have
been made to systematically study them [27, 28]. Data denormal-
ization often creates data redundancy by adding extra fields to ex-
isting tables so that expensive join queries can be rewritten into
simpler queries. This approach implicitly assumes the existence
of a single database, whose performance must be optimized. In
contrast, we apply similar denormalization techniques in order to
scale the application throughput in a multi-server system. Denor-
malization in our case allows one to distribute UDI queries among
different data services, and therefore to reduce the negative effects
of UDIs on the performance of replicated databases.

Business
logic
SOAP SOAP SOAP

Data access Data access Data access
code code code

Database replication

Database partitioning

Data service 1 Data service 2 Data service 3

Figure 1: System model

3. SYSTEM MODEL
3.1 Goal

The idea behind our work is that the data access pattern of tradi-
tional monolithic Web applications is often too complex to be effi-
ciently handled by a single technique. Indeed, proposed techniques
work best under specific simple access patterns. Data replication
performs best with workloads containing few or no UDI; query
caching requires high temporal locality and not too many UDIs;
partial replication or even data partitioning demand that queries do
not span multiple partitions.

We claim that major gains in scalability can be obtained by re-
structuring Web application data into a collection of independent
data services, where each service has exclusive access to its private
data store. While such restructuring does not provide any perfor-
mance improvement by itself, it considerably simplifies the data
access pattern generated by each service. This allows one to apply
appropriate scaling techniques to each service.

Figure 1 shows the system model of a Web application after re-
structuring. Instead of being hosted in a single database, the ap-
plication data are split into three separate databases DB1, DB2 and
DB3. Each database is encapsulated into a data service which ex-
ports a service interface to the application business logic. Each data
service and its database can then be hosted independently using the
technique that suits it best according to its own data access pat-
tern. Here, DB1 is replicated across two database servers, DB2 is
hosted by only one server, while DB3 has been further partitioned
into DB3a and DB3b. Note that splitting the application data into
independent services also improves separation of concerns: details
about the internal hosting architecture of a data service are irrele-
vant to the rest of the application.

3.2 Data denormalization constraints

Denormalizing an application’s data into independent data ser-
vices requires deep changes to the structure of the data. For ex-
ample, a table containing fields (key, attrl, attr2) and queried by
templates “SELECT key FROM Table where attrl=?”
and “SELECT key FROM Table where attr2=7?" maybe
split into two tables (key, attrl) and (key, attr2), which may be-
long to two different data services.

However, not all tables can be split arbitrarily. In practice, data
accessed by different queries often overlap, which constrains the
denormalization. We identify two types of constraints: transactions
and query data overlap.

Although database transactions are known as an adversary to per-
formance, they sometimes cannot be avoided. An example is a
checkout operation in an e-commerce application where a product

order and the corresponding payment should be executed atomi-
cally. ACID requirements provide a strong motivation for main-
taining all data accessed by one transaction inside a single database,
and therefore inside a single data service. Splitting such data into
multiple services would impose executing distributed transactions
across multiple services, for example, using protocols such as 2-
phase commit. We expect that this would negate the performance
gains of the data decomposition.

Another source of constraints is created by ordinary queries exe-
cuted outside transactions. Similar to constraints created by trans-
actions, it seems logical to cluster the data accessed by each query.
However, in most cases the overlap of different queries would lead
to creating a single data service. Instead, we can apply two other
transformations. First, certain complex database queries can be
rewritten into multiple, simpler queries. Doing this reduces the
data inter-dependency and allows better data restructuring. Sec-
ond, data dependencies induced by overlapping queries can also be
reduced by replicating certain data to multiple services. However,
this implies a trade-off between the gains of splitting the data into
more services and the costs of replicating update queries to these
data over multiple services.

3.3 Scaling individual data services

In all our experiments, we noticed that the services resulting
from data denormalization maintain extremely simple data struc-
tures and are queried by very few query templates. Such a simple
workload considerably simplifies the task of hosting services in a
scalable fashion. For example, some data services receive very few
or even no UDI queries at all. Such services can therefore bene-
fit from massive caching or replication. On the other hand, some
other services concentrate on large number of UDI queries, of-
ten grouped together inside transactions. Such services are clearly
harder to scale. However, they at least benefit from the fact that
they receive less queries than the database of a monolithic applica-
tion would. Additionally, we show in Section 5.1 that such services
can often be partitioned so that UDI queries are distributed across
multiple database servers.

4. DATA DENORMALIZATION

Service-oriented data denormalization exploits the fact that UDI
queries and transactions often access only a part of the columns of
a table. Decomposing such tables into multiple smaller ones helps
distributing UDI queries and transactions to more data services, and
thereby simplifies their workload. As discussed in Section 3, two
main constraints must be taken into account when denormalizing an
application’s data. First, one should split the data into the largest
possible number of services, such that no transaction or UDI query
in the workload spans multiple services. Second, one must make
sure that read queries can continue to operate over the then parti-
tioned data.

