
Towards Autonomic Hosting of
Multi-tier Internet Applications

Swaminathan Sivasubramanian, Guillaume Pierre, Maarten van Steen
Dept. of Computer Science, Vrije Universiteit, Amsterdam

Email: {swami,gpierre,steen}@cs.vu.nl

Technical report IR-CS-021, Vrije Universiteit, May 2006.

Abstract. Large scale e-commerce enterprises like Yahoo and Amazon use complex
software systems made of hundreds of Internet services to serve content to millions of
clients. These services are multi-tiered Web applicationsthat perform certain business
logic and are exposed through well-defined client interfaces usually accessible over the
network. A constant challenge faced by these organizationsis to host these services in a
scalable fashion to meet performance goals. A vast amount ofresearch has been done by
the community on caching and replication solutions that aimto improve performance of a
service by addressing the bottlenecks at its different tiers (e.g., database and presentation
tiers). However, different techniques are suited for different kinds of services and it is not
easy for an administrator to choose the best set of techniques for a given service. Our
position in this paper is as follows: We believe that the decision process of choosing the
right techniques for a service requires analysis of serviceand workload at each tier and that
to a large extent this process can be automated. To strengthen our position, we propose the
design of an autonomic hosting system that uses a combination of multi queue models and
online simulations to achieve our goals. Even though our work is very much in progress, we
believe the techniques used in our system can provide a good start in taming the complex
problem of scalable hosting of services.

1



1 Introduction

E-commerce enterprises such as yahoo.com, amazon.com and ebay.com often use complex
software systems to serve content to millions of Web clients. For instance, the Web page
generated in response to each client request to a Web site like amazon.com is not generated
by a single application but by a large number of smaller Web applications operating in
parallel. These enterprises build their software systems out of many such Web applications,
usually calledservices. Services are applications that perform certain business logic and
are exposed through well defined client interfaces usually accessible over the network.
Examples of service include order processing services and shopping cart services.

The application model of one typical service is shown in Figure 1. As shown in the
figure, a service consists of business logic which makes certain queries to a data store and
request(s) to other services to generate a response to its clients. An example of a service
calling another service can be the product catalog service of an e-commerce shopping store
calling the top-sellers service to display the top sellers in the “Science Fiction” category,
while displaying details for the book “Hitchhikers Guide tothe Galaxy.” These software
systems can be viewed as an acyclic forest of services.

Typically, the enterprise systems of e-commerce companies(such as Google, Amazon
and Yahoo) are hosted across thousands of inexpensive PCs inmultiple data center(s) possi-
bly located across a wide-area network [3]. Hosting such complex software systems so that
performance and availability goals are met is a challengingproblem. Instead of managing
the performance at a global level, enterprises usually assign performance and availability
goals, commonly known as service level agreement (SLA), to each service individually.
Subsequently, the problem of SLA management of the whole software system breaks down
to managing the SLAs of individual services. In this paper, we focus on the problem of
maintaining the SLA of an individual service.

To achieve the requested performance, each service is oftendeployed across multiple
machines. Deploying a service usually involves replicating its code to a number of ap-
plication servers and its data to an array of data store machines. Furthermore, different
caching layers such as for service response caching and database caching can be deployed
to improve performance. Although these techniques have been introduced independently
from (and often as alternatives to) each other, we believe that they complement each other
and may need to co-exist to obtain the best performance. While much research has been
carried out on each of these solutions [21, 22, 13, 12, 26, 19,2], all these works aim to
alleviate bottlenecks only in one tier of a given service. However, different techniques are
suited for different kinds of services. For example, if requests to the service exhibits high
request locality, service caching might be beneficial. If the underlying data retrieval is a
bottleneck, then database caching or replication might be useful depending on the tempo-
ral locality of database queries. Sometimes, a combinationof these techniques might be
needed to achieve a certain SLA.

