
Scalable Transactions for Web Applications
in the Cloud

Zhou Wei1,2?, Guillaume Pierre1 and Chi-Hung Chi2

1 Vrije Universiteit, Amsterdam, The Netherlands
zhouw@few.vu.nl , gpierre@cs.vu.nl
2 Tsinghua University, Beijing, China
chichihung@mail.tsinghua.edu.cn

Abstract. Cloud computing platforms provide scalability and high avail-
ability properties for web applications but they sacrifice data consis-
tency at the same time. However, many applications cannot afford any
data inconsistency. We present a scalable transaction manager for cloud
database services to execute ACID transactions of web applications, even
in the presence of server failures. We demonstrate the scalability of our
system using a prototype implementation, and show that it scales lin-
early to at least 40 nodes sustaining a maximum throughput of 7286
transactions per second.

1 Introduction

Cloud computing offers the vision of a virtually infinite pool of computing, stor-
age and networking resources where applications can be scalably deployed [1].
The scalability and high availability properties of Cloud platforms however come
at a cost. First, the scalable database services offered by the cloud such as Ama-
zon SimpleDB and Google BigTable allow data query only by primary key rather
than supporting secondary-key or join queries [2, 3]. Second, these services pro-
vide only eventual data consistency : any data update becomes visible after a
finite but undeterministic amount of time. As weak as this consistency property
may seem, it does allow to build a wide range of useful applications, as demon-
strated by the commercial success of Cloud computing platforms. However, many
other applications such as payment services and online auction services cannot
afford any data inconsistency. While primary-key-only data access is a relatively
minor inconvenience that can often be accommodated by good data structures, it
is essential to provide transactional data consistency to support the applications
that need it.

A transaction is a set of queries to be executed atomically on a single con-
sistent view of a database. The main challenge to support transactional guar-
antees in a cloud computing environment is to provide the ACID properties of
? This work is partially supported by the 863 project #2007AA01- Z122 &

project #2008AA01Z12, the National Natural Science Foundation of China Project
#90604028, and 973 project #2004CB719406.

Atomicity, Consistency, Isolation and Durability [4] without compromising the
scalability properties of the cloud. However, the underlying data storage ser-
vices provide only eventual consistency. We address this problem by creating a
secondary copy of the application data in the transaction managers that han-
dle consistency. Obviously, any centralized transaction manager would face two
scalability problems: 1) A single transaction manager must execute all incom-
ing transactions and would eventually become the performance bottleneck; 2) A
single transaction manager must maintain a copy of all data accessed by transac-
tions and would eventually run out of storage space. To support transactions in
a scalable fashion, we propose to split the transaction manager into any number
of Local Transaction Managers (LTMs) and to partition the application data
and the load of transaction processing across LTMs.

Our system exploits two properties typical of Web applications to allow ef-
ficient and scalable operations. First, we observe that in Web applications, all
transactions are short-lived because each transaction is encapsulated in the pro-
cessing of a particular request from a user. This rules out long-lived transactions
that make scalable transactional systems so difficult to design, even in medium-
scale environments [5]. Second, Web applications tend to issue transactions that
span a relatively small number of well-identified data items. This means that the
two-phase commit protocol for any given transaction can be confined to a rela-
tively small number of servers holding the accessed data items. It also implies a
low (although not negligible) number of conflicts between multiple transactions
concurrently trying to read/write the same data items.

A transactional system must maintain the ACID properties even in the case
of server failures. For this, we replicate data items and transaction states to
multiple LTMs, and periodically checkpoint consistent data snapshots to the
cloud storage service. Consistency correctness relies on the eventual consistency
and high availability properties of Cloud computing storage services: we need
not worry about data loss or unavailability after a data update has been issued
to the storage service. We assume a fail-stop failure model of the LTMs and do
not address Byzantine failures.

It should be noted that the CAP dilemma proves that it is impossible to
provide both strong Consistency and high Availability in the presence of net-
work Partitions [6]. Typical cloud services explicitly choose high availability over
strong consistency. In this paper, we make the opposite choice and prefer pro-
viding transactional consistency for the applications that require it, possibly at
the cost of unavailability during network failures.