4.1 Denormalization and transactions

As discussed in previous sections, we need to cluster the data into
services such that no transaction overlaps multiple data services.
To this end, we first mark which data columns are accessed by each
transaction. Then, simple clustering techniques can be applied to
decompose the data into the largest possible number of independent
data services.

We distinguish three types of “transactions” that must be taken
into account here. First, real database transactions require ACID
properties. This means that all the data they access must be ac-
cessed atomically and must be placed into the same service. One
exception to this rule is formed by data columns that are never up-

Data service 2

o

Data service 1

7
/4

Query Rewrite

Read Queryl Read Query2

Data service 1 Data service 2

%% c4|c5

Read Query

Data service 1

&l

Data service 2

cH

c4 ,»;‘%, —

.

Replication with Query Rewrite

/N

Data service 1

Read Query
Data service 1+2

“ .

Data service 2

c4|c5|c6

Merge Data Services Replication without Query Rewrite

Figure 2:
queries

Different denormalization techniques for read

dated, neither by the transaction in question nor by any other query
in the workload. An example is the table that matches zipcodes to
local names. Such read-only data does not need to be placed in the
same data service, and can be abstracted as a separate data service.

The second type of transaction is a so-called “atomic set,” where
only the Atomicity property of a normal transaction is necessary.
Atomic sets appear, for example, in TPC-W, where a query that
reads the content of a shopping cart and the one that adds another
element must be executed atomically [34]. For such atomic sets,
only the columns that are updated must be local to the same data
service to be able to provide atomicity. Columns that are only read
by the atomic set can reside outside the service, as they are not
concerned by the atomicity property.

Finally, UDI queries that are not part of a transaction must be
executed atomically, and therefore must be considered as an atomic
set composed of a single query.

Once one has marked each transaction, UDI query and atomic set
with the data columns that should be kept in a single service, simple
clustering techniques can provide the first step of decomposition
of the database columns into services. However, this step is not
functional, as it accommodates only the needs of transactions and
UDI queries. To become functional, one must further update this
data model to take read queries into consideration.

4.2 Denormalization and read queries

Clearly, one can consider read queries similarly to UDI queries
and transactions, and cluster data services further such that no read
query overlaps multiple services. However, applying this method
would increase the constraints to the data decomposition and lead
to coarse-grain data services, possibly with a single data service for
the whole application.

Instead, as shown in Figure 2, two different operations can be
applied. First, certain read queries can be rewritten into a series
of multiple sub-queries, where each sub-query can execute in one
data service. For example, in TPC-W, the CUSTOMER and ORDER
tables are located in different data services, whereas the following

'In the case of actual database transactions, these data columns
must reside inside the data service to be able to provide the Isolation
part of ACID properties.

query spans both tables with a join operation: “SELECT o_id
FROM customer, orders WHERE customer.c_id =
orders.o_c_id AND c_uname = ?”. However, this query
can be easily rewritten into two sub-queries that access only one ta-
ble: i) “SELECT c_id FROM customer WHERE c_uname
= ?”;and ii) “SELECT o_id FROM orders WHERE
o_c_1id=?". The returned result of the first query is used as in-
put for the second one and the final result is returned by the second
query.

Another transformation often applied in traditional database de-

normalization techniques consists of replicating data from certain
database tables to other tables. This allows one to transform join
queries into simpler queries. Note that traditional denormalization
applies this technique to optimize the efficiency of query execu-
tion within a single database whereas we apply this technique to
be able to split the data into independent data services. For ex-
ample, the following query accesses two tables in two different
data services: “SELECT item.i_id,item.i_title FROM
item,order_line WHERE item.i_id =
order_line.ol_i_id AND item.subject=?
LIMIT 50”. Replicating column i_subject from table ITEM
to the other data service allows one to transform this query and tar-
get a single data service. The only constraint is that any update
to the i_subject column must be applied at both data services,
preferably within a (distributed) transaction. This scheme is there-
fore applicable only in cases where the data to be replicated are
rarely updated.

To conclude, complex query rewriting should be the preferred
option if the semantics of the query allows it. Otherwise, column
replication may be applied if the replicated data are never or sel-
dom updated. In last resort, when neither query rewriting nor col-
umn replication is possible, merging the concerned data services is
always correct, yet at the cost of coarse-grain data services.

4.3 Case studies

To illustrate the effectiveness of our data denormalization pro-
cess, we applied it to three standard Web applications: TPC-W,
RUBIiS and RUBBoS.

4.3.1 TPC-W

TPC-W is an industry standard e-commerce benchmark that mod-
els an online bookstore similar to Amazon . com [32]. Its database
contains 10 tables that are queried by 6 transactions, 2 atomic sets,
6 UDI queries that are not part of a transaction, and 27 read-only
queries.

