Towards Autonomic Hosting of
Multi-tier Internet Applications

Swaminathan Sivasubramanian, Guillaume Pierre, MaadarSteen
Dept. of Computer Science, Vrije Universiteit, Amsterdam
Email: {swami,gpierre,stegi@cs.vu.nl

Technical report IR-CS-021, Vrije Universiteit, May 2006.

Abstract. Large scale e-commerce enterprises like Yahoo and Amazmgarsplex
software systems made of hundreds of Internet servicesrte sontent to millions of
clients. These services are multi-tiered Web applicatibias perform certain business
logic and are exposed through well-defined client inteaggually accessible over the
network. A constant challenge faced by these organizat®ottshost these services in a
scalable fashion to meet performance goals. A vast amoumtsefirch has been done by
the community on caching and replication solutions that@miimprove performance of a
service by addressing the bottlenecks at its differens fferg., database and presentation
tiers). However, different techniques are suited for défe kinds of services and it is not
easy for an administrator to choose the best set of techsiffwea given service. Our
position in this paper is as follows: We believe that the sieci process of choosing the
right techniques for a service requires analysis of semmkworkload at each tier and that
to a large extent this process can be automated. To strangtheosition, we propose the
design of an autonomic hosting system that uses a comhinattimulti gueue models and
online simulations to achieve our goals. Even though oukuwgovery much in progress, we
believe the techniques used in our system can provide a gaddrstaming the complex
problem of scalable hosting of services.

1 Introduction

E-commerce enterprises such as yahoo.com, amazon.corbayndam often use complex
software systems to serve content to millions of Web clieRts instance, the Web page
generated in response to each client request to a Web sitertiazon.com is not generated
by a single application but by a large number of smaller Wepliegtions operating in
parallel. These enterprises build their software systamefimany such Web applications,
usually calledservices Services are applications that perform certain businesis hnd
are exposed through well defined client interfaces usuatessible over the network.
Examples of service include order processing services lamglsng cart services.

The application model of one typical service is shown in Fggll. As shown in the
figure, a service consists of business logic which makesicegueries to a data store and
request(s) to other services to generate a response téeitgscl An example of a service
calling another service can be the product catalog serfiae e-commerce shopping store
calling the top-sellers service to display the top sellarthe “Science Fiction” category,
while displaying details for the book “Hitchhikers Guidettee Galaxy.” These software
systems can be viewed as an acyclic forest of services.

Typically, the enterprise systems of e-commerce compdsieh as Google, Amazon
and Yahoo) are hosted across thousands of inexpensive Ritiple data center(s) possi-
bly located across a wide-area network [3]. Hosting suchgersoftware systems so that
performance and availability goals are met is a challengiogplem. Instead of managing
the performance at a global level, enterprises usuallgagsrformance and availability
goals, commonly known as service level agreement (SLA)attheservice individually.
Subsequently, the problem of SLA management of the whotevaoé system breaks down
to managing the SLAs of individual services. In this papeg, facus on the problem of
maintaining the SLA of an individual service.

To achieve the requested performance, each service is ddf@onyed across multiple
machines. Deploying a service usually involves replicaiis code to a number of ap-
plication servers and its data to an array of data store mashiFurthermore, different
caching layers such as for service response caching antledataaching can be deployed
to improve performance. Although these techniques have mtduced independently
from (and often as alternatives to) each other, we belieatlley complement each other
and may need to co-exist to obtain the best performance.&niich research has been
carried out on each of these solutions [21, 22, 13, 12, 26213l these works aim to
alleviate bottlenecks only in one tier of a given servicewidwer, different techniques are
suited for different kinds of services. For example, if regiis to the service exhibits high
request locality, service caching might be beneficial. & tinderlying data retrieval is a
bottleneck, then database caching or replication mightdaéulidepending on the tempo-
ral locality of database queries. Sometimes, a combinatidghese techniques might be
needed to achieve a certain SLA.