We demonstrate the scalability of our transactional database service using a
prototype implementation. Following the data model of Bigtable, transactions
are allowed to access any number of data items by primary key at the granular-
ity of the data row. The list of primary-keys accessed by the transaction must
be given before executing the transaction. This means for example that range
queries are not supported. Our system supports both read-write and read-only
transactions. We evaluate the performance of our prototype under a workload
derived from the TPC-W e-commerce benchmark [7], and show that it scales

linearly to 40 LTMs sustaining a maximum throughput of 7286 transactions per
second. This means that, according to the principles of Cloud computing, any
increase in workload can be accommodated by provisioning more servers. Our
system also tolerates server failures, which only cause a few aborted transac-
tions (authorized by the ACID properties) and a temporary drop of throughput
during data reorganization.

This paper is structured as follows. Section 2 presents related work. Then,
Section 3 presents the design of partitioned transaction manager, and shows
how to guarantee ACID properties even in the case of server failures. Section 4
presents performance evaluations and Section 5 concludes.

2 Related Work

Current prominent cloud database services such as Amazon SimpleDB and Google
Bigtable only support eventual consistency properties [2, 3]. To obtain a full
database service on the cloud, one can easily deploy classical relational databases
such as MySQL and Oracle, and thus get support for transactional consistency.
However, these database systems rely on traditional replication techniques and
therefore do not bring extra scalability improvement compared to a non-cloud
deployment [8].

An alternative approach is to run any number of database engines in the
cloud, and use the cloud storage service as shared storage medium [9]. Each
engine has access to the full data set and therefore can support any form of SQL
queries. On the other hand, this approach cannot provide full ACID properties.
In particular, the authors claim that the Isolation property cannot be provided,
and that only reduced levels of consistency can be offered.

The most similar system to ours is the Scalaris transactional DHT [10, 11].
Like us, it splits data across any number of DHT nodes, and supports transac-
tional access to any set of data items addressed by primary key. However, each
query requires one or more requests to be routed through the DHT, adding la-
tency and overhead. Cloud computing environment can also be expected to be
much more reliable than typical peer-to-peer systems, which allows us to use
more lightweight mechanisms for fault tolerance.

3 System Design

Figure 1 shows the organization of our transactional system. Clients issue HTTP
requests to a Web application, which in turn issues transactions to a Transaction
Processing System (TPS). The TPS is composed of any number of LTMs, each
of which is responsible for a subset of all data items. The Web application can
submit a transaction to any LTM that is responsible for one of the accessed data
items. This LTM then acts as the coordinator of the transaction across all LTMs
in charge of the data items accessed by the transaction. The LTMs operate on
an in-memory copy of the data items loaded from the cloud storage service.

Fig. 1. System model

Data updates resulting from transactions are kept in memory of the LTMs and
periodically checkpointed back to the cloud storage service.

We implement transactions using the two-phase commit protocol. In the first
phase, the coordinator requests all involved LTMs and asks them to check that
the operation can indeed been executed correctly. If all LTMs vote favorably, then
the second phase actually commits the transaction. Otherwise, the transaction
is aborted.

We assign data items to LTMs using consistent hashing [12]. To achieve a
balanced assignment, we first cluster data items into virtual nodes, and then
assign virtual nodes to LTMs. As shown in Figure 1, multiple virtual nodes
can be assigned to the same LTM. To tolerate LTM failures, virtual nodes and
transaction states are replicated to one or more LTMs. After an LTM server
failure, the latest updates can then be recovered and affected transactions can
continue execution while satisfying ACID properties.

We now detail the design of the TPS to guarantee the Atomicity, Consistency,
Isolation and Durability properties of transactions. Each of the properties is
discussed individually.

3.1 Atomicity

The Atomicity property requires that either all operations of a transaction com-
plete successfully, or none of them do. To ensure Atomicity, for each transaction
issued, our system performs two-phase commit (2PC) across all the LTMs re-
sponsible for the data items accessed. If an agreement of “COMMIT” is reached,
the transaction coordinator can return the result to the web application without
waiting for the completion of the second phase [13].

To ensure Atomicity in the presence of server failures, all transaction states
and data items should be replicated to one or more LTMs. When an LTM fails,
the transactions it was coordinating can be in two states. If a transaction has
reached an agreement to “COMMIT,” then it must eventually be committed;

otherwise, the transaction can be aborted. Therefore, we replicate transaction
states in two occasions: 1) When an LTM receives a new transaction, it must
replicate the transaction state to other LTMs before confirming to the applica-
tion that the transaction has been successfully submitted; 2) After all participant
LTMs reach an agreement to “COMMIT” at the coordinator, the coordinator
updates the transaction state at its backups. This creates in essence in-memory
“redo logs” at the backup LTMs. The coordinator must finish this step before
carrying out the second phase of the commit protocol. If the coordinator fails
after this step, the backup LTM can then complete the second phase of the com-
mit protocol. Otherwise, it can simply abort the transaction without violating
the Atomicity property.