We propose a generalized service-hosting architecture that combines various such solu-
tions in different tiers to improve the performance of a given service, as shown in Figure 2.
As seen in the figure, a wide variety of caching and replication solutions exist to enable
scalable hosting of a given service. However, for a given service, it is not trivial for an
administrator to determine the best set of techniques and the number of nodes to dimension
for each of them. The goal of our work is to build a system that autonomically dimensions1

the hosting platform for a service and determines the right configuration of techniques to
apply so that it can meet its performance goals withminimal usage of servers. For instance,
for a given service our system automatically determines which set of techniques will help
in improving its performance. This problem is challenging for four reasons. First, multiple
techniques per service need to dimensioned. Second, the effect of dimensioning on perfor-
mance depends on the characteristics of the service it hosts. For example, service caching

1Dimensioning problem is also known to as provisioning problem.

2



Responses

Requests

service requests
External

Data
Business

Logic

Figure 1: Application Model of an Internet Service

is beneficial only if the requests to a service exhibit good temporal locality. Third, dimen-
sioning a tier does not always result in a linear performancegain. For example, caches tend
to follow the law of diminishing returns (i.e., the benefit ofincreasing the number of cache
servers decreases after a certain threshold). Fourth, the access patterns (e.g., request rate,
update rates, and temporal locality of requests) can changecontinuously.

Our position in this paper is follows: For scalable hosting of a service, there exists a
wide range of caching and replication solutions that can be applied at different tiers of a
service. We believe that the decision regarding what are theright set of techniques to apply
for a given service and how to dimension each of them can be automated. To strengthen
our position, we propose a generalized service hosting architecture that covers the wide
range of proposed solutions that aim to improve the performance of a Web application.
Even though the individual elements of the architecture hasbeen studied independently
extensively, very few works have studied them in entirety. Moreover, we present our pro-
totype design of an autonomic hosting system that adapts to the workload of a service it
hosts. It identifies the right set of caching and replicationtechniques (and the best num-
ber of servers to be allocated for these tiers) among those described in our generalized
architecture for each service.

Our system employs a combination of queueing models and on-line cache simulations
to estimate the performance gain of adding/removing a resource in a tier. The proposed sys-
tem, unlike solutions solely based on queueing models, is “cache-aware”, which means that
it takes into account temporal access patterns of requests.In contrast, traditional queueing
systems assume that adding a server at any given tier always decreases the queueing time
thereby leading to reduced latency. However, such an assumption is not true for caching
tiers.

The rest of this paper is organized as follows. Section 2 describes our system model
and our generalized hosting architecture. Section 3 discusses the design of our autonomic
hosting system. Section 4 presents the related work and Section 5 concludes the paper with
a list of important open issues to be addressed.

2 Background

2.1 System and Application Model of a Service

The application model of a service is shown in Figure 1. As seen in the figure, a service
consists of business logic that receives the requests and makes (zero or more) queries to a
database and (zero or more) requests to other services to generate appropriate responses.
Usually, the business logic is hosted in an application server. The data tier can use a re-
lational DBMS or object stores such as [9, 13, 15]. In our work, we focus on relational
DBMS-driven services. We assume that each service is assigned a performance and avail-
ability goal (usually referred to as an SLA). For sake of simplicity, we will restrict ourselves
to performance-related SLAs in this paper. We define the SLA of a service such that its

3



Cache

Cache

Cache

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

External

a

b

Tier 2

Tier 3Tier 2Tier 1Tier 0

Request
Distributor

CachesTier
Business Logic

Server side
service cache

Tier
Data

caches
Client service

Database

requests
service

Cache

Cache

Cache

Cache

Server
App 

Server
App 

Server
App 

Balancer
Load

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

Data

Data

Figure 2: Generalized hosting architecture for a service

average response time should be within the[LowRespT ime, HighRespT ime)2.
Typically, large scale e-commerce enterprises deploy their software system across mul-

tiple data centers to attain high performance and availability. In this paper, we assume that
the resources allocated to a service (and all its tiers) is located within a single data center.3

Furthermore, we assume that each data center has a pre-allocated rescue pool of resources.
When a service hosted in a data center does not meet its SLA, the autonomic hosting sys-
tem adds one or more resources from this pool to the service toensure that it meets its
desired performance. However, a service cannot use all the resources in the pool as the
pool is shared with other services hosted in the data center.