We propose a generalized service-hosting architectutedmabines various such solu-
tions in different tiers to improve the performance of a gigervice, as shown in Figure 2.
As seen in the figure, a wide variety of caching and replicasiolutions exist to enable
scalable hosting of a given service. However, for a giveriser it is not trivial for an
administrator to determine the best set of techniques andumber of nodes to dimension
for each of them. The goal of our work is to build a system thidaomically dimensioris
the hosting platform for a service and determines the righfiguration of techniques to
apply so that it can meet its performance goals withimal usage of serverg-or instance,
for a given service our system automatically determineskvbet of techniques will help
in improving its performance. This problem is challengingfour reasons. First, multiple
techniques per service need to dimensioned. Second, & effdimensioning on perfor-
mance depends on the characteristics of the service it. Hemtexample, service caching

1Dimensioning problem is also known to as provisioning peail

Requests

— Businesy
Logic

Responses \

External
servicerequests

Data|

Figure 1: Application Model of an Internet Service

is beneficial only if the requests to a service exhibit goadgeral locality. Third, dimen-
sioning a tier does not always result in a linear performayade. For example, caches tend
to follow the law of diminishing returns (i.e., the benefitin€reasing the number of cache
servers decreases after a certain threshold). Fourthctiess patterns (e.g., request rate,
update rates, and temporal locality of requests) can chemg@uously.

Our position in this paper is follows: For scalable hostifigaservice, there exists a
wide range of caching and replication solutions that cangdgdied at different tiers of a
service. We believe that the decision regarding what araghéset of techniques to apply
for a given service and how to dimension each of them can lmaated. To strengthen
our position, we propose a generalized service hostingtanthre that covers the wide
range of proposed solutions that aim to improve the perfoneaf a Web application.
Even though the individual elements of the architectureldeen studied independently
extensively, very few works have studied them in entiretprébver, we present our pro-
totype design of an autonomic hosting system that adaptsetevorkload of a service it
hosts. It identifies the right set of caching and replicatechniques (and the best num-
ber of servers to be allocated for these tiers) among thoserided in our generalized
architecture for each service.

Our system employs a combination of queueing models antherchche simulations
to estimate the performance gain of adding/removing a resan a tier. The proposed sys-
tem, unlike solutions solely based on queueing modelsaslie-awarg which means that
it takes into account temporal access patterns of requestentrast, traditional queueing
systems assume that adding a server at any given tier alvegysates the queueing time
thereby leading to reduced latency. However, such an aggamip not true for caching
tiers.

The rest of this paper is organized as follows. Section 2ridsss our system model
and our generalized hosting architecture. Section 3 diesuthe design of our autonomic
hosting system. Section 4 presents the related work an8é&ctoncludes the paper with
a list of important open issues to be addressed.

2 Background

2.1 System and Application Model of a Service

The application model of a service is shown in Figure 1. Asiseahe figure, a service
consists of business logic that receives the requests akésnfaero or more) queries to a
database and (zero or more) requests to other services ¢évagemppropriate responses.
Usually, the business logic is hosted in an applicationeser¥he data tier can use a re-
lational DBMS or object stores such as [9, 13, 15]. In our wavk focus on relational
DBMS-driven services. We assume that each service is asbigperformance and avail-
ability goal (usually referred to as an SLA). For sake of dinify, we will restrict ourselves
to performance-related SLAs in this paper. We define the SLA service such that its

Client service

caches
Cache ||~ External
service
Request Cache requests
Distributor Cache App
Server
A Data
Cache Sgr\)/er Cache
Data
“ App Cache
Cache Server
: Business L ogic Database Data
Seryer sde Tier Caches Tier
service cache . » ;
Tier 0 Tier 1 Tier 2 Tier 3

Figure 2: Generalized hosting architecture for a service

average response time should be within [thew RespTime, High RespTime)>.

Typically, large scale e-commerce enterprises deploy Hudiware system across mul-
tiple data centers to attain high performance and avaiitabiih this paper, we assume that
the resources allocated to a service (and all its tiers)cistéml within a single data cenfer.
Furthermore, we assume that each data center has a pratatleescue pool of resources.
When a service hosted in a data center does not meet its SeAutionomic hosting sys-
tem adds one or more resources from this pool to the serviemgare that it meets its
desired performance. However, a service cannot use alledmurces in the pool as the
pool is shared with other services hosted in the data center.