An LTM server failure also results in the inaccessibility of the data items
it was responsible for. It is therefore necessary to re-replicate these data items
to maintain N replicas. Once an LTM failure is detected, the failure detector
issues a report to all LTMs so that they can carry out the recovery process and
create a new consistent membership of the system. All incoming transactions
that accessed the failed LTM are aborted during the recovery process. If a second
LTM server failure happens during the recovery process of a previous LTM server
failure, the system initiates the recovery of the second failure after the current
recovery process has completed. The transactions that cannot recover from the
first failure because they also accessed the second failed LTM are left untouched
until the second recovery process.

As each transaction and data item has N + 1 replicas in total, the TPS can
thus guarantee the Atomicity property under the simultaneous failure of N LTM
servers.

3.2 Consistency

The Consistency property requires that a transaction, which executes on a
database that is internally consistent, will leave the database in an internally
consistent state. Consistency is typically expressed as a set of declarative in-
tegrity constraints. We assume that the consistency rule is applied within the
logic of transactions. Therefore, the Consistency property is satisfied as long as
all transactions are executed correctly.

3.3 Isolation

The Isolation property requires that the behavior of a transaction is not im-
pacted by the presence of other transactions that may be accessing the same
data items concurrently. In the TPS, we decompose a transaction into a number
of sub-transactions. Thus the Isolation property requires that if two transactions
conflict on more than one data item, all of their conflicting sub-transactions must
be executed sequentially, even though the sub-transactions are executed in mul-
tiple LTMs.

We apply timestamp ordering for globally ordering conflicting transactions
across all LTMs. Each transaction has a globally unique timestamp, which is

monotonically increasing with the time the transaction was submitted. All LTMs
then order transactions as follows: a sub-transaction can execute only after all
conflicting sub-transactions with a lower timestamp have committed. It may
happen that a transaction is delayed (e.g., because of network delays) and that
a conflicting sub-transaction with a younger timestamp has already committed.
In this case, the older transaction should abort, obtain a new timestamp and
restart the execution of all of its sub-transactions.

As each sub-transaction accesses only one data item by primary key, the im-
plementation is straightforward. Each LTM maintains a list of sub-transactions
for each data item it handles. The list is ordered by timestamp so LTMs can
execute the sub-transactions sequentially in the timestamp order. The excep-
tion discussed before happens when an LTM inserts a sub-transaction to the
list but finds its timestamp smaller than the one currently being executed. It
then reports the exception to the coordinator LTM of this transaction so that
the whole transaction can be restarted. We extended the 2PC with an optional
“RESTART” phase, which is triggered if any of the sub-transactions reports an
ordering exception. After a transaction reached an agreement and enters the
second phase of 2PC, it cannot be restarted any more.

We are well aware that assigning timestamps to transactions using a single
global timestamp manager can create a potential bottleneck in the system. We
used this implementation for simplicity, although distributed timestamp man-
agers exist [14].

3.4 Durability

The Durability property requires that the effects of committed transactions
would not be undone and would survive server failures. In our case, it means
that all the data updates of committed transactions must be successfully written
back to the backend cloud storage service.

The main issue here is to support LTM failures without losing data. For per-
formance reasons, the commit of a transaction does not directly update data in
the cloud storage service but only updates the in-memory copy of data items
in the LTMs. Instead, each LTM issues periodic updates to the cloud storage
service. During the time between a transaction commit and the next checkpoint,
durability is ensured by the replication of data items across several LTMs. Af-
ter checkpoint, we can rely on the high availability and eventual consistency
properties of the cloud storage service for durability.

When an LTM server fails, all the data items stored in its memory that
were not checkpointed yet are lost. However, as discussed in Section 3.1, all
data items of the failed LTM can be recovered from the backup LTMs. The
difficulty here is that the backups do not know which data items have already
been checkpointed. One solution would be to checkpoint all recovered data items.
However, this can cause a lot of unnecessary writes. One optimization is to record
the latest checkpointed transaction timestamp of each data item and replicate
these timestamps to the backup LTMs. We further cluster transactions into

groups, then replicate timestamps only after a whole group of transactions has
completed.