2.2 Generalized service hosting architecture

Our generalized service hosting architecture is given in Figure 2. There are various tech-
niques that can be applied at different tiers of a service to improve its performance. For
sake of completeness, we will explain each of these techniques briefly in this section.

Server-side service response caching(tier 0) is a technique that is becoming increas-
ingly popular to improve the scalability of Internet services. The principle behind this
technique is simple: the system stores the response to a service request (identified by re-
quested method name and parameters), so that future identical requests are not forwarded
to the business logic tier. The cached responses will be usually in the form of XML mes-
sages if the service is implemented as a Web service (e.g., [22]). This technique usually
improves the throughput of the service as a cache hit in this layer reduces the load on the
business logic tier (and other subsequent tiers). This technique is beneficial if the service
requests exhibit a good temporal locality.

Business logic replication(tier 1) is a technique used when business logic computation
is the bottleneck. An example of a computationally intensive business logic is the page
generation logic of an e-commerce site (that combines the responses from multiple services
using XSL transformation to generate an HTML page). Usually, replicating business logic
translates to running multiple instances of the application server (across multiple servers).
This technique is simple provided the hosted business logicis stateless and keeps all the
state in the data tier.

Client-side service response caching(tier 2a) is used to cache the responses of the re-
quests made by the business logic to the external services. The external services can reside
on other data centers possibly across a wide-area network. In such a scenario, deploying a

2We do not look at 99 percentiles of response time and restrictourselves to average response time as a starting
point.

3Replicating a service across multiple data centers is assumed to be done by replicating the service (and all its
tiers) as a whole, so that there is no inter data center communication between the tiers of a service.

4



client side service response cache can be beneficial as it alleviates the network bottleneck
(such as network congestion). Furthermore, client-side caching can be useful if the external
service is not meeting its SLA due to temporary failures or poor provisioning, and if the
requesting service has no immediate control over them (e.g., if the external service is run
by a different department or organization).

Database caching(tier 2b) is a technique used to reduce the load on the data tier.
Database caching systems store the response of database queries and maintain the consis-
tency of cached query responses. Examples of database caching systems include DBProxy [2]
and DBCache [5]. Database caching techniques are useful if the database queries exhibit
high temporal locality. In our architecture, we use our in-house database caching solution,
GlobeCBC [20].

Database replication(tier 3) is a widely studied technique to alleviate the database
bottleneck. Data are replicated usually to achieve better performance and/or higher avail-
ability [10] and several solutions exist for replicating relational DBMSs [17, 19, 12]. If
we restrict ourselves to performance, data replication is more beneficial than caching if the
database queries exhibit poor locality [20]. However, if the underlying database receives a
huge number of updates, then the benefit of database replication reduces due to consistency
maintenance.

2.3 Request Distribution and Cache consistency

Each tier of a service can be dimensioned with one or more servers (zero or more for
caching tiers). This requires the use of a load balancer to route the requests and/or share
the load among replicas in a tier uniformly. In our system, weassume the presence of
hardware load balancers (e.g., CISCO GSLBs) for the business logic tier and use a request
distributor (e.g., [11]) for routing requests across servers in a caching tier.

Caching service responses (at tier0 and tier2a) and database query responses (at tier
2b) introduces the problem of consistency maintenance. A cached query response (or ser-
vice response) might become inconsistent when the underlying database of the service gets
updated. To simplify the process of consistency maintenance, we assume that the request
workload to the database of a service (and also to other services) consists of a fixed set of
read and write query templates. A database query template isa parameterized SQL query
whose parameter values are passed to the system at runtime. This scheme is deployed, for
example, using Java’s prepared statement.

