
Scalable Strong Consistency for Web Applications

Swaminathan Sivasubramanian Guillaume Pierre Maarten van Steen
Dept. of Computer Science, Vrije Universiteit

Amsterdam, The Netherlands
{swami,gpierre,steen}@cs.vu.nl

Abstract

Web application workloads are often characterized by a large
number of unique read requests and a significant fraction of
write requests. Hosting these applications drives the need for
the next generation CDN architecture that does more than
caching the results of Web applications but replicates both
the application code and its underlying data. We propose
the design of a system that guaranteesstrong consistencyfor
Web applications with highscalability. The proposed sys-
tem is based on partial replication, where data units are repli-
cated only to servers that access them often. This reduces the
consistency overhead as updates are sent to a reduced num-
ber of servers. The novelty of our system is that the proposed
partial replication is performed by the systemautomatically
by analyzing the system’s access patterns periodically. We
explore the design space of this system, find the key issues
that need to be addressed to build it and propose solutions to
solve them. We further show that the proposed algorithms
offer significant performance gains compared to existing so-
lutions for a wide range of Web access patterns.

1 Introduction
A growing number of e-commerce applications can be char-
acterized by a large number of unique read requests and a
significant fraction of write requests. Hosting these appli-
cations in a centralized server (or cluster of servers) may
result in poor response time for Web clients due to wide-
area network latency introduced for each access. To im-
prove their performance, many systems cache the pages gen-
erated by the applications. However, such solutions rely
on the assumptions that the temporal locality of requests is
high and the updates are infrequent. Applications that do
not exhibit these characteristics can only be distributed us-
ing replication, where the application code is executed at the
replica servers. This avoids the wide-area network latency
for each read/write access and ensures quicker response time
to clients.

Replicating a Web application requires replicating both
the application code (e.g., EJBs, CGI scripts, PHPs) and
the data that the code acts upon (databases or files). This
is relatively easy provided that the code does not modify the
data [11]. However, most applications do modify their un-
derlying data. In this case, it becomes necessary to manage
data consistency across all replicas. Efficient replication of
such applications on a worldwide scale is difficult because it
implies significant replica update traffic or high write access

latencies. This bottleneck can be avoided by adopting weak
consistency models, which, in turn, requires significant ex-
pertise from the application developers. In this paper, we
focus on scalable solutions to guarantee strong consistency
for Web applications.

We explore an approach based on partial data replication,
which we call on-demand replication. Data is segmented
into data units and each data unit is replicated only to servers
that access it frequently. So, the entire data set is not repli-
cated at all replica servers. This approach can reduce the
synchronization overhead as consistency updates for a data
unit are sent to a reduced number of servers.

We believe that on-demand application replication is use-
ful for general e-commerce applications, as it allows the sys-
tem to exploit the location-specific interests in request pat-
terns. For instance, a worldwide e-commerce application
does not need to replicate its customer database to all its
replicas. North American customer records can be stored
primarily in replica servers in North America and need not
be replicated to Asian servers. Though storage is not an is-
sue with sharp decline in storage costs, the synchronization
costs would then be reduced when a customer record is up-
dated.

Although we believe that data segmentation can help to
replicate Web applications, it may be difficult for applica-
tion developers or system administrators to come up with
efficient schemes. We therefore propose that data segmenta-
tion and replication to be performedautomaticallybased on
their access patterns.

Building a system for on-demand application replication
requires addressing many issues such as identifying the
granularity and constituents of the data segments, finding
the optimal placements for each data segment and the code,
managing partially replicated data, and choosing the optimal
consistency strategy for each data segment. The contribu-
tions of this paper are as follows: (i) We explore the design
space of such a system and identify some of the key issues
that one needs to address to realize such a system and sug-
gest solutions to solve them, and (ii) we also show that such
on-demand replication can provide significant performance
gains.

The rest of the paper is organized as follows: Section 2
presents our application model. Sections 3 and 4 respec-
tively discuss data clustering and replication techniques.
Section 5 evaluates the performance gains due to on-demand
replication. Finally, Section 6 discusses the related work and
Section 7 concludes the paper.