First, the transactions and atomic sets of the TPC-W workload
impose the creation of four sets of transactions whose targeted data
do not overlap. The first set contains transaction Purchase, and
the two atomic sets Docart and Getcart; the second set con-
tains the Adminconfirm transaction, the third set contains only
the Updaterelated transaction. Finally, the last set contains
Addnewcustomer, Refreshsession and Enteraddress.
This means for example that the original ITEM table from TPC-W
must be split into five tables: ITEM_STOCK contains the primary
key i_1id and the column i_stock;table ITEM_RELATED con-
tains i_1id and i_relatedl-5; table ITEM_DYNAMIC con-
tains i_id, i_cost, i_thumbnail, i_image and
i_pub_date; the last table contains all the read-only columns of
table ITEM.

The result of the first denormalization step is composed of five
data services: a Financial data service contains tables ORDERS,
ORDER_ENTRY, CC_XACTS, SHOPPING_CART,
SHOPPING_CART_ENTRY and ITEM_STOCK; data service

Data service | Data Tables(included columns)

Requests

Financial ORDERS ORDER_ENTRY CC_XACTS | getLastestOrderInfo, createEmptyCart, addltem, re-
1_STOCK(i_stock) SHOPPING_CART SHOP- | freshCart, resetCartTime, getCartlnfo, getBesterIDs,
PING_CART_ENTRY computeRelatedItems, purchase

Customer CUSTOMER ADDRESS COUNTRY getAddress, setAddress, getCustomerID, getCustomer-

Name, getPassword, getCustomerInfo, login, addNew-
Customer, refreshSession
Item_dynamic | ITEM_DYNAMIC(i_cost i_pub_date i_subject | getltemDynamiclnfo, getLatestltems, setltemDynam-

i_image i_thumbnail) icInfo
Item_basic ITEM_BASIC(i_title i_subject) Author getltemBasicInfo, searchByAuthor, searchByTitle,
searchBySubject
Item_related | ITEM_RELATED(_related1-5) getRelatedItems, setltemRelated
Item_publisher | ITEM_PUBLISHER(i_publisher) getPublishers
Item_detail ITEM_DETAIL(i_srp i_backing) getltemDetails
Item_other ITEM_OTHERG(_isbn i_page i_dimensions i_desc | getltemOtherInfo
i_avail)
Table 1: Data services of the denormalized TPC-W
Item_related takes care of items that are related to each other, with Data Service Tables Transactions
table ITEM_RELATED; data service Ifem_dynamic takes care of User USERS[U] Storecomment(U,C)
the fields of table ITEM that are likely to be updated by means of COMMENTS|C] Registeruser(V)
table ITEM_DYNAMIC; finally, data service “Customer” contains Auction ITEMSI[/] Storebuynow(L,N)
customer-related information with tables CUSTOMER, ADDRESS BUY_NOW[N] Registeritem(/)
and COUNTRY. The remaining tables from TPC-W are effectively BIDS[B] Storebid(/,B)
read-only and are clustered into a single data service. This read- Categories CATEGORIES -
only data service can remain untouched, but for the sake of the Regions REGIONS -

explanation we split it further during the second denormalization
step.

The second step of denormalization takes the remaining read
queries into account. We observe that most read queries can either
be executed into a single data service, or be rewritten. One read
query cannot be decomposed: it fetches the list of the best-selling
50 books that belong to a specified subject. However, the list of
book subjects i__subject is read-only in TPC-W, so we replicate
it to the Financial data service for this query?; i_subject is also
replicated to the Item_dynamic data service for a query that obtains
the list of latest 50 books of a specified subject.

The remaining read-only data columns can be further decom-
posed according to the query workload. For example, the “Search”
web page only accesses data fromcolumns i_title,i_subject
and table AUTHOR. We can thus encapsulate them together as the
Item_basic service. We similarly created three more read-only data
services.

The final result is shown in Table 1. An important remark is
that, although denormalization takes only data access patterns into
account, each resulting data service has clear semantics and can be
easily named. This result is in line with observations from [12],
where examples of real-world data services are discussed.

4.3.2 RUBBoS

RUBBOS is a bulletin-board benchmark modeled after slashdot .

org [26]. It consists of 8 tables requested by 9 UDI queries and
30 read-only queries. RUBBoS does not contain any transactions.
Six tables incur UDI workload, while the other two are read-only.
Furthermore, all UDI queries access only one table. It is therefore
easy at the end of the first denormalization step to encapsulate each
table incurring UDI queries into a separate data service.

*Note that we cannot simply move this column into the Financial
service, as it is also accessed in combination with other read-only
tables.

Table 2: Data services of RUBIS

All read queries can be executed in only one table except two
queries which span two tables: one can be rewritten into two sim-
pler queries; the other one requires to replicate selected items from
OLD_STORIES into the USERS table. The OLD_STORIES table,
however, is read-only so no extra cost is incurred from such replica-
tion. Finally, the two read-only tables are encapsulated as separate
data services.