2.2 Generalized service hosting architecture

Our generalized service hosting architecture is given gufg 2. There are various tech-
nigues that can be applied at different tiers of a servicengrove its performance. For
sake of completeness, we will explain each of these teclesiquiefly in this section.

Server-side service response cachftigr 0) is a technique that is becoming increas-
ingly popular to improve the scalability of Internet seedc The principle behind this
technique is simple: the system stores the response to @eeequest (identified by re-
guested method name and parameters), so that future idlergipiests are not forwarded
to the business logic tier. The cached responses will bellysnahe form of XML mes-
sages if the service is implemented as a Web service (ed]), [Zhis technique usually
improves the throughput of the service as a cache hit in &lysrlreduces the load on the
business logic tier (and other subsequent tiers). Thigiigale is beneficial if the service
requests exhibit a good temporal locality.

Business logic replicatioftier 1) is a technique used when business logic computation
is the bottleneck. An example of a computationally inteaedisiness logic is the page
generation logic of an e-commerce site (that combines goreses from multiple services
using XSL transformation to generate an HTML page). Usuediglicating business logic
translates to running multiple instances of the applicasierver (across multiple servers).
This technique is simple provided the hosted business isgitateless and keeps all the
state in the data tier.

Client-side service response cachifiger 2¢) is used to cache the responses of the re-
guests made by the business logic to the external servibeseXternal services can reside
on other data centers possibly across a wide-area netwoskich a scenario, deploying a

2We do not look at 99 percentiles of response time and restiictelves to average response time as a starting
point.

SReplicating a service across multiple data centers is assuionbe done by replicating the service (and all its
tiers) as a whole, so that there is no inter data center corwation between the tiers of a service.

client side service response cache can be beneficial as\tabs the network bottleneck
(such as network congestion). Furthermore, client-sidbiog can be useful if the external
service is not meeting its SLA due to temporary failures asrgarovisioning, and if the
requesting service has no immediate control over them, (€the external service is run
by a different department or organization).

Database cachingtier 2°) is a technique used to reduce the load on the data tier.
Database caching systems store the response of databai®s guel maintain the consis-
tency of cached query responses. Examples of databasegagkiems include DBProxy [2]
and DBCache [5]. Database caching techniques are usehd database queries exhibit
high temporal locality. In our architecture, we use our oube database caching solution,
GlobeCBC [20].

Database replicatior{tier 3) is a widely studied technique to alleviate the database
bottleneck. Data are replicated usually to achieve betgiopmance and/or higher avail-
ability [10] and several solutions exist for replicatindateonal DBMSs [17, 19, 12]. If
we restrict ourselves to performance, data replicationdearbeneficial than caching if the
database queries exhibit poor locality [20]. However, & tmderlying database receives a
huge number of updates, then the benefit of database répticatiuces due to consistency
maintenance.

2.3 Request Distribution and Cache consistency

Each tier of a service can be dimensioned with one or moreseeifzero or more for
caching tiers). This requires the use of a load balanceruterthe requests and/or share
the load among replicas in a tier uniformly. In our system, agsume the presence of
hardware load balancers (e.g., CISCO GSLBs) for the busipgs tier and use a request
distributor (e.g., [11]) for routing requests across ses¥e a caching tier.

Caching service responses (at tieand tier2®) and database query responses (at tier
2%) introduces the problem of consistency maintenance. Aazduery response (or ser-
vice response) might become inconsistent when the undgrtiatabase of the service gets
updated. To simplify the process of consistency maintemame assume that the request
workload to the database of a service (and also to otherces)vconsists of a fixed set of
read and write query templates. A database query templatpasameterized SQL query
whose parameter values are passed to the system at runtiisescheme is deployed, for
example, using Java’s prepared statement.