Another issue related to checkpointing is to avoid degrading the system
performance at the time of a checkpoint. The checkpoint process must iterate
through the latest updates of committed transactions and select the data items
to be checkpointed. A naive implementation that would lock the whole buffer
during checkpointing would also block the concurrent execution of transactions.
We address this problem by maintaining a buffer in memory with the list of data
items to be checkpointed. Transactions write to this buffer by sending updates to
an unbounded non-blocking concurrent queue [15]. This data structure has the
property of allowing multiple threads to write concurrently to the queue without
blocking each other. Moreover, it orders elements in FIFO order, so old updates
will not override younger ones.

3.5 ReadOnly Transactions

Our system supports read-write and read-only transactions indifferently. The
only difference is that in read-only transactions no data item is updated during
the second phase of 2PC. Read-only transactions have the same strong data
consistency property, but also the same constraint: accessing well identified data
items by primary key only. However, our system provides an additional feature
for read-only transactions to support complex read queries such as range queries
executed on a consistent snapshot of database.

We exploit the fact that many read queries can produce useful results by
accessing an older but consistent data snapshot. For example, in e-commerce
Web applications, a promotion service may identify the best seller items by
aggregating recent orders information. However, it is not necessary to compute
the result based on the absolute most recent orders. We therefore introduce the
concept of Weakly-Consistent Read-only Transaction (WCRT), which is defined
as follows: 1) A WCRT allows any type of read operations, including range
queries; 2) WCRTs do not execute at the LTMs but access the latest checkpoint
in the cloud storage service directly. A WCRT always executes on an internally
consistent but possibly slightly outdated snapshot of the database. WCRTs are
supported only if the underlying data storage service supports multi-versioning,
as for example Bigtable [3]. To implement WCRTs, we introduce a snapshot
mechanism in the checkpoint process, which marks each data update with a
specific snapshot ID that is monotonically increasing. This ID is used as the
version number of the new created version when it is written to the cloud storage
service. A WCRT can thus access a specific snapshot by only reading the latest
version of any data item of which the timestamp is not larger than the snapshot
ID.

We define that the updates of every M transactions with subsequent times-
tamps constitute a new snapshot. Assuming that the transaction timestamp is
implemented as a simple counter, the first snapshot reflects all the updates of
committed transactions [0, M). The next snapshot reflects updates from trans-
actions [0, 2M), and so on. A snapshot is “ready” after all the updates of trans-

actions it reflects have been written back to cloud storage service and have been
made visible to the Web application. The TPS publishes the latest snapshot that
is “ready,” so the web application can access the consistent view of data from
cloud storage service.

The difficulty in implementing the snapshot mechanism is that each LTM
performs checkpoints independently and that any transaction may update data
items in multiple LTMs. We introduce a Master node which collects reports from
each LTMs about its latest locally “ready” snapshot. So the Master node can
determine the latest globally “ready” snapshot. This Master node also carries
out the task of publishing the latest snapshot ID to Web applications. If the
underlying cloud data storage service satisfies “Read-Your-Writes” consistency,
writing back successfully will be a sufficient condition to consider the snapshot
as “ready.” Otherwise, the LTMs must check if the issued updates is readable.

4 Evaluation

We demonstrate the scalability of our transactional database system by present-
ing the performance evaluation of a prototype implementation under the work-
load of TPC-W [7]. TPC-W is an industry standard e-commerce benchmark
that models an online bookstore similar to Amazon.com. This paper focuses on
the scalability of the system with increasing number of LTMs rather than on
its absolute performance for a given number of LTMs. Our evaluation assumes
that the application load remains roughly constant and studies the scalability in
terms of the maximum sustainable throughput under a response time constraint.

4.1 Experiment Setup

All experiments are performed on the DAS-3 at the Vrije Universiteit, an 85-node
Linux-based server cluster [16]. Each machine in the cluster has a dual-CPU /
dual-core 2.4 GHz AMD Opteron DP 280, 4 GB of memory and a 250 GB IDE
hard drive. Nodes are connected to each other with a Myri-10G LAN such that
the network latency between the servers is negligible. We use Tomcat v5.5.20 as
application server and HBase v0.2.1, an open-source clone of BigTable [17] as
backend cloud storage service. The TPC-W application and load generator are
deployed in separate application servers.

We generate an evaluation workload composed of transactions issued by the
TPC-W Web application. The workload is generated by a configurable number
of Emulated Browsers (EBs), each of which issues requests from a simulated user.
We observe that most of the read queries and read-only transactions of TPC-W
can tolerate a slightly old version of data, so they can directly access a consistent
snapshot from the storage service using WCRTs. The workload that an Emulated
Browser issues to the TPS mainly consists of read-write transactions that require
strong data consistency. Figure 2 shows the workflow of transactions issued by
an Emulated Browser, which simulates a typical shopping process of customer.