 Code

Data Driver

HTTP Request

HTTP Response (HTML page)

Data

 Web Client

Web Application

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

D1 D2 D3

Figure 1: Application Model

2 System Model

2.1 Application Model

An important issue when replicating Web data is to decide
to which extent the applications should be aware of repli-
cation. Replication can yield the best performance if it is
completely tuned to the specific application and its access
patterns. However, this requires significant effort and exper-
tise from an application developer, for which reason optimal
performance of the application is often not reached. Fur-
thermore, changes in access pattern may warrant changes in
replication strategies. This makes the process of develop-
ing an optimal replication strategy for the application next
to impossible.

In our system, we made the opposite choice by having
a completelyreplication-transparentapplication model. In
our model, the application developer need not worry about
replication issues but only stick to functional issues. The
system will automatically derive a replication strategy for a
given application, under possibly varying access patterns.

For the same reasons, we decided that our system should
provide sequential consistency. This consistency model en-
ables the application developer to develop applications as if
the underlying data were concurrently accessed from a cen-
tralized location, thereby ignoring distribution issues.

Our application model is given in Figure 1. As seen in
the figure, an application is made of code and data. The
code is written using standard technologies such as Active
Server Pages (ASPs), CGI scripts or EJBs deployed in an
application server. The code receives HTTP requests from
its Web clients and issues read/write accesses to the relevant
data (in a database or filesystem) to answer them.

Access to the data is realized by a data driver, which acts
as the interface between the code and data. It preserves dis-
tribution transparency of the data as it hides the fact that
data are partially replicated. The data driver has a simple
file-system-like interface (for accessing file-based data) or
JDBC-like interfaces (for databases) and is responsible for
finding the data required by the code, either locally or from
a remote server.

We assume that the data are split inton data units,D1,
D2,· · ·,Dn, where a data unit is the smallest granule of repli-
cation. Each unit is assumed to have a unique identifier,
which is used by the data driver to track it. Examples of data
units are files, database tables, or even records. The system
replicates each data unit according to its specific pattern.

Choosing the right granularity of data for replication has
important performance implications. If the granularity is too

Data Driver

 Code

� �� �
� �
� � � �

� �
� �
� �

� �
� �
� �
� �

Data Driver

 Code

Data Driver

 Code

� �� �
� �
� �

� � �� � �
	 	 		 	 	

� �� �

 Replica Server

Requests/
 Responses

 Replica Server

Updates

Origin Server

Data cluster

Figure 2: System Architecture

coarse, we may lose the benefits of partial replication. On
the other hand, if it is too fine, the overhead for handling
replicas will be high. In our system, we employ an approach
where the data units are initially defined at a very fine grain.
Data units having similar access patterns are automatically
grouped by the system into a single cluster. The system
subsequently handles replication at the cluster level, thereby
making the problem of tracking a cluster tractable without
losing the benefits of partial replication. Clustering is de-
scribed in more details in Section 3.

2.2 System Architecture

The architecture of our proposed system is presented in Fig-
ure 2. A given application is hosted overm replica servers
spread across the Internet. As seen in the figure, the appli-
cation data are partially replicated, so each server hosts only
a subset of all data clusters. We assume that Web clients
are redirected to their closest replica server using standard
technologies, such as DNS-based redirection.

According to an application’s access pattern, the system
must cluster data units and decide on the assignment of a
replication strategy for each cluster. To this end, each ap-
plication is assigned oneOrigin server, which is responsible
for making all application-wide decisions such as clustering
data units and placing clusters on servers. The origin server
also acts as the initial replica for all data clusters.

As noted earlier, we want to provide replication trans-
parency for which we believe sequential consistency is the
best model. This choice requires an efficient consistency
protocol in the presence of concurrent updates. We adopted
a master-slave consistency protocol: each data cluster has
a master server responsible for synchronizing simultaneous
updates emerging from different replica. The master for each
data cluster is selected by the origin server. Read requests for
a data cluster are forwarded to the closest server that contains
a replica (if not present at the replica server that received the
client request). Write requests for a data cluster are always
forwarded to the master. The master pushes the update to
its slaves each time the contents of the data cluster is modi-
fied. Issuing all write operations to a given cluster at a single
location effectively serializes updates, which generates se-
quential consistency. We chose the protocol primarily for
its simplicity and because is is sufficient for clarifying our
position.