In our system, we expect the developer to specify a priorctviguery template con-
flicts with which update template. For example, considerfthiewing template: Q7'1:
“SELECT price, stock, details from book where id=?" and its conflicting update query
templateU/T'1: “Update price=price+1 from books where id=?". In this example, when
a server caches a query result that is an instan§&df, then it subscribes to receive inval-
idations toQ7'1. When the data tier receives an update query that is an et/ 7'1, it
sends out a message to invalidate all instanceg®f. Template-based invalidations can
be extended to include the parameter of the query templatéhét a query to update the
price of book “XYZ” only invalidates the instance &f7'1 with parameter “XYZ". We use
the same template-based invalidation technique for sereisponse caching.

3 Design of an adaptive hosting system

The goal of our adaptive hosting system is to ensure thateihécg is continuing to meet
its SLA even when its workload (e.g., request rate, temdocallity of requests, or update
ratio) may change. In such a scenario, the system needsédoafgiropriate action by
increasing or decreasing the amount of resources allotat@ae (or more) of the service
tiers in Figure 2. In a sense, we can see this system as a gounfiieedback system as
the one shown in Figure 3. The system must detect changesforpance (using a metric

Uncontrollable parameters

Initial Observed
Configuration m Servi metrics
vice

SR

Server/|BUSes) pata || Data || Client Chiaric
service ogic Cachi Renl service ! Estimation
caching || Repln. ||~@Ning | RepIN- | caching L Estimation

- - Observed
Controller;__!nput

RemonseTimeSLA'

Figure 3: Logical Design of an Adaptive Hosting System fdeinet Services

estimation system) and trigger the controller to changedheurce configuration (i.e., the
number of servers dimensioned for each tier) to bring theameeresponse time back to the
acceptable interval.

The controller is the decision-making element that is raesfide for dimensioning each
tier in a given service. The controller answers the follayvine questionwhat is the right
resource configuration for a given service that can help tenits SLA with a minimum
number of servers being used for hosting it® design such a controller, we must first
be able to estimate the response time of a service for a ggsmurce configuration. This
would enable the controller to determine the response tiragtia servers are added (or
removed) in different tiers and select the best configunatio this section, we propose a
way to model the response time of a service and a method toastthe gain in response
time when a server is added (or removed) in each of the tiealllyj we explain how this
model is used to make a decision to adapt the resource caatfigupf a service.

3.1 Modeing end-to-end latency of a service

As seen in Figure 2, a service is multi-tiered. Each incoméaagiest is first received by the
first tier which in turns serves the request locally and/ertteyger calls to other tiers. Let

us consider a tief; that receives a request which can be serviced locally wittobability

p; and/or can trigger multiple requests to more than one tier /; be the set of tiers that

T; calls for servicing its incoming requests, i.€;,¢ K if T} is called byT;. For example,

in Figure 2,77 makes requests th. andTys, SOK; = {Ts., T }. Let N, ; denote the
average number of requests serif’jdy T; for serving a single incoming requestfp For
example, if a single request to the business logic fig) (esults in1.5 queries to the data
cache tier (%), thenV, 5. = 1.5. Now, the average response time to service a request at
T;, RespTime; is given by:

RespTime; = Q; + p; * ExecTime; + Z N;,; * RespTime; ()
JjeK;
whereQ; is the average queueing latency experienced by a requéstiafore being
serviced andzzecTime; is the average time taken by ti&f to execute the request (and
does not include the response times of other tiers). Noteetipaation 1 can capture the
response times of tiers with different characteristicg.(ecaching or computational)t

4Modeling execution times of a database is tricky as read aitd gueries have different characteristics. As
a starting point, we stick to simply modeling average quewcation times. We defer refinements to future
research.

For example, for a server-side caching tiég)(po denotes the average cache hit ratio,
No1 =1 —po (each request to cache goedtoonly if it is a cache miss) anfly = {71}
(as all outgoing requests @f, are always sent t@}). For the business logic ties; = 1 as
all services always have to do some business logic compuot&hdKs = {7, Th } @s
the business logic can make requests to the external s¢ieti¢@s.) and data tierZss).