In our system, we expect the developer to specify a priori which query template con-
flicts with which update template. For example, consider thefollowing template:QT 1:
“SELECT price, stock, details from book where id=?” and its conflicting update query
templateUT 1: “Update price=price+1 from books where id=?”. In this example, when
a server caches a query result that is an instance ofQT 1, then it subscribes to receive inval-
idations toQT 1. When the data tier receives an update query that is an instance ofUT 1, it
sends out a message to invalidate all instances ofQT 1. Template-based invalidations can
be extended to include the parameter of the query template (so that a query to update the
price of book “XYZ” only invalidates the instance ofQT 1 with parameter “XYZ”. We use
the same template-based invalidation technique for service response caching.

3 Design of an adaptive hosting system

The goal of our adaptive hosting system is to ensure that the service is continuing to meet
its SLA even when its workload (e.g., request rate, temporallocality of requests, or update
ratio) may change. In such a scenario, the system needs to take appropriate action by
increasing or decreasing the amount of resources allocatedto one (or more) of the service
tiers in Figure 2. In a sense, we can see this system as a continuous feedback system as
the one shown in Figure 3. The system must detect changes in performance (using a metric

5



Initial
Configuration

+/- +/- +/-
+/-

Uncontrollable parameters 

Service
metrics

Observed

Controller

Metric
Estimation

Input
Observed

Response Time SLA

Server/
service
caching

Business
Logic
Repln.

Data
Caching

Data
Repln.

Client
service
caching

Figure 3: Logical Design of an Adaptive Hosting System for Internet Services

estimation system) and trigger the controller to change theresource configuration (i.e., the
number of servers dimensioned for each tier) to bring the average response time back to the
acceptable interval.

The controller is the decision-making element that is responsible for dimensioning each
tier in a given service. The controller answers the following the question:what is the right
resource configuration for a given service that can help to meet its SLA with a minimum
number of servers being used for hosting it?To design such a controller, we must first
be able to estimate the response time of a service for a given resource configuration. This
would enable the controller to determine the response time if extra servers are added (or
removed) in different tiers and select the best configuration. In this section, we propose a
way to model the response time of a service and a method to estimate the gain in response
time when a server is added (or removed) in each of the tier. Finally, we explain how this
model is used to make a decision to adapt the resource configuration of a service.

3.1 Modeling end-to-end latency of a service

As seen in Figure 2, a service is multi-tiered. Each incomingrequest is first received by the
first tier which in turns serves the request locally and/or can trigger calls to other tiers. Let
us consider a tierTi that receives a request which can be serviced locally with a probability
pi and/or can trigger multiple requests to more than one tier. LetKi be the set of tiers that
Ti calls for servicing its incoming requests, i.e.,Tj ǫ Ki if Tj is called byTi. For example,
in Figure 2,T1 makes requests toT2a andT2b , soK1 = {T2a, T2b}. Let Ni,j denote the
average number of requests sent toTj byTi for serving a single incoming request toTi. For
example, if a single request to the business logic tier (T1) results in1.5 queries to the data
cache tier (T2b), thenN1,2b = 1.5. Now, the average response time to service a request at
Ti, RespT imei is given by:

RespT imei = Qi + pi ∗ ExecT imei +
∑

jǫKi

Ni,j ∗ RespT imej (1)

whereQi is the average queueing latency experienced by a request atTi before being
serviced andExecT imei is the average time taken by tierTi to execute the request (and
does not include the response times of other tiers). Note that equation 1 can capture the
response times of tiers with different characteristics (e.g., caching or computational).4

4Modeling execution times of a database is tricky as read and write queries have different characteristics. As
a starting point, we stick to simply modeling average query execution times. We defer refinements to future
research.

6



For example, for a server-side caching tier (T0), p0 denotes the average cache hit ratio,
N0,1 = 1 − p0 (each request to cache goes toT1 only if it is a cache miss) andK0 = {T1}
(as all outgoing requests ofT0 are always sent toT1). For the business logic tier,p1 = 1 as
all services always have to do some business logic computation, andK2 = {T2a, T2b} as
the business logic can make requests to the external servicetier (T2a) and data tier (T2b).