RUBBOS can therefore be considered as a very easy case for data
denormalization.

4.3.3 RUBiS

RUBIS is an auction site benchmark modeled after eBay . com [3].
It contains 7 tables requested by 5 update transactions. Except for
the read-only tables REGIONS and CATEGORIES, the other five
tables are all updated by INSERT queries, which means that they
cannot be easily split. This means that the granularity at which we
can operate is the table. The transactions impose the creation of
two data services: the “Users” data service contains tables USERS
and COMMENTS, while the “Auction” data service contains tables
BUY_NOW, BIDS and ITEMS. The final result of data denormal-
ization is shown in Table 2.

RUBIS is a difficult scenario for denormalization because none
of its tables can be split following the rules described in Section 4.1.
‘We note that in such worst-case scenario, denormalization is actu-
ally equivalent to the way GlobeTP [14] would have hosted the
application. We will show however in the next section that scaling
the resulting data services is relatively easy.

S. SCALING INDIVIDUAL DATA SERVICES

In all cases we examined, the workload of each individual data
service can be easily characterized. Some services incur either

Insert into ORDER with o_id=id;

Insert into CC_XACTS with cx_o_id=id;

foreach item i within the order do
Insert into ORDER_ENTRY with ol_o_id=id, ol_i_id=i;
Update I_STOCK set i_stock=i_stock-qty(i) where i_id=i;

end

Update SHOPPING_CART where sc_id=id;

Delete from SHOPPING_CART_ENTRY where scl_sc_id=id;

Algorithm 1: The purchase transaction

A N AR W N =

read-only or read-dominant workload. These services can be scaled
up by classical database replication or caching techniques [31].
Other services incur many more UDI queries, and deserve more
attention as standard replication techniques are unlikely to provide
major performance gains. Furthermore, update-intensive services
also often incur transactions, which makes the scaling process more
difficult. Instead, partial replication or data partitioning techniques
should be used so that update queries can be distributed among
multiple servers. We discuss two representative examples from
TPC-W and RUBIiS and show how they can be scaled up using
relatively simple techniques.

5.1 Scaling the financial service of TPC-W

The denormalized TPC-W contains one update-intensive service:
the Financial service. This service incurs a database update each
time a client updates its shopping cart or does a purchase. However,
all tables from this service, except one, are indexed by a shopping
cart ID and all queries span exactly one shopping cart. This sug-
gests that, instead of replicating the data, one can partition them
according to their shopping cart ID.

The Financial data service receives two types of updates: up-
dates on a shopping cart, and purchase transactions. The first one

accesses tables SHOPPING_CART and SHOPPING_CART-_ENTRY.

Table SHOPP ING_CART contains the description of a whole shop-
ping cart, while SHOPP ING_CART_ENTRY contains the details of
one entry of the shopping cart. If we are to partition these data
across multiple servers, then one should keep a shopping cart and
all its entries at the same server.

The second kind of update received by the Financial service is
the Purchase transaction. We present this transaction in Algo-
rithm 1. Similar to the Updatecart query, the Purchase trans-
action requires that the order made from a given shopping cart is
created at the same server that already hosts the shopping cart and
its entries. This allows one to run the transaction within a single
server of the Financial service rather than facing the cost of a dis-
tributed transaction across replicated servers.

One exception to this easy data partitioning scheme is the
ITEM_STOCK table, in which any element can potentially be re-
ferred to by any shopping cart entry. One simple solution would be
to replicate the ITEM_STOCK table across all servers that host the

Financial service. However, this would require to run the Purchase

transaction across all these servers. Instead, we create an
ITEM_STOCK table in each server of the Financial service in which
all item details are identical except the available stock which is di-
vided by the number of servers. This means that each server is allo-
cated a part of the stock that it can sell without synchronizing with
other servers. Only when the stock available at one server is empty,
does it need to execute a distributed transaction to re-distribute the
available stock.

The Financial service receives two more read queries that ac-
cess data across multiple data clusters. These queries retrieve re-

spectively the 3333 and 10,000 latest orders from tables ORDERS
and ORDER_ENTRY in order to obtain either the list of best-selling
items or the items most related to a given other item. We imple-
ment these queries in a similar way to distributed databases. Each
query is first issued at each server. The results are then merged into
a single result set, and the relevant number of most recent orders is
re-selected from the merged results.

In our implementation, we wanted to balance the load imposed
by different shopping carts across all servers of the Financial ser-
vice. We therefore marked each row of tables SHOPPING_CART,
SHOPPING_CART_ENTRY and ORDERS with a key equal to the
shopping cart ID. We then hash this ID to H = (7id + 4)%M
(where M is the number of servers) to determine which server H
should be responsible for that row. Our experiments show that this
very simple hash function balances the load effectively in terms of
data storage size and computational load.