We can then perceive a service ag¢-tiered system, whose end-to-end response time
can be obtained from equation 1 as follows:

RespTimeg = Qo + po * ExecTimeg + (1 — pg)x*
(Q1 + ExecTime; + Ni 20 * RespTimega (2)
+Nj 90 ¥ RespT'imesn)

whereRespTimes. andRespTimeqs are the average response time for client-side service
caching and database caching tiers respectively. Thegweeaponse times of these tiers
are given as:

RespTimega = Qaa + paa * ExecTimega + (1 — paa) * (RespTimecyt) 3)

RespTimeqg = Qo + pov * ExecTimeqs + (1 — pov) * (Q3 + ExecTimes) (4)

whereRespTime.,: IS the average response time of requests made to extermiaiege).

3.2 Service Characterization

In our model, parameters such@gs ExecTime; andN; ; characterize the service and its
workload. To estimate the average response time of a sethiese parameters must be
measured. Here, we discuss how the system can accomplisim&asurements.

3.21 Estimating different parameters

To estimate the response time of a service, we need to knoexédweition time ExecTime;),
p;, andN; ; (V1 e K;) of each tier. Most of these values can be obtained by ingnim
ing the cache managers and application servers apprdpriate example ExecTime of
caches can be obtained by instrumenting the cache managwepaiately so that the aver-
age latency to fetch an object from cache can be logged. MegstlizecT'ime for busi-
ness logic tier is harder because mere instrumentatioe diLtsiness logic tier can only ob-
tain the average time to service a request at the applicsgituice, i.e. RespTime;. How-
ever,RespT'ime; notonly includes the computational time at applicationse(EzecT ime;)
but also the response time of daféelpTimesy) and external service tier&espTimesa).
So, to obtainFzecT'ime;, we need to measure the valuesitfspTime;, RespTimesa
and RespTimeq and using these valudscecTime; can be obtained subsequently.

3.2.2 Synchrony vs. Asynchrony

The above equations in general assume that requests frortieorte another are syn-
chronous. While this assumption is usually true for intdoss from caches to business
logic (or from database caches to databases), it is not sadlgstrue for calls made by
the business logic tier. Applications running in the busglegic tier make (multiple) calls
to the data tier or external services and it is possible thiaiescalls maybe asynchronous.
In such a case, equation 1 is not valid as it assumes all aalmade in a synchronous
fashion.

Let us consider the scenario where all the calls mad&;byp other tiers ink; are
asynchronous. In such a case, the response time for reguadésto other tiers is limited
by the slowest call and its average response time is given by:

RespTime; = Q; + p; * ExecT'ime; + m?(x(Ni,j * RespTime;) (5)
Jess

A similar equation can be envisaged for a hybrid scenariangisynchronous and
asynchronous calls. However, to identify the nature ofscidm one tier to another, we
have built separate wrappers for synchronous and asynehisaralls and require the de-
veloper to use them for making requests to other tiers. Thaappers help the metric
estimation system in collecting the average response tfrtieese calls.

3.3 Estimating impact of adding/removing server at each tier

An SLA violation can occur when one (or more) tier(s) face ilboneck that may occur due
to a change in its workload. For example, if the cache hibratil;y decreases (due to low
temporal locality or increased number of invalidationgrthhe request rate to the business
logic tier will increase thereby leading to increased resgatime. In such a scenario, the
controller need to answer the following questions: (i) Vigilbvisioning extra server(s) at
any of the tiers improve the response time? and if so, (ii)Mthe best tier to provision
the resource(s)?

To answer these questions, the controller needs to autmatiptestimate the relative
goodness in adding a machine at each tier and choose thedateagites the highest benefit
as the one to provision the resource. Adding an extra reepuec, a server, to a tier can
reduce the queueing latency as the tier has more processpagity. Furthermore, for
caching tiers, this can improve the hit ratio as the caches traore memory capacity. We
describe the process of estimating these gains below.

3.3.1 Estimating improvement in Q;

In general, the queueing latendy; is given by Little’s law as the product of the num-
ber of requests that arrive @t per time unit,rps;, and the time taken to execute them,
ExecTime; [24].