We can then perceive a service as a4-tiered system, whose end-to-end response time
can be obtained from equation 1 as follows:

RespT ime0 = Q0 + p0 ∗ ExecT ime0 + (1 − p0)∗

(Q1 + ExecT ime1 + N1,2a ∗ RespT ime2a

+N1,2b ∗ RespT ime2b)

(2)

whereRespT ime2a andRespT ime2b are the average response time for client-side service
caching and database caching tiers respectively. The average response times of these tiers
are given as:

RespT ime2a = Q2a + p2a ∗ ExecT ime2a + (1 − p2a) ∗ (RespT imeext) (3)

RespT ime2b = Q2b + p2b ∗ ExecT ime2b + (1 − p2b) ∗ (Q3 + ExecT ime3) (4)

whereRespT imeext is the average response time of requests made to external service(s).

3.2 Service Characterization

In our model, parameters such aspi, ExecT imei andNi,j characterize the service and its
workload. To estimate the average response time of a service, these parameters must be
measured. Here, we discuss how the system can accomplish such measurements.

3.2.1 Estimating different parameters

To estimate the response time of a service, we need to know theexecution time (ExecT imei),
pi, andNi,j (∀Tj ǫ Ki) of each tier. Most of these values can be obtained by instrument-
ing the cache managers and application servers appropriately. For example,ExecT ime of
caches can be obtained by instrumenting the cache manager appropriately so that the aver-
age latency to fetch an object from cache can be logged. Measuring ExecT ime for busi-
ness logic tier is harder because mere instrumentation at the business logic tier can only ob-
tain the average time to service a request at the applicationservice, i.e.,RespT ime1. How-
ever,RespT ime1 not only includes the computational time at application server (ExecT ime1)
but also the response time of data (RespT ime2b) and external service tiers (RespT ime2a).
So, to obtainExecT ime1, we need to measure the values ofRespT ime1, RespT ime2a

andRespT ime2b and using these valuesExecT ime1 can be obtained subsequently.

3.2.2 Synchrony vs. Asynchrony

The above equations in general assume that requests from onetier to another are syn-
chronous. While this assumption is usually true for interactions from caches to business
logic (or from database caches to databases), it is not necessarily true for calls made by
the business logic tier. Applications running in the business logic tier make (multiple) calls
to the data tier or external services and it is possible that some calls maybe asynchronous.
In such a case, equation 1 is not valid as it assumes all calls are made in a synchronous
fashion.

7



Let us consider the scenario where all the calls made byTi to other tiers inKi are
asynchronous. In such a case, the response time for requestsmade to other tiers is limited
by the slowest call and its average response time is given by:

RespT imei = Qi + pi ∗ ExecT imei + max
jǫKi

(Ni,j ∗ RespT imej) (5)

A similar equation can be envisaged for a hybrid scenario mixing synchronous and
asynchronous calls. However, to identify the nature of calls from one tier to another, we
have built separate wrappers for synchronous and asynchronous calls and require the de-
veloper to use them for making requests to other tiers. Thesewrappers help the metric
estimation system in collecting the average response time of these calls.

3.3 Estimating impact of adding/removing server at each tier

An SLA violation can occur when one (or more) tier(s) face a bottleneck that may occur due
to a change in its workload. For example, if the cache hit ratio atT0 decreases (due to low
temporal locality or increased number of invalidations) then the request rate to the business
logic tier will increase thereby leading to increased response time. In such a scenario, the
controller need to answer the following questions: (i) Willprovisioning extra server(s) at
any of the tiers improve the response time? and if so, (ii) what is the best tier to provision
the resource(s)?

To answer these questions, the controller needs to automatically estimate the relative
goodness in adding a machine at each tier and choose the tier that gives the highest benefit
as the one to provision the resource. Adding an extra resource, i.e., a server, to a tier can
reduce the queueing latency as the tier has more processing capacity. Furthermore, for
caching tiers, this can improve the hit ratio as the caches have more memory capacity. We
describe the process of estimating these gains below.