This example shows that, even for relatively complex data ser-
vices, the fact that each service has simple semantics and receives
few different queries allows one to apply application-specific solu-
tions. The resulting relative complexity of the service implementa-
tion, however, remains transparent to other parts of the application,
which only need to invoke a simple service interface.

5.2 Scaling RUBIS

The denormalized RUBiS implementation contains two update-
intensive services: “Auction” and “User.” Similar to the previous
example, most queries address a single auction or user by their re-
spective IDs. We were thus able to partition the data rows between
multiple servers. A few read-only queries span multiple auctions or
users, but we could easily rewrite them such that individual queries
would be issued at every server, before their results can be merged.

6. PERFORMANCE EVALUATION

As we have seen, RUBBoS and RUBIS are relatively simple to
host using our denormalization technique. RUBBoS can be decom-
posed into several rarely updated data services. On the other hand,
RUBIS requires coarser-grain update-intensive services, but they
can be scaled relatively easily. We present here performance eval-
uations of TPC-W, which we consider as the most challenging of
the three applications.

Our evaluations assume that the application load remains roughly
constant, and focus on the scalability of denormalized applications.
To support the fluctuating workloads that one should expect in real
deployments, a variety of techniques exist to dictate when and how
extra servers should be added or removed from each individual data
service of our implementations [1, 7, 35].

We compare three implementations of TPC-W. “OTW” repre-
sents the unmodified original TPC-W implementation. We then
compare its performance to “DTW?”, which represents the denor-
malized TPC-W where no particular measure has been taken to
scale up individual services. Finally, “STW” (scalable TPC-W)
represents the denormalized TPC-W with scalability techniques en-
abled. All three implementations are based on the Java implemen-
tation of TPC-W from the University of Wisconsin [16]. For perfor-
mance reasons we implemented the data services as servlets rather
than SOAP-based Web services.

We first study the performance of OTW and DTW to investi-
gate the costs and benefits of data denormalization with no scal-
ability techniques being introduced. We then study how replica-
tion and data partitioning techniques allow us to scale individual
data services of TPC-W. Finally, we deploy the three implementa-
tions on an 85-node cluster and compare their scalability in terms
of throughput.

6.1 Experimental setup

All experiments are performed on the DAS-3, an 85-node Linux-
based server cluster [8]. Each machine in the cluster has a dual-
CPU / dual-core 2.4 GHz AMD Opteron DP 280, 4 GB of mem-
ory and a 250 GB IDE hard drive. Nodes are connected to each
other with a gigabit LAN such that the network latency between
the servers is negligible. We use Tomcat v5.5.20 as application
servers, PostgreSQL v8.1.8 as database servers, and Pound 2.2 as
load balancers to distribute HTTP requests among multiple appli-
cation servers.

Before each experiment, we populate the databases with 86,400
customer records and 10,000 item records. Other tables are scaled
according to the benchmark requirements. The client workload is
generated by Emulated Browsers (EBs). We use the number of EBs
to measure the client workload. The workload model incorporates a
think time parameter to control the amount of time an EB waits be-
tween receiving a response and issuing the next request. According
to the TPC-W specification, think times are randomly distributed
with exponential distribution and average value 7 seconds.

TPC-W defines three standard workloads: the browsing, shop-
ping and ordering mixes, which generate 5%, 20% and 50% update
interactions respectively. Unless otherwise specified, our experi-
ments rely on the shopping mix.

6.2 Costs and benefits of denormalization

The major difference between a monolithic Web application and
its denormalized counterpart is that the second one is able to dis-
tribute its UDI workload across multiple machines. Even though
such an operation implies a performance drop when hosting the ap-
plication on a single machine, it improves the overall system scal-
ability when more machines are used. In this section, we focus
on the costs and benefits of data denormalization when no special
measure is taken to scale the denormalized TPC-W.

We exercise the OTW and DTW implementations using 2500 EBs,
under each of the three standard workload mixes. Both systems are
deployed over one application server and 8 database servers. In the
case of OTW, the database servers are replicated using the standard
PostgreSQL master-slave mechanism. DTW is deployed such that
each data service is hosted on a separate database server.

We measure the system performance in terms of WIRT (Web In-
teraction Response Time) as well as WIPS (Web Interactions Per
Second). According to the TPC-W specification, we defined an
SLA in terms of the 90th percentile of response times for each type
of Web interaction: namely, 90% of web interactions of each type
must complete under 500 ms. The only exception is the “Admin
confirm” request type, which does not have an SLA requirement.
This request is issued only by the system administrator, and there-
fore does not influence the client-perceived performance of the sys-
tem.

Figure 3 shows the performance of the different systems under
each workload. Figure 3(a) shows the achieved system throughput,
whereas Figure 3(b) shows the number of query types for which the
SLA was respected.