Q; = rps; * ExecTime; (6)

In this model, the improvement in queueing latency by addingew server can be
estimated as follows: Let us assume tiiatrunsn servers and requests are distributed
uniformly. By adding another server i}, Q; is reduced from(rps; x ExzecTime;)/n to
(rps; * ExecT'ime;)/(n + 1) (note that execution time is not affected if we assume that
servers are homogeneous).

3.3.2 Estimating improvement in cache hit ratio

For caching systems, execution time and queueing latereyeatrthe main bottleneck.
On the other hand, the amount of memory available for theesbhls a direct impact on
the cache hit ratio. Estimating the improvement in cachedtib when a new server is
added is not trivial. For this problem, traditional queugsystems that use process sharing
discipline are not useful as adding a new server to a diggitbuache does not result in
improving the hit ratio linearly. Hence, it is imperativerfthe system to estimate the
possible gain in cache hit ratio that can be obtained by adlimew server to its distributed
caching layer.

Before we discuss the details of hit ratio estimation, weertbait we design our dis-
tributed cache using consistent hashing [11]. In such agdesi request to an objedf
is always routed to a server whogéis numerically close to a hash value &f, f(X),

and only that server can store the object. This design aveitisndant storage of objects
across multiple servers and can also be optimized to baldmeckbad among the cache
servers [11]. In such a system, we estimate the possibleilgiit ratio due to addition
of a new server using the following technique. Let us assureariemory limit of each
cache server id/. Each cache server stores only the list of objects whosga@irty does
not exceedV/ and keeps statistics about its cache hit ratio. In additothits, the cache
manager at each cache server maintaivistaal cachelist that will hold the identifiers of
objects that the server would have cached if it ABdd- A memory and its corresponding
virtual cache hit ratio. The hit ratio of the virtual list iswat the server would have obtained
if it had been given an extrA memory for caching. So, if the caching tier ruNscache
servers and\ is set toM /N, then the average of virtual cache hit ratios of all sernetke
possible hit ratio the distributed cache would obtain wheextral/ memory is added to
it. This is equivalent to adding another server with memafyo the distributed cache. Of
course, this estimation is valid only if the requests arg&ibisted uniformly across caches
which is the case in our distributed cache.

The cache hit ratio of the virtual cache list is used by thetradler to compute the
gain in response time due to addition of another server tadisigibuted cache (using
equation 2). Similarly, the possible degradation in resedime due to removal of a server
from distributed cache can be estimated by maintainingtearotirtual list in each cache
server with alMl — A memory threshold. We experimented this technique to etgithe
improvement in cache hit ratio of our database query cackystem, GlobeCBC and the
initial results validate our approach.

3.4 Decision process

When the system faces an increase in observed end-to-gmuhsestime RespTimeg)
beyond theHigh RespTime threshold set by the SLA, then the controller needs to adapt.
The controller can use one or more servers from the rescudégbrng the response time
back to the acceptable interval. However, the controllestfitst decide on the best tier to
add the new server. To do that, the controller obtains valti&secTime;, p; andN; ; for
each tier from the metric estimation system. For cachirrgtitalso obtains the estimated
cache hit ratio foil/ + A memory.

With these values, the controller compufesspTimeg when a server is added to each
tier and selects the one that offers the least response sithe éier to add the new resource.
This process is continued until the response time fallsiwitie acceptable interval or until
the rescue pool is exhausted.

Continuous addition of servers without appropriate scatlown (over time) can lead
to over-provisioning of resources (thereby increasingafti@nal costs of the system). To
avoid this scenario, the controller must periodically dhd#dhe observed response time
is lower than theLowRespTime threshold. If so, the service is probably over provi-
sioned. To avoid that, the controller estimates the ineréagesponse time if one (or
more) server(s) is removed in any of the tier. Subsequéntiygposes to remove a resource
from the tier that offers the lowest estimated response, forevided the estimated value is
within the acceptable interval set by the SLA.