3.3.1 Estimating improvement in Qi

In general, the queueing latency,Qi is given by Little’s law as the product of the num-
ber of requests that arrive atTi per time unit,rpsi, and the time taken to execute them,
ExecT imei [24].

Qi = rpsi ∗ ExecT imei (6)

In this model, the improvement in queueing latency by addinga new server can be
estimated as follows: Let us assume thatTi runsn servers and requests are distributed
uniformly. By adding another server inTi, Qi is reduced from(rpsi ∗ ExecT imei)/n to
(rpsi ∗ ExecT imei)/(n + 1) (note that execution time is not affected if we assume that
servers are homogeneous).

3.3.2 Estimating improvement in cache hit ratio

For caching systems, execution time and queueing latency are not the main bottleneck.
On the other hand, the amount of memory available for the caches has a direct impact on
the cache hit ratio. Estimating the improvement in cache hitratio when a new server is
added is not trivial. For this problem, traditional queueing systems that use process sharing
discipline are not useful as adding a new server to a distributed cache does not result in
improving the hit ratio linearly. Hence, it is imperative for the system to estimate the
possible gain in cache hit ratio that can be obtained by adding a new server to its distributed
caching layer.

Before we discuss the details of hit ratio estimation, we note that we design our dis-
tributed cache using consistent hashing [11]. In such a design, a request to an objectX
is always routed to a server whoseid is numerically close to a hash value ofX , f(X),

8



and only that server can store the object. This design avoidsredundant storage of objects
across multiple servers and can also be optimized to balancethe load among the cache
servers [11]. In such a system, we estimate the possible gainin hit ratio due to addition
of a new server using the following technique. Let us assume the memory limit of each
cache server isM . Each cache server stores only the list of objects whose sizejointly does
not exceedM and keeps statistics about its cache hit ratio. In addition to this, the cache
manager at each cache server maintains avirtual cachelist that will hold the identifiers of
objects that the server would have cached if it hadM + ∆ memory and its corresponding
virtual cache hit ratio. The hit ratio of the virtual list is what the server would have obtained
if it had been given an extra∆ memory for caching. So, if the caching tier runsN cache
servers and∆ is set toM/N , then the average of virtual cache hit ratios of all servers is the
possible hit ratio the distributed cache would obtain when an extraM memory is added to
it. This is equivalent to adding another server with memoryM to the distributed cache. Of
course, this estimation is valid only if the requests are distributed uniformly across caches
which is the case in our distributed cache.

The cache hit ratio of the virtual cache list is used by the controller to compute the
gain in response time due to addition of another server to thedistributed cache (using
equation 2). Similarly, the possible degradation in response time due to removal of a server
from distributed cache can be estimated by maintaining another virtual list in each cache
server with aM − ∆ memory threshold. We experimented this technique to estimate the
improvement in cache hit ratio of our database query cachingsystem, GlobeCBC and the
initial results validate our approach.

3.4 Decision process

When the system faces an increase in observed end-to-end response time (RespT ime0)
beyond theHighRespT ime threshold set by the SLA, then the controller needs to adapt.
The controller can use one or more servers from the rescue pool to bring the response time
back to the acceptable interval. However, the controller must first decide on the best tier to
add the new server. To do that, the controller obtains valuesof ExecT imei, pi andNi,j for
each tier from the metric estimation system. For caching tiers, it also obtains the estimated
cache hit ratio forM + ∆ memory.

With these values, the controller computesRespT ime0 when a server is added to each
tier and selects the one that offers the least response time as the tier to add the new resource.
This process is continued until the response time falls within the acceptable interval or until
the rescue pool is exhausted.

Continuous addition of servers without appropriate scaling down (over time) can lead
to over-provisioning of resources (thereby increasing operational costs of the system). To
avoid this scenario, the controller must periodically check if the observed response time
is lower than theLowRespT ime threshold. If so, the service is probably over provi-
sioned. To avoid that, the controller estimates the increase in response time if one (or
more) server(s) is removed in any of the tier. Subsequently,it chooses to remove a resource
from the tier that offers the lowest estimated response time, provided the estimated value is
within the acceptable interval set by the SLA.