The browsing mix contains very few UDI queries. Both imple-
mentations sustain roughly the same throughput. However, the de-
normalized TPC-W fails to meet its SLA for two out of the 14 inter-
action types. This is due to the fact that the concerned interactions
heavily rely on queries that are rewritten to target multiple, different
data services. These calls are issued sequentially, which explains
why the corresponding request types incur higher latency.

At the other extreme, the ordering mix contains the highest frac-
tion of UDI queries. Here, DTW sustains a high throughput and
respects all its SLAs, while OTW simply crashes because of over-

Throughput comparision

360 T —
320
280 1
240 ~
200 | Original TPC-W

120 1 —
80 —
40 - —

Avg. WIPS

T T
Browsing Shopping Ordering
TPC-W mix

(a) Average throughput comparison

SLA-satisfied web interaction type comparision

u Original TPC-W
O Denormalized TPC-W

Number of SLA-satisfied web
interaction type

Browsing Shopping Ordering
TPC-W mix

(b) SLA-satisfied web interaction type number comparison

Figure 3: Throughput and performance comparison between
original TPC-W and denormalized TPC-W. Note that the Or-
dering mix for the original TPC-W overloaded and subse-
quently crashed the application.

load. This is due to the fact that DTW distributes its UDI queries
across all database servers while OTW replicates them to all servers.
Finally, the shopping mix constitutes a middle case where both im-
plementations behave equally good.

We conclude that data denormalization improves the performance
of UDI queries at the cost of a performance degradation of rewrit-
ten read queries. We note, however, that the extra cost of read
queries does not depend on the number of server machines, whereas
the performance gain of UDI queries is proportional to the size of
the system. This suggests that the denormalized implementation is
more scalable that the monolithic one, as we will show in the next
sections.

6.3 Scalability of individual data services

We now turn to study the scalability of each data service indi-
vidually. We study the maximum throughput that one can apply to
each service when using a given number of machines, such that the
SLA is respected.

Since we now focus on individual services rather than the whole
application, we need to redefine the SLA for each individual data
service. As one application-level interaction generates on average
five data service requests, we roughly translated the interaction-
level SLA into a service-level SLA that requires 90% of service
requests to be processed within 100 ms. The Financial service is
significantly more demanding than other services, since about 10%
of its requests take more than 100 ms irrespectively of the work-
load. We therefore relax its SLA and demand that only 80% of
queries return within 100 ms.

T T T T T T

__ 60000} ;]
£ / //(
W 50000- x i
5
2 40000+ s i
[=)] 3
3 .
£ 30000+ x 1
= L
E 20000} s |
£ -
£ P
8 10000} o item_basic—x—
= T Item_dynamic- + -

ol . .) . Financial--» -

0 2 4 6 8 10 12 14
Number of database servers

Figure 4: Scalability of individual TPC-W services

We measure the maximum throughput of each data service by
increasing the number of EBs until the service does not respect
its SLA any more. To generate flexible reproducible workloads
for each data service, we first ran the TPC-W benchmark several
times under relatively low load (1000 EBs) and collected the logs
of the invocation of data service interfaces. We obtained 72 query
logs, each representing the workload of 1000 EBs for a duration
of 30 minutes. We can thus generate any desired workload, from
1000 EBs to 72,000 EBs step by 1000 EBs, by replaying the right
number of elementary log files across one or more client machines
concurrently.

Figure 4 shows the throughput scalability of three representative
data services from the scalable TPC-W. The Item_basic data ser-
vice is read-only. It is therefore trivial to increase its throughput
by adding database replicas. Similarly, the Item_dynamic service
receives relatively few UDI queries, and can be scaled by simple
master-slave replication.

On the other hand, the Financial service incurs many database
transactions and UDI queries, which implies that simple database
replication will not produce major throughput improvements. We
see, however, that the implementation discussed in Section 5.1 ex-
hibits a linear growth of its throughput as the number of database
servers increases.

To conclude, we were able to scale all data services to a level
where they could sustain a load of 50,000 EBs. Different services
have different resource requirements to reach this level, with the
Item_basic, Item_dynamic and Financial services requiring 3, 3,
and 13 database servers, respectively.

We believe that all the data services can easily be scaled further.
We stopped at that point as 50,000 EBs is the maximum throughput
that our TPC-W implementation reaches when we use the entire
DAS-3 cluster for hosting the complete application.

6.4 Scalability of the entire TPC-W

We conclude this performance evaluation by comparing the through-

put scalability of the OTW, DTW and STW implementations of
TPC-W. Similar to the previous experiment, we exercised each sys-
tem configuration with increasing numbers of EBs until the SLA
was violated. In this experiment, we use the application-level defi-
nition of the SLA as described in Section 6.2.

Figure 5(a) compares the scalability of OTW, DTW and STW
when using between 2 and 70 server machines. In all cases we
started by using one application server and one database server.
We then added database server machines to the configurations. In

OTW, extra database servers were added as replicas of the mono-
lithic application state. In DTW, we start with one database server

for all services, and eventually reach a configuration with one database

server per service. In STW, we allocated the resources as depicted
in Figure 5(b). Note that in all cases, we deliberately over-allocated
the number of application servers and client machines to make sure
that the performance bottleneck remains at the database servers.