4 Related Work

A vast number of solutions have been proposed in the litezdtar improving the perfor-
mance of Web applications. These include techniques sufragment caching (e.g., [7,
1, 14]), XML caching (e.g., [22]), database caching (e.8.,4, 20]) and database repli-
cation (e.g., [17, 19, 12, 6]). All these techniques are istlichdependently and aim to
address the bottleneck at different tiers of a service. Tjeative of our work is neither
to propose an improvement nor an alternative to any of thedmtques. Rather, we aim

to build a hosting system that automatically chooses th gt of techniques to apply for
a given service based on its individual characteristicstamttermine the right amount of
resources to provision for each tier.

Our problem is closely related to capacity provisioning &ad been well studied in
the context of single-tiered applications [16, 8]. A simplnsposition of these techniques
to our problem is however not suitable as database, budimgissand service caches have
very different characteristics. Hence, it is imperativéraat each individual tier as a sep-
arate entity. A recent work studied the problem of provisigra 3-tier web site using
multi-queueing models [25]. Unfortunately, the study doesinclude any caching tech-
nigues (such as client/server-side service caching obdatacaching) in its model. This is
a very limiting approach as caching is one of the widely ugetiniques used in boosting
the performance of a service.

5 Conclusion: Current Status and Open | ssues

A vast number of techniques exist for scalable hosting ofogked services. Our position
is that many of these techniques are not in conflict with eabbrocand the right config-
uration depends on the characteristics of the individualise. Furthermore, we believe
that the decision regarding the right configuration of a iserand how many resources to
dimension for each of them can be automated. To this end, weegrasented the initial de-
sign of a system that performs autonomic hosting of intesaatices. Our system employs
a combination of queueing models and on-line cache sinmmgtio decide on the right
resource configuration to use for a given service. We havéeimgnted our prototype in
Tomcat and the Axisplatform with a PostgreSQL database backend. The datababes
are implemented at the JDBC layer and service caches arernmepited at the axis web
service layer. We believe the techniques used in our hostistem can help multi-tiered
internet services in handling sudden changes of workloatdhtiay arise due to events such
as flash-crowds.

As a next step, we plan to test our prototype with TPC-APP,[2a3ervice-oriented
application benchmark, to validate our model and to refifigrther. Our proposed system
has still many open issues that are being currently addiesséo be addressed in the
future. Some of the important open issues among them are:

e Proactive adaptation:The design in this paper talks about how to adapt when we
see a SLA violation. However, it would be desirable to predignificant changes
in workload well in advance so that SLA violations can be miizied. This requires
good prediction models such as [18, 4].

e Global SLAs to local SLAs: One of the fundamental design cesiwe made is that
each service has an individual SLA. However, from the viempaf an organization,
it has a global end-to-end customer SLA needs to be traddiateLAs of individual
services. This requires modeling of the complete softwgstesn and is a very
challenging problem.

e Modeling databaseAs noted earlier, modeling the response times of a relationa
database are hard as the read and write queries have diftdr@macteristics. Fur-
thermore, replication makes it harder as each update vlilren updates to all
replicas. This is still an open issue and we are looking fecige models to address
this issue.

¢ Availability SLAs:Another important criterion for each service to be met islatd-
ity. Usually, availability is met by redundancy at eachgiassuming certain failure

Shttp://ws. apache. or g/ axi s/

10

models (of the server failures, data center failures et®/@. would like to include
these requirements also in our model in the future.

References

[1] Akamai Edgesuite Architecture, http://ww. akamai . conf en/ htn /
servi ces/ edge_proc_targeting. htm .

[2] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBPraxgtynamic data cache
for web applications. IfProceedings of International Conference on Data Engineer-
ing, pages 821-831, 2003.

[3] L. Barroso, J. Dean, and U. Hizle. Web search for a plafidte google cluster
architecture|EEE Micro, 23(2):22—28, Mar 2003.

[4] Y. Baryshnikov, E. G. Coffman, G. Pierre, D. RubensteM, Squillante, and
T. Yimwadsana. Predictability of web-server traffic cortges In Proceedings of
the Tenth IEEE International Workshop on Web Content Cagchimd Distribution
pages 97-103, Sept. 2005.

[5] C. Bornhvd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reaid. Adaptive database
caching with DBCacheData Engineering27(2):11-18, June 2004.