4 Related Work

A vast number of solutions have been proposed in the literature for improving the perfor-
mance of Web applications. These include techniques such asfragment caching (e.g., [7,
1, 14]), XML caching (e.g., [22]), database caching (e.g., [5, 2, 20]) and database repli-
cation (e.g., [17, 19, 12, 6]). All these techniques are studied independently and aim to
address the bottleneck at different tiers of a service. The objective of our work is neither
to propose an improvement nor an alternative to any of these techniques. Rather, we aim

9



to build a hosting system that automatically chooses the right set of techniques to apply for
a given service based on its individual characteristics andto determine the right amount of
resources to provision for each tier.

Our problem is closely related to capacity provisioning andhas been well studied in
the context of single-tiered applications [16, 8]. A simpletransposition of these techniques
to our problem is however not suitable as database, businesslogic and service caches have
very different characteristics. Hence, it is imperative totreat each individual tier as a sep-
arate entity. A recent work studied the problem of provisioning a 3-tier web site using
multi-queueing models [25]. Unfortunately, the study doesnot include any caching tech-
niques (such as client/server-side service caching or database caching) in its model. This is
a very limiting approach as caching is one of the widely used techniques used in boosting
the performance of a service.

5 Conclusion: Current Status and Open Issues

A vast number of techniques exist for scalable hosting of networked services. Our position
is that many of these techniques are not in conflict with each other and the right config-
uration depends on the characteristics of the individual service. Furthermore, we believe
that the decision regarding the right configuration of a service and how many resources to
dimension for each of them can be automated. To this end, we have presented the initial de-
sign of a system that performs autonomic hosting of internetservices. Our system employs
a combination of queueing models and on-line cache simulations to decide on the right
resource configuration to use for a given service. We have implemented our prototype in
Tomcat and the Axis5 platform with a PostgreSQL database backend. The database caches
are implemented at the JDBC layer and service caches are implemented at the axis web
service layer. We believe the techniques used in our hostingsystem can help multi-tiered
internet services in handling sudden changes of workload that may arise due to events such
as flash-crowds.

As a next step, we plan to test our prototype with TPC-APP [23], a service-oriented
application benchmark, to validate our model and to refine itfurther. Our proposed system
has still many open issues that are being currently addressed or to be addressed in the
future. Some of the important open issues among them are:

• Proactive adaptation:The design in this paper talks about how to adapt when we
see a SLA violation. However, it would be desirable to predict significant changes
in workload well in advance so that SLA violations can be minimized. This requires
good prediction models such as [18, 4].

• Global SLAs to local SLAs: One of the fundamental design choices we made is that
each service has an individual SLA. However, from the view point of an organization,
it has a global end-to-end customer SLA needs to be translated to SLAs of individual
services. This requires modeling of the complete software system and is a very
challenging problem.

• Modeling database:As noted earlier, modeling the response times of a relational
database are hard as the read and write queries have different characteristics. Fur-
thermore, replication makes it harder as each update will result in updates to all
replicas. This is still an open issue and we are looking for precise models to address
this issue.

• Availability SLAs:Another important criterion for each service to be met is availabil-
ity. Usually, availability is met by redundancy at each tiers assuming certain failure

5http://ws.apache.org/axis/

10



models (of the server failures, data center failures etc.).We would like to include
these requirements also in our model in the future.

References

[1] Akamai Edgesuite Architecture, http://www.akamai.com/en/html/
services/edge_proc_targeting.html.

[2] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: a dynamic data cache
for web applications. InProceedings of International Conference on Data Engineer-
ing, pages 821–831, 2003.

[3] L. Barroso, J. Dean, and U. Hlzle. Web search for a planet:The google cluster
architecture.IEEE Micro, 23(2):22–28, Mar 2003.