When using very few servers, OTW slightly outperforms DTW
and STW. With increasing number of servers, OTW can be scaled
up until about 6000 EBs when using 8 servers. However, when fur-
ther adding servers, the throughput decreases. In this case, the per-
formance improvement created by extra database replicas is coun-
terbalanced by the extra costs that the master incurs to maintain
consistency.

As no individual scaling techniques are applied to DTW, it can
be scaled up to at most 8 database servers (one database server per
service). The maximum throughput of DTW is around 3500 EBs.
Note that this is only about half of the maximum achievable through-
put of OTW. This is due to the extra costs brought by data de-
normalization, in particular the rewritten queries. Adding more
database servers per service using database replication would not
improve the throughput, as most of the workload is concentrated in
the Financial service.

Finally, STW shows near linear scalability. It reaches a max-
imum throughput of 48,000 EBs when using 70 server machines
(11 database servers for the Financial service, 12 database servers
for the other services, 33 application servers and 14 load balancers).
Taking into account the 14 client machines necessary to generate a
sufficient workload, this configuration uses the entire DAS-3 clus-
ter. The maximum throughput of STW at that point is approxi-
mately 8 times that of OTW, and 10 times that of a single database
server.

We note that the STW throughput curve seems to start stabiliz-
ing around 50 server machines and 40,000 EBs. This is not a sign
that we reached the maximum achievable throughput of STW. The
explanation is that, as illustrated in Figure 4, 40,000 EBs is the
point where many small services start violating their SLA with two
database servers, and need a third database server. In our imple-
mentation each database server is used for a single service, which
means that several extra database servers must be assigned to the
small data services to move from 40,000 EBs to 50,000 EBs. We
expect that using more resources the curve would grow faster again
up to the point where the small data services need four servers.

7. CONCLUSION

Most approaches toward scalable hosting of Web applications
consider the application code and data structure as constants, and
propose middleware layers to improve performance transparently
to the application. This paper takes a different stand and demon-
strates that major scalability improvements can be gained by al-
lowing one to denormalize an application’s data into independent
services. While such restructuring introduces extra costs, it con-
siderably simplifies the query access pattern that each service re-
ceives, and allows for a much more efficient use of classical scal-
ability techniques. We applied this methodology to three standard
benchmark applications and showed that it allows TPC-W, the most
challenging of the three, to scale by at least an order of magnitude
compared to master-slave database replication. Importantly, data
denormalization does not imply any loss in terms of consistency or
transactional properties. This aspect makes our approach unique
compared to, for example, [11].

In our experience, designing the data denormalization of an ap-
plication from its original data structure and query templates takes

50000

40000

30000

20000

10000

Maximum Throughput (EBs)

Number of server machines
(a) Maximum system throughput

90

70 F

60

50 F

40 +

Machine usage

30 F

20 F

ther DB servers
10 ©

Financial service DB servers

0 10 20 30 40 50 60 70
Number of server machines

(b) Allocation of machine resources for STW

Figure 5: Scalability of TPC-W hosting infrastructure

only a few hours. On the other hand, the work required for the ac-
tual implementation of the required changes highly depends on the
complexity of each data service.

Data denormalization exploits the fact that an application’s queries
and transactions usually target few data columns. This, combined
with classical database denormalization techniques such as query
rewriting and column replication, allows us to cluster the data into
disjoint data services. Although this property was verified in all
applications that we examined, one cannot exclude the possible
existence of applications with sufficient data overlap to prevent
any service-oriented denormalization. This may be the case of
transaction-intensive applications, whose ACID properties would
impose very coarse-grained data clustering. It is a well-known fact
that database transactions in a distributed environment imply im-
portant performance loss, so one should carefully ponder whether
transactions are necessary or not.

The fact that denormalization is steered by prior knowledge of
the application’s query templates means that any update in the ap-
plication code may require to restructure the data to accommodate
new query templates. However, the fact that all data services result-
ing from denormalization have clear semantics makes us believe
that extra application features could be implemented without the
need to redefine data services and their semantics. One can also
imagine to fully automate denormalization such that any necessary
change in the data structure could be applied transparently to the
application, using a proxy layer to translate the original application
query templates into their data service-specific counterparts. We
leave such improvements for future work.

8. REFERENCES

[1] B. Abrahao, V. Almeida, J. Almeida, A. Zhang, D. Beyer,
and F. Safai. Self-adaptive SLA-driven capacity management
for internet services. In Proc. NOMS, Apr. 2006.

[2] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.
DBProxy: A dynamic data cache for Web applications. In
Proc. ICDE, Mar. 2003.