3 Data Clustering
As discussed before, fine-grained data segmentation intro-
duces a large number of individual data units, posing a scal-
ability problem for replication algorithms. We propose to
cluster data units with similar usage patterns and replicate
data at the cluster level instead of the data unit level. Subse-
quent cluster membership can be efficiently handled through
bit arrays and Bloom filters [3].

Our system consists ofm replica serversR1, R2,...,Rm,
holding data unitsD1,D2,...,Dn. We want to group data
units with similar read and write access patterns. However,
for the sake of simplicity, we limit our discussion to only
read access patterns. The techniques presented here can be
easily extended to accommodate write access patterns.

Each data unit Di has an access pattern
Ai={ri,1,ri,2,...,ri,m}, where ri,j is the number of read
accesses made by the replica serverRj for a data unitDi.
We want to group two data unitsDi andDj into the same
cluster, ifAi andAj are similar.

A similar problem of clustering has been studied before
in the context of collaborative filtering or recommender sys-
tems [7]. Recommender systems observe the access patterns
of end-users to products, and try to cluster end-users who
have similar interests. This allows the system to issue per-
sonalized recommendations for products that can be of inter-
est to each particular user. This problem is similar to ours,
where the role of end users is played by replica servers and
the role of products is played by the data units.

A similarity metric frequently used in recommender sys-
tems is cosine-based similarity. It considers the access pat-
terns of data units asm-dimensional vectors. Similarity be-
tween two data unitsDi andDj is given by

Sim(i, j) = cos(Ai, Aj) =
−→
Ai.
−→
Aj

‖−→Ai‖‖
−→
Ai‖

.

Data unitsDi andDj are clustered ifSim(i, j) ≥ 1− x,
wherex is a threshold such that0 ≤ x ≤ 1.

In general, clustering a large number of data units is com-
putationally expensive, of orderO(m ∗ n). However, since
the access vectors of data units are sparse in nature, it can
effectively be reduced toO(m + n).

Another important step is to handle the run-time creation
of a new data unit. In our system, new data units are always
created at the origin server. They are not replicated imme-
diately: the origin server first collects the access pattern for
the new data unit and determines which cluster should hold
it. If no suitable cluster is found, the origin server creates a
new cluster containing the new data unit. A new data unit is
replicated as soon as it is inserted into a cluster.

4 Replication Policies
Replicating an application requires that we replicate its code
and data. For the sake of simplicity, in this paper we assume
that the code is fully replicated at all replica servers. In this
section, we discuss algorithms concerning the selection of
the “best” replication strategy for a data cluster.

A replication strategy describes at least three aspects:
replica placement, consistency mechanism, and, in our case,
master selection. Placement mechanisms dictate the number
and location replicas, while consistency mechanisms dic-

tate the protocol used to enforce data consistency among
replicas. Master selection mechanisms decide on the mas-
ter replica responsible for handling concurrent updates for a
data cluster. As we made the choice of a master-slave consis-
tency protocol, the selection of the “best” replication strat-
egy involves deciding only on replica placement and master
selection.

To select the “best” replication strategy for a data clus-
ter, the system needs to know what the definition of “best”
performance is. One can measure the performance of the
system with a number of metrics such as the average read la-
tency, the average write latency, the amount of update traffic,
etc. However, optimizing the system performance for one of
these metrics alone would often result in degrading the oth-
ers. For example, a system can be optimized for minimiz-
ing read latency by replicating the data to all replica servers.
However, this can lead to huge update traffic if the number
of updates is high.

It can be seen that there is a clear tradeoff between the
performance gain due to replication and the performance
loss due to its consistency enforcement. In our system, we
propose to represent the overall system performance into a
single abstract figure using acost function. An example of
a cost function that measures performance of a replication
strategys during a time periodt is:

cost(s, t) = α ∗ r(s, t) + β ∗ w(s, t) + γ ∗ b(s, t)
wherer is the average read latency,w is the average write
latency,b is the amount of bandwidth used for consistency
enforcement, andα, β andγ are weights associated to each
metric. Weights must be set by the system administrator
based on the system constraints and application require-
ments. A larger weight implies that its associated metric has
more influence in selecting the “best” strategy. Finding the
“best” system configuration now boils down to evaluating
the value of the cost function for every candidate strategy.
By definition, the best configuration is the one with the low-
est cost.