Fig. 2. Workflow of transactions issued by each Emulated Browser (EB) of TPC-W

Each EB waits for 500 milliseconds between receiving a response and issuing the
next transaction.

We adapted the original relational data model defined by TPC-W to the
Bigtable data model, so that the application data can be stored into HBase.
Using similar data denormalization techniques as in [18], we designed a Bigtable
data model for TPC-W that contains only the columns accessed by the transac-
tions in Figure 2. The relational data model of TPC-W comprises six tables that
are accessed by these transactions. To adapt this data model to Bigtable, we first
combine five of them (“Orders, Order Line, Shopping Cart, Shopping Cart Entry,
CC XACTS”) into one bigtable named “Shopping.” Each of the original tables
is stored as a column family. The new bigtable “Shopping” has the same primary
key as table “Shopping Cart.” For table “Order Line,” multiple rows are related
to one row in table “Order,” they are combined into one row and stored in the
new bigtable by defining different column names for the values of same data col-
umn but different rows. Second, for the remaining table “Item,” only the column
“i stock” is accessed. We thus can have a bigtable named “Item Stock” which
only contains this column and has the same primary key. Finally, for the last
transaction in Figure 2 which retrieves the latest order information for a specific
customer, we create an extra index bigtable “Latest Order” which uses customer
IDs as its primary key and contains one column storing the latest order ID of
the customer.

Before each experiment, we populate 144,000 customer records in the “Lat-
est Order” bigtable and 10,000 item records in the “Item Stock” bigtable. We
then populate the “Shopping” bigtable according to the benchmark requirements.

In our experiments, we observed a load balancing problem in HBase because
TPC-W assigns new shopping cart IDs sequentially. Each HBase node is respon-
sible for a set of contiguous ranges of ID values, so at any moment of time, most
newly created shopping carts would be handled by the same HBase node. To ad-
dress this problem, we horizontally partitioned the bigtables into 50 sub-bigtables
and allocated data items in round-robin fashion.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30 35 40

M
ax

im
um

 T
hr

ou
gh

pu
t (

TP
S

)

Number of LTMs

(a) Maximum Sustainable Throughput

 1000

 10000

 100000

 1e+06

 1e+07

 0 2 4 6 8 10 12 14

N
um

be
r o

f T
ra

ns
ac

tio
ns

Number Of Accessed LTMs

(b) Number of LTMs accessed by the
transactions of TPC-W

Fig. 3. Throughput Scalability of the Transaction Processing System

4.2 Scalability Evaluation

We study the scalability of the Transaction Processing System by measuring the
system performance in terms of throughput. We first define a response time con-
straint that imposes that the 99% of transactions must return within 100 ms. For
a given number of LTMs we then measure the maximum sustainable throughput
of the system before the constraint gets violated.

We configure the system so that each transaction and data item has one
backup in total, and set the checkpoint interval to 1 second. We start with one
LTM and 5 HBase servers, then add more LTM and HBase servers. In all cases,
we deliberately over-allocated the number of HBase servers and client machines
to make sure that the Transaction Processing System remains the performance
bottleneck.

Figure 3(a) shows that our system scales nearly linearly. When using 40 LTM
servers it reaches a maximum throughput of 7286 transactions per second gen-
erated by 3825 emulated browsers. In this last configuration, we use 40 LTM
servers, 36 HBase servers, 3 clients to generate load, 1 server as global timestamp
manager, and 1 Master server for managing snapshots for WCRTs and coordi-
nating the recovery process. This configuration uses the entire DAS-3 cluster so
we could not extend the experiment further. The maximum throughput of the
system at that point is approximately 10 times that of a single LTM server.

Figure 3(b) shows the number of LTMs that participate in the transactions3,
when there are 40 LTMs servers in the system. Transactions access up to 12
LTMs, which corresponds to a shopping cart containing the maximum number
of 10 items. We however observe that the vast majority of transactions access
only one LTM. In other words, most of the transactions of TPC-W execute
within one LTM and its backups only. We expect this behavior to be typical of
Web applications.

3 The LTMs that act only as backup of transactions or data items are not counted in.

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

Th
ro

ug
hp

ut
 (T

P
S

)

Time (Seconds)

(a) Committed transactions

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

Th
ro

ug
hp

ut
 (T

P
S

)

Time (Seconds)

(b) Aborted transactions

Fig. 4. Throughput of system in the presence of LTM server failures

4.3 Fault Tolerance

We now study the system performance in the presence of LTM server failures.
We configure the system so that each transaction and data item has one backup
and set the checkpoint interval to 1 second. We start with 5 LTMs and generate
the workload using 500 EBs so that the system would not overload even after
two LTM servers failures.