[4] Y. Baryshnikov, E. G. Coffman, G. Pierre, D. Rubenstein,M. Squillante, and
T. Yimwadsana. Predictability of web-server traffic congestion. In Proceedings of
the Tenth IEEE International Workshop on Web Content Caching and Distribution,
pages 97–103, Sept. 2005.

[5] C. Bornhvd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald. Adaptive database
caching with DBCache.Data Engineering, 27(2):11–18, June 2004.

[6] E. Cecchet. C-JDBC: a middleware framework for databaseclustering.Data Engi-
neering, 27(2):19–26, June 2004.

[7] J. Challenger, P. Dantzig, and K. Witting. A fragment-based approach for efficiently
creating dynamic web content.ACM Transactions on Internet Technology, 4(4), Nov
2004.

[8] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat. Web server software architectures.
In Proceedings of USENIX Symposium on Internet Technologies and Systems, 2003.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. InProceedings of
the nineteenth ACM symposium on Operating systems principles, pages 29–43, 2003.

[10] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a
solution.SIGMOD Rec., 25(2):173–182, 1996.

[11] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. Iwamoto,
B. Kim, L. Matkins, and Y. Yerushalmi. Web caching with consistent hashing. In
Proceeding of the eighth international conference on WorldWide Web, pages 1203–
1213, 1999.

[12] B. Kemme and G. Alonso. A suite of database replication protocols based on group
communication primitives. InProceedings of the The 18th International Conference
on Distributed Computing Systems, page 156, Washington, DC, USA, 1998.

[13] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, C. Wells, and B. Zhao. Oceanstore:an architecture for
global-scale persistent storage. InProceedings of the ninth international conference
on Architectural support for programming languages and operating systems, pages
190–201, 2000.

[14] W.-S. Li, O. Po, W.-P. Hsiung, K. S. Candan, and D. Agrawal. Engineering and
hosting adaptive freshness-sensitive web applications ondata centers. InProceedings
of the Twelfth international conference on World Wide Web, pages 587–598, 2003.

11



[15] B. Ling, E. Kiciman, and A. Fox. Session state: Beyond soft state. InProc. of
Proceedings of the 1st Symposium on Networked Systems Design and Implementation,
San Francisco, CA, USA, Mar 2004.

[16] D. A. Menasce. Web server software architectures.IEEE Internet Computing,
7(6):78–81, 2003.

[17] C. Plattner and G. Alonso. Ganymed: Scalable replication for transactional web
applications. InProceedings of the International Middleware Conference, Toronto,
Canada, Oct. 2004.

[18] J. Rolia, X. Zhu, M. Arlitt, and A. Andrzejak. Statistical service assurances for appli-
cations in utility grid environments.Perform. Eval., 58(2+3):319–339, 2004.

[19] S. Sivasubramanian, G. Alonso, G. Pierre, and M. van Steen. GlobeDB: Autonomic
data replication for web applications. InProceedings of the 14th International World-
Wide Web Conference, Chiba, Japan, may 2005.

[20] S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso. GlobeCBC: Content-
blind result caching for dynamic web applications. Submitted for publication, Oct.
2005.

[21] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. vanSteen. Replication for web
hosting systems.ACM Computing Surveys, 36(3), Sept. 2004.

[22] J. Tatemura, O. Po, A. Sawires, D. Agrawal, and K. S. Candan. Wrex: A scalable
middleware architecture to enable xml caching for web services. InProceedings of
the International Middleware Conference, Grenoble, France, Nov. 2005.

[23] Transaction Processing Performance Council. TPC benchmark app (application
server).http://www.tpc.org/tpc_app/default.asp.

[24] K. S. Trivedi.Probability and statistics with reliability, queuing and computer science
applications. John Wiley and Sons Ltd., Chichester, UK, UK, 2002.

[25] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An analytical
model for multi-tier internet services and its applications. InProceedings of the 2005
ACM SIGMETRICS international conference on Measurement and modeling of com-
puter systems, pages 291–302, 2005.

[26] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database replication
techniques: a three parameter classification. InProceedings of 19th IEEE Symposium
on Reliable Distributed Systems, 2000.

12