Ideally, the system should treat the master selection and
replica placement as a single problem and select the combi-
nation of master-slave and replica placement configuration
that yields the minimum cost. However, such a solution
would require an exhaustive evaluation of2m ∗ m config-
urations for each data cluster, ifm is the number of replica
servers. This makes this solution computationally infeasible.
In our system, we employ the use of heuristics to perform
replica placement and master selection. For each problem,
we propose a number of possible heuristics. This reduces the
problem of choosing replication strategy to evaluating which
combination of heuristics performs the best in any given sit-
uation.

4.1 Replica Placement Heuristics

In our system, the origin server periodically collects the ac-
cess patterns of each data cluster from all replica servers.
Subsequently, it places a replica of a data cluster in a replica
server, if it generates at leastx% of data access requests.
This creates a family of heuristicsPx.

Obviously, the value ofx affects the performance of the
system. A high value ofx will lead to creating no replica at

all besides the origin server, therefore to lose the advantages
of replication. On the other hand, a low value ofx will lead
to a fully replicated configuration, losing the advantages of
partial replication. Hence, it is important to choose the right
value ofx based on the access patterns of the data cluster.

Expecting the system administrator to determinex is not
reasonable, as the number of parameters that affect the per-
formance is high. Instead, administrators are just expected
to define their preferred performance tradeoffs by choosing
the weight parameters of the cost function. The system will
automatically adjust the replication configuration to the one
that gives the best cost.

4.2 Master Selection Heuristics

Careful master selection is essential to optimize the write
latency and the amount of bandwidth utilized to maintain
consistency among replicas. In our system, we consider two
heuristics for master selection mechanisms. Themost-writer
heuristic selects the master as the replica server that gener-
ates the highest number of update requests. This strategy
allows the highest fraction of write requests to be handled lo-
cally. However, if all servers issue similar numbers of write
requests, this strategy will give poor write latency because a
large fraction of write requests will be redirected to the mas-
ter, which is not necessarily topologically close to the other
writers.

This problem is avoided by theclosest-writer heuris-
tic, which selects the server that offers the least average
write latency as the master. Ifni is the number of write
requests by replica serverRi and lij is the latency be-
tween replica serveri andj, then the average write latency
for a data cluster whose master isk is given by: wk =
(
∑m

i=1 ni ∗ lik)/(
∑m

i=1 ni). Theclosest-writerheuristic se-
lects the server with lowest average write latency as the mas-
ter.

5 Performance Evaluation
In this section, we show that on-demand data replication can
provide considerable performance gains. Moreover, depend-
ing on the access patterns, different policies perform best.
This demonstrates that our system should dynamically adapt
its policies when the access patterns change.

Ideally, we would perform experiments based on real-
world traces of data accesses from a global dynamic Web
site. However, the lack of such publicly available traces re-
stricted us to simulating the system with synthetic traces.

Building a fair experiment that simulates an Internet-wide
CDN has two important challenges: (i) simulating a wide-
area network with realistic network delays between servers
placed worldwide; and (ii) simulating the diversity of inter-
est among clients in each particular piece of data.

To simulate a set of servers to host a Web application, we
selected100 hosts that visited our department Web site, such
that they are spread across 6 continents and 66 countires, and
can represent our replica servers. We estimated the latencies
between each pair of hosts using SCOLE [14]. SCOLE as-
sociates hosts with co-ordinates in anN -dimensional space
by measuring their latency to a fixed number of known land-
marks. The latency between two positioned hosts is calcu-

lated as the Euclidian distance of their co-ordinates in this
space. This method of latency estimation is shown to be
fairly accurate while requiring relatively few measurements.
Latencies between our servers range from 23 ms to 2700 ms.