We first warm up the system by adding 25 EBs every 10 seconds. The full
load is reached after 200 seconds. After running the system normally for a while,
one LTM server is shutdown to simulate a failure. Figure 4(a) shows the effect
of two LTM server failures at times 600 and 900 seconds. When an LTM server
fails, the system recovers within a few seconds and the transaction throughput
returns to the previous level. At the same time, as shown in Figure 4(b), a few
transactions are aborted because the incoming transactions that accessed the
failed LTM must be rejected during the recovery process. After two LTM server
failures, the remaining 3 LTM servers can still sustain a throughput of about
1000 transactions per second.

5 Conclusion

Many Web applications need strong data consistency for their correct executions.
However, although the high scalability and availability properties of the cloud
make it a good platform to host Web content, scalable cloud database services
only provide eventual consistency properties. This paper shows how one can
support ACID transactions without compromising the scalability property of
the cloud for web applications, even in the presence of server failures.

This work relies on few simple ideas. First, we load data from the cloud
storage system into the transactional layer. Second, we split the data across any
number of LTMs, and replicate them only for fault tolerance. Web applications
typically access only a few partitions in any of their transactions, which gives
our system linear scalability. Our system supports full ACID properties even in

the presence of server failures, which only cause a temporary drop in throughput
and a few aborted transactions.

Data partitioning also implies that transactions can only access data by pri-
mary key. Read-only transactions that require more complex data access can
still be executed, but on a possibly outdated snapshot of the database. Lifting
this limitation is on our immediate research agenda.

References

1. Hayes, B.: Cloud computing. Communications of the ACM 51(7) (July 2008) 9–11
2. Amazon.com: Amazon SimpleDB. http://aws.amazon.com/simpledb.
3. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., Gruber, R.E.: Bigtable : a distributed storage system for
structured data. In: Proc. OSDI. (2006) 205–218

4. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann (1993)

5. Transaction Processing Performance Council: TPC benchmark C standard speci-
fication, revision 5 (December 2006) http://www.tpc.org/tpcc/.

6. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2) (2002) 51–59

7. Smith, W.D.: TPC-W: Benchmarking an ecommerce solution. White paper, Trans-
action Processing Performance Council

8. Atwood, M.: A MySQL storage engine for AWS S3. In: MySQL Conference and
Expo. (2007) http://fallenpegasus.com/code/mysql-awss3/.

9. Brantner, M., Florescu, D., Graf, D., Kossmann, D., Kraska, T.: Building a
database on S3. In: Proc. ACM SIGMOD. (2008) 251–264

10. Moser, M., Haridi, S.: Atomic Commitment in Transactional DHTs. In: Proc.
CoreGRID Symposium. (2007)

11. Plantikow, S., Reinefeld, A., Schintke, F.: Transactions for distributed wikis on
structured overlays. In: Proc. Intl. Workshop on Distributed Systems: Operations
and Management. (2007) 256–267

12. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: distributed caching protocols for relieving hot
spots on the world wide web. In: Proc. ACM Symposium on Theory of Computing.
(1997) 654–663

13. Hvasshovd, S.O., Torbjornsen, O., Bratsberg, S.E., Holager, P.: The ClustRa Tele-
com Database: High Availability, High Throughput, and Real-Time Response. In:
Proc. VLDB. (1995) 469–477

14. Raz, Y.: The principle of commitment ordering, or guaranteeing serializability in a
heterogeneous environment of multiple autonomous resource mangers using atomic
commitment. In: Proc. VLDB. (1992) 292–312

15. Michael, M., Scott, M.: Simple, fast, and practical non-blocking and blocking con-
current queue algorithms. In: Proc. ACM symposium on Principles of distributed
computing. (1996) 267–275

16. DAS3: The Distributed ASCI Supercomputer 3. http://www.cs.vu.nl/das3/.
17. HBase: An open-source, distributed, column-oriented store modeled after the

Google Bigtable paper. http://hadoop.apache.org/hbase/.
18. Wei, Z., Dejun, J., Pierre, G., Chi, C.H., van Steen, M.: Service-oriented data

denormalization for scalable web applications. In: Proc. Intl. World Wide Web
Conf. (2008)