[3] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety,

R. Gil, J. Marguerite, K. Rajamani, and W. Zwaenepoel.
Specification and implementation of dynamic web site
benchmarks. In Proc. Intl. Workshop on Workload
Characterization, Nov. 2002.

[4] C. Bornhovd, M. Altinel, C. Mohan, H. Pirahesh, and
B. Reinwald. Adaptive database caching with DBCache.
Data Engineering, 27(2):11-18, June 2004.

[5] E. Cecchet. C-JDBC: a middleware framework for database
clustering. Data Engineering, 27(2):19-26, June 2004.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for structured
data. In Proc. OSDI, Nov. 2006.

[7] I. Cunha, J. Almeida, V. Almeida, and M. dos Santos.
Self-adaptive capacity management for multi-tier virtualized
environments. In Proc. Intl. Symposium on Integrated
Network Management, May 2007.

[8] DAS3: The Distributed ASCI Supercomputer 3.
http://www.cs.vu.nl/das3/.

[9] A. Davis, J. Parikh, and W. E. Weihl. Edge computing:
Extending enterprise applications to the edge of the internet.
In Proc. WWW, May 2004.

[10] G. DeCandia, D. Hastorum, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available
key-value store. In Proc. SOSP, Oct. 2007.

[11] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar.
Application specific data replication for edge services. In
Proc. WWW, May 2003.

[12] J. Gray. A conversation with Werner Vogels. ACM Queue,
4(4):14-22, May 2006.

[13] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for internet service
construction. In Proc. OSDI, 2000.

[14] T. Groothuyse, S. Sivasubramanian, and G. Pierre. GlobeTP:
Template-based database replication for scalable web
applications. In Proc. WWW, May 2007.

[15] Y. Huang and J. Chen. Fragment allocation in distributed
database design. Information Science and Engineering,
17(3):491-506, May 2001.

[16] Java TPC-W implementation distribution. http:
//www.ece.wisc.edu/~pharm/tpcw.shtml.

[17] L. Kazerouni and K. Karlapalem. Stepwise redesign of
distributed relational databases. Technical Report

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

HKUST-CS97-12, Hong Kong Univ. of Science and
Technology, Dept. of Computer Science, Sept. 1997.

B. Kemme and G. Alonso. Don’t be lazy, be consistent:
Postgres-R, a new way to implement database replication. In
Proc. VLDB, Sept. 2000.

S. Navathe, K. Karlapalem, and M.Ra. A mixed
fragmentation methodology for initial distributed database
design. Computer and Software Engineering, 3(4), 1995.
S. Navathe and M. Ra. Vertical partitioning for database
design: a graphical algorithm. SIGMOD Records,
18(2):440-450, 1989.

C. Olston, A. Manjhi, C. Garrod, A. Ailamaki, B. Maggs,
and T. Mowry. A scalability service for dynamic web
applications. In Proc. Conf. on Innovative Data Systems
Research, Jan. 2005.

M. T. Ozsu and P. Valduriez. Principles of distributed
database systems. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2nd edition, Feb. 1999.

C. Plattner and G. Alonso. Ganymed: Scalable replication

for transactional web applications. In Proc. Middleware, Oct.

2004.

M. Rabinovich, Z. Xiao, and A. Agarwal. Computing on the
edge: A platform for replicating internet applications. In
Proc. Intl. Workshop on Web Content Caching and
Distribution, Sept. 2003.

M. Ronstrom and L. Thalmann. MySQL cluster architecture
overview. MySQL Technical White Paper, Apr. 2004.
RUBBoS: Bulletin board system benchmark.
http://Jjmob.objectweb.org/rubbos.html.

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

G. L. Sanders and S. K. Shin. Denormalization effects on
performance of RDBMS. In Proc. HICSS, Jan. 2001.

S. K. Shin and G. L. Sanders. Denormalization strategies for
data retrieval from data warehouses. Decision Support
Systems, 42(1):267-282, Oct. 2006.

S. Sivasubramanian, G. Pierre, and M. van Steen. GlobeDB:
Autonomic data replication for web applications. In Proc.
WWW, May 2005.

S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso.
GlobeCBC: Content-blind result caching for dynamic web
applications. Technical Report IR-CS-022, Vrije
Universiteit, Amsterdam, The Netherlands, June 2006.

S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso.
Analysis of caching and replication strategies for web
applications. IEEE Internet Computing, 11(1):60-66,
January-February 2007.

W. D. Smith. TPC-W: Benchmarking an ecommerce
solution. White paper, Transaction Processing Performance
Council.

N. Tolia and M. Satyanarayanan. Consistency-preserving
caching of dynamic database content. In Proc. WWW, Nov.
2006.

TPC-W frequently asked questions, question 2.10: “Why
was the concept of atomic set of operations added and what
are its requirements?”, Aug. 1999.

B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Agile,
dynamic capacity provisioning for multi-tier internet
applications. In Proc. ICAC, June 2005.