Simulating the diversity of client interests for a particular
data cluster is harder to solve. This is an important factor as
the diversity of client interest influences the performance of
on-demand policies. For example, if a data item is of interest
to only a small subset of servers, then on-demand replication
can give huge performance gains in terms of read/write la-
tency and update traffic. On the other hand, if the data is of
equal interest to clients of all replica servers, then the perfor-
mance gains due to on-demand replication will not be high
as the data is required everywhere. However, it is important
for us to study the performance of on-demand replication in
the full spectrum of cases.

We modelled the diversity of client interest using statisti-
cal distributions. Since, to our knowledge, there is no earlier
study that has modelled the geographical influence of client
requests to a database, we based our simulations on a Zipf
distribution for generating diversity in client interest for a
particular data cluster. We take the exponenta in the Zipf
distribution as an input parameter for our experiments.1 To
study our system in diverse access patterns, we vary the pa-
rametera. A trace generated with a low value ofa implies
that each server is equally likely to access a data cluster i.e.,
the distribution of client interest is flat. In contrast, a high
value of a generates a trace where each data cluster is of
interest only to a small number of servers (those with the
highest rank) i.e., the distribution of client interest is more
skewed. In our simulations we varieda between 0 and 3.

We measure the system performance using the following
metrics: (i)Average Read latency (ARL): the average la-
tency incurred by read requests for a data cluster, (ii)Aver-
age Write latency (AWL): the average latency incurred by
write requests for a data cluster and (iii)Number of con-
sistency messages (NCM):the number of update messages
sent among replica servers to keep the data consistent (ex-
cluding the client-to-replica traffic). NCM serves as an indi-
cator of the amount of bandwidth utilized by the system just
for maintaining data consistency.

Each simulation consists of1, 000, 000 requests, half of
which are write requests. We study the performance of
the following policies: (i) centralized solution, (ii) fully
replicated solution with origin server as the master (Full),
(iii) P5 − closest, (iv) P10 − closest, (v) P15 − closest
and (vi) P5 − most. To be fair on the centralized and
fully replicated solutions, we chose the best possible replica
server as the origin server. That is, when assuming that all
servers have the same access pattern, the server with the min-
imum average latency to other servers is chosen as the origin
server.

Due to the lack of space, we present only some of our
simulation results. For a detailed performance evaluation,
please refer to [12].

Figure 3 presents the effect of varying the value ofa on the
system performance. As can be seen, on-demand replication
produces significant gain in terms of read/write latencies (by

1A Zipf distribution states that the frequency of occurrence of a particu-
lar value i is given byfi = C · r−a

i whereri is the rank ofi’s occurence.

R
ea

d
 l

a
te

n
cy

 500

 450

 400

 350

 300

 250

 200

 150

 100

 50

 0
 0 0.5 1 1.5 2 2.5 3

SkewedFlat

Centralized

P15−closest

P10−closest

P5−most
P5−closest

Full

a

(a) Effect ofa on the Average
Read Latency

W
ri

te
 l

a
te

n
cy

 500

 450

 400

 350

 300

 250

 200

 150

 100

 50
 0 0.5

 Flat

 1 1.5 2 2.5 3

Skewed

P10−closest

P5−most

P5−closest

P15−closest

FullCentralized

a

(b) Effect ofa on the Average
Write Latency

N
o
.
o
f

m
es

sa
g
es

 (
lo

g
 s

ca
le

)

 1e+08

 1e+07

 1e+06

 100000
 0 0.5 1 1.5 2 2.5 3

Flat Skewed

P10−most

P5−most

Full

P15−closest

P5−closest

Centralized

a

(c) Effect ofa on the Number
of Consistency Messages

Figure 3: Effect of distribution skew on system performance

0.750.5 1.0

W
r
it

e
 r

a
ti

o

1.0

0.8

0.6

0.4

0.2

0.0

a

3.02.752.50 0.25 2.252.01.751.51.25

P15-closest

P10-closest

P5-closest

Full

Centralized

Figure 4: Best Replication Policy for Different Access Pat-
terns
a factor of4) and reduced update traffic (by two orders of
magnitude) compared to fully replicated or centralized sys-
tems. The more the client diversity increases, the best our
system performs. However, even in the case of a flat distri-
bution of interests (low values ofa), on-demand replication
policies give low write latencies and reduced update traffic.