[6] E. Cecchet. C-JDBC: a middleware framework for datalwisstering. Data Engi-
neering 27(2):19-26, June 2004.

[7] J. Challenger, P. Dantzig, and K. Witting. A fragmentbd approach for efficiently
creating dynamic web conterACM Transactions on Internet Technology4), Nov
2004.

[8] R.Doyle, J.Chase, O. Asad, W. Jin, and A. Vahdat. Webeseseftware architectures.
In Proceedings of USENIX Symposium on Internet Technologig$gstem<003.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google fiktam. InProceedings of
the nineteenth ACM symposium on Operating systems prascpages 29-43, 2003.

[10] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The dangéreplication and a
solution. SIGMOD Rec.25(2):173-182, 1996.

[11] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Bidaa, K. lwamoto,
B. Kim, L. Matkins, and Y. Yerushalmi. Web caching with castent hashing. In
Proceeding of the eighth international conference on Wevide Webpages 1203—
1213, 1999.

[12] B. Kemme and G. Alonso. A suite of database replicatimiqrols based on group
communication primitives. IProceedings of the The 18th International Conference
on Distributed Computing Systeppage 156, Washington, DC, USA, 1998.

[13] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, Pt&a D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, C. Wells, and B. Zhao. Oceanstararchitecture for
global-scale persistent storage. Rroceedings of the ninth international conference
on Architectural support for programming languages andratiag systemspages
190-201, 2000.

[14] W.-S. Li, O. Po, W.-P. Hsiung, K. S. Candan, and D. Agrawkngineering and
hosting adaptive freshness-sensitive web applicatiommatacenters. IRroceedings
of the Twelfth international conference on World Wide VWeges 587-598, 2003.

11

[15] B. Ling, E. Kiciman, and A. Fox. Session state: Beyond state. InProc. of
Proceedings of the 1st Symposium on Networked Systems@esigmplementation
San Francisco, CA, USA, Mar 2004.

[16] D. A. Menasce. Web server software architecturdEEE Internet Computing
7(6):78-81, 2003.

[17] C. Plattner and G. Alonso. Ganymed: Scalable repbecafor transactional web
applications. InProceedings of the International Middleware Confergnbaronto,
Canada, Oct. 2004.

[18] J. Rolia, X. Zhu, M. Arlitt, and A. Andrzejak. Statistitservice assurances for appli-
cations in utility grid environment$2erform. Eval, 58(2+3):319-339, 2004.

[19] S. Sivasubramanian, G. Alonso, G. Pierre, and M. vaerst&lobeDB: Autonomic
data replication for web applications. Froceedings of the 14th International World-
Wide Web Conferenc€hiba, Japan, may 2005.

[20] S. Sivasubramanian, G. Pierre, M. van Steen, and G.s8loiGlobeCBC: Content-
blind result caching for dynamic web applications. Subexittor publication, Oct.
2005.

[21] S. Sivasubramanian, M. Szymaniak, G. Pierre, and MStaen. Replication for web
hosting systemsACM Computing Survey86(3), Sept. 2004.

[22] J. Tatemura, O. Po, A. Sawires, D. Agrawal, and K. S. GandWrex: A scalable
middleware architecture to enable xml caching for web ses/i InProceedings of
the International Middleware Conferendg8renoble, France, Nov. 2005.

[23] Transaction Processing Performance Council. TPC frmack app (application
server).htt p: // www. t pc. or g/ t pc_app/ def aul t. asp.

[24] K. S. Trivedi.Probability and statistics with reliability, queuing andmmputer science
applications John Wiley and Sons Ltd., Chichester, UK, UK, 2002.

[25] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, andTAntawi. An analytical
model for multi-tier internet services and its applicaoin Proceedings of the 2005
ACM SIGMETRICS international conference on Measuremethhaodeling of com-
puter systemsages 291-302, 2005.

[26] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. sdoDatabase replication
techniques: a three parameter classificatiolRrbteedings of 19th IEEE Symposium
on Reliable Distributed Systen000.

12