It must be noted that gaining two orders of magnitude in
network traffic is of immense significance to a worldwide
CDN, as the Internet is often affected by network conges-
tion. Reduced number of consistency messages also will
lead to improved write latency of the system and less cost,
as CDNs are usually charged by ISPs and data centers based
on the amount of traffic they generate.

We now address the question: which policy performs best
for a given access pattern? In the following experiment, we
vary botha and the ratio of write requests among the total
1,000,000 requests. For each such defined access pattern, we
simulated each replication policy and selected the best one as
the one with the lowest cost. We normalized the weights of
the cost function such that each parameter has roughly equal
significance:α=1/rmax; β=1/wmax; andγ=bmax, where
rmax, wmax andbmax are maximum values of average read
latency, write latency, and number of consistency messages
respectively. Figure 4 shows which policy performs best for
each request pattern.

As seen in the figure, depending on the access pattern,
different policies perform best. For example, an application
with no updates (write-ratio=0) performs best with full repli-
cation, as all requests will then be served locally. Similarly,
if there is a flat distribution of clients and only write requests
(a = 0 and write-ratio=1), the centralized solution performs
the best as it has a replica only at the origin server thereby
giving the best average write latency without any update traf-
fic overhead (note that the origin server was selected as the
server that gives the least average latency). For all other
values, on-demand replication performs best. Policies with
higher threshold perform best when the request distribution

is flat, as in such cases placing less replicas yields reduced
update traffic. On the other hand, when a small number of
servers generate most of the requests (be it reads, writes, or a
combination thereof) it is preferable to place more replicas,
and each close to where the requests come from.

This result also suggests that replication policies should
be selected on a per-data cluster basis according to their
access patterns. We propose that our system periodically
evaluates the cost of different policies for each data cluster.
The system can then dynamically adapt its policies on a per-
cluster basis to provide optimal performance.

6 Related Work

For the past decade, numerous solutions have been proposed
in the context of caching systems for delivering Web con-
tent [13]. Most of these systems assume that the temporal
locality of the client requests is high, as these systems were
initially built for delivering static Web documents. Systems
such as Akamai’s ESI and WebViews [9] rely on this as-
sumption and cache the results of the Web application. Un-
fortunately, this assumption is often not true for applications
characterized by a large number of unique reads or a signifi-
cant number of writes. Such applications can be distributed
only using replication (of both code and data), where the ap-
plication code is executed at the replica servers.

A number of systems have been developed to handle Web
application replication [1, 2, 5]. These systems replicate the
code at the replica servers, but either do not replicate the
application data or cache them at the replica servers. This
limits the system performance as all write requests need to
be forwarded to a single remote location.

In [6] the authors propose an application-specific edge
service architecture, where the application itself is supposed
to take care of its own replication. In such a system, access
to the shared data is abstracted by object interfaces and each
replica communicates to another using a persistent messag-
ing layer. This system aims to achieve scalability by using
weaker consistency models that suits the application. How-
ever, this requires the application developer to be aware of
an application’s consistency and distribution semantics so
that this knowledge can be used while developing these ob-
jects. This is in conflict with our primary design constraint
of keeping the process of application development simple.

Our work has strong ties to partitioning in distributed
databases [10], a distinction being that fragments are usu-

ally not created based on runtime analysis of access patterns.
Partitioning traditionally leads to problems when applica-
tions need different fragments of the same relation, such as
in a join. In our approach, we expect to circumvent this prob-
lem through proper data clustering by first choosing a fine
granularity (e.g., a single row in a relation) and subsequently
clustering rows into fragments based on actual access pat-
terns. However, further research is needed to substantiate
our claim of scalability for real Web applications.

Recently, database sesearchers have built systems such as
DB-Cache [4] and MTCache [8], which cache the results of
selected queries and keep them consistent with the underly-
ing database. Such approaches will offer performance gains
provided that the access patterns contain few unique read
and write requests. However, the success of these schemes
depends on the ability of the database administrator to iden-
tify the right set of queries to cache. This requires careful
manual analysis of the data access patterns to be done peri-
odically to identify the current ”hot” requests.

7 Conclusions and Future Work
This paper explores the design space of a scalable Web appli-
cation replication system that guarantees strong consistency.
We adopt a simple application model for the system, which
we expect will ease the process of application development.
The novelty of our approach is that it employs partial replica-
tion where the data is dynamically replicated only to servers
that access them. This allows the system to exploit location-
specific interests in request patterns.

We show that on-demand replication performs better than
centralized and fully replicated systems by reducing the av-
erage latency of read/write data access as well as the amount
of traffic to maintain replicas consistent. Moreover, the best
replication strategy depends on the data cluster’s access pat-
tern. Our system will automatically select the best replica-
tion strategy for a given situation through run-time evalua-
tion of a cost function.

We have implemented the proposed system as a PHP
driver for PostgreSQL database and are in the process of
measuring its performance.

The proposed cluster-based replication is suitable for
large scale databases where the access patterns of individual
data units do not change often. However, if they do, then it
is necessary to re-cluster each cluster periodically to ensure
that a cluster does not contain data units with different access
patterns. To avoid the problem of periodic re-clustering, we
plan to explore the design of fine-grained data replication
that performs data replication at fine-grained level.

References

[1] AKAMAI INC. Edge Computing Infrastructure.

[2] AWADALLAH , A., AND ROSENBLUM, M. The vMa-
trix: A network of virtual machine monitors for dy-
namic content distribution. InProc. of the Seventh
International Workshop on Web Content Caching and
Distribution (Aug. 2002).

[3] BLOOM, B. H. Space/time tradeoffs in hash coding
with allowable errors. Communications of the ACM
13, 7 (1970), 422–426.

[4] BORNHVD, C., ALTINEL , M., MOHAN, C., PIRA-
HESH, H., AND REINWALD , B. Adaptive database
caching with DBCache.Data Engineering 27, 2 (June
2004), 11–18.

[5] CAO, P., ZHANG, J., AND BEACH, K. Active cache:
Caching dynamic contents on the Web. InProc. of the
Middleware Conference(Sept. 1998), pp. 373–388.

[6] GAO, L., DAHLIN , M., NAYATE , A., ZHENG, J.,
AND IYENGAR, A. Application specific data replica-
tion for edge services. InProc. of the Twelfth Interna-
tional World-Wide Web Conference(2003), pp. 449–
460.

[7] HERLOCKER, J. L., KONSTAN, J. A., BORCHERS,
A., AND RIEDL , J. An algorithmic framework for per-
forming collaborative filtering. InProc. of the 22nd
ACM SIGIR conference on Research and development
in information retrieval(1999), pp. 230–237.

[8] KE LARSON, P., GOLDSTEIN, J., GUO, H., AND

ZHOU, J. MTCache: Mid-tier database caching for sql
server.Data Engineering 27, 2 (June 2004), 27–33.

[9] LABRINIDIS , A., AND ROUSSOPOULOS, N. Webview
materialization. InProceedings of the 2000 ACM SIG-
MOD international conference on Management of data
(2000), ACM Press, pp. 367–378.

[10] OZSU, T., AND VALDURIEZ , P. Principles of Dis-
tributed Database Systems, 2nd ed. Prentice Hall, Up-
per Saddle River, N.J., 1999.

[11] RABINOVICH , M., X IAO , Z., AND AGARWAL , A.
Computing on the edge: A platform for replicating in-
ternet applications. InProc. of the Eighth International
Workshop on Web Content Caching and Distribution
(Hawthorne, NY, USA, Sept. 2003).

[12] SIVASUBRAMANIAN , S., PIERRE, G., AND VAN

STEEN, M. A system for on-demand Web application
replication, Dec. 2003. http://www.globule.
org/ .

[13] SIVASUBRAMANIAN , S., SZYMANIAK , M., PIERRE,
G., AND VAN STEEN, M. Web replica hosting sys-
tems. Tech. Rep. IR-CS-001, Vrije Universiteit, Ams-
terdam, The Netherlands, May 2003.

[14] SZYMANIAK , M., PIERRE, G., AND VAN STEEN, M.
Scalable cooperative latency estimation. InProceed-
ings of the 10th International Conference on Parallel
and Distributed Systems (ICPADS)(Newport Beach,
CA, USA, July 2004).

