
Towards On-Demand Web Application Replication

Swaminathan Sivasubramanian, Guillaume Pierre, and Maarten van Steen
Department of Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

{swami,gpierre,steen}@cs.vu.nl

Guillaume Pierre
Dept. of Computer Science, Vrije Universiteit

Amsterdam, The Netherlands

gpierre@cs.vu.nl

Maarten van Steen
Dept. of Computer Science, Vrije Universiteit

Amsterdam, The Netherlands

steen@cs.vu.nl

ABSTRACT
The increasing popularity of Web applications drives the need for
systems that offer improve high performance web services by repli-
cating applications at geographically distributed servers. In this pa-
per, we propose a system for Web application replication that repli-
cates both application code and its data. A key challenge in such
a system is data replication and consistency, so that each replica
server can access its shared data locally thereby avoiding the wide-
area network latency that would be incurred by a traditional central-
ized database. In our system, we aim to minimize this consistency
overhead using partial replication where data units are replicated to
servers that only access them. This would reduce the consistency
overhead as updates are sent only to servers that access them. We
explore the design space of this system, find the key issues that need
to be addressed to build it and propose solutions to solve them.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS]:
Distributed Systems; C.4 [PERFORMANCE OF SYSTEMS]:
Design studies and serviceability

Keywords
Web Application Replication, Distributed Web Services

1. INTRODUCTION
A growing number of e-commerce applications can be charac-

terized by a large number of unique read requests and a signifi-
cant write-to-read ratio. Hosting these applications in a centralized
server (or cluster of servers) may result in poor response time for
Web clients due to wide-area network latency introduced for each
access. To improve their performance, many systems cache the
pages generated by the applications. However, such solutions rely
on the assumptions that the temporal locality of requests is high and
the updates are infrequent. Applications that do not exhibit these
characteristics can only be distributed using replication, where the
application code is executed at the replica servers. This avoids the
wide-area network latency for each read/write access and ensures
quicker response time to clients.

Replicating a Web application requires replicating both the ap-
plication code (e.g., EJBs, CGI scripts, PHPs) and the data that the
code acts upon (databases or files). This is relatively easy provided
that the code does not modify the data [19].

However, most applications do modify their underlying data. In
this case, it becomes necessary to manage data consistency across

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, NY USA.
.

all replicas. As suggested in [5, 11], the core challenge in this
problem is data distribution and consistency. With a significant
number of updates to the data replicated across multiple servers in
the Internet, the overhead involved in maintaining the consistency
of these replicas (in terms of network bandwidth and write access
latency) becomes high.

Reducing consistency overhead in replicated systems is often re-
alized by employing weak consistency models [7, 23]. However,
weak consistency mechanisms (with the exception of time-based
mechanisms) require the application developer to understand the
distribution and consistency semantics of the application, which
complicates the process of application development.

In this paper, we explore another approach, based on partial data
replication, which we call on-demand replication. Data is seg-
mented into data units and each data unit is replicated only to servers
that access it frequently. So, the entire data set is not replicated at
all replica servers. This approach can reduce the synchronization
overhead as consistency updates for a data unit are sent only to
replica servers that access them often.

We believe that on-demand application replication is useful for
general e-commerce applications, as it allows the system to exploit
the location-specific interests in request patterns. For instance, a
worldwide e-commerce application does not need to replicate its
customer database to all its replicas. North American customer
records can be stored primarily in replica servers in North America
and need not be replicated to Asian servers. Though storage is not
an issue with sharp decline in storage costs, the synchronization
costs would then be reduced when a customer record is updated.

Although we believe that data segmentation can help to replicate
Web applications, it may be difficult for application developers to
come up with efficient schemes. We therefore propose that data
segmentation across replicas to be performed automatically based
on their access patterns.

Building a system for on-demand application replication requires
addressing many issues such as identifying the granularity and con-
stituents of the data segments, finding the optimal placements for
each data segment and the code, managing partially replicated data,
and choosing the optimal consistency strategy for each data seg-
ment. This paper explores the design space of such a system. We
identify some of the key issues that one needs to address to realize
such a system and suggest solutions to solve them.

The rest of the paper is organized as follows: Section 2 presents
the application model for the Web applications used in our system.
Section 3 and 4 respectively discuss our data clustering and repli-
cation techniques. Section 5 discusses the related work and Section
6 concludes the paper.

Web Application

Data Driver

Data

Request

 Web Client

Response (HTML page)

 Code

Figure 1: Application Model

2. APPLICATION AND SYSTEM MODEL

2.1 Application Model
The first and foremost constraint considered in choosing our ap-

plication model is to keep it simple for the application developer.
Replication and consistency maintenance that is performed at the
application level can possibly achieve the best performance possi-
ble. However, this requires the application developer to understand
the replication and consistency semantics of the application, which
complicates the development process. In our system, we expect the
developer to develop business logic code as done for standard EJBs
or CGIs, oblivious of the underlying replication. The system will
perform data replication and consistency maintenance, transparent
to the application code.

The basic application model of our system is given in Figure 1.
As seen in the figure, an application consists of code and data. Code
is written using standard technologies, such as Active Server Pages
(ASPs), CGI scripts and EJBs deployed in an application server.
The code receives invocation requests from Web clients, accesses
relevant data and generates a result to be returned to the client. The
interaction between the code and the data is handled by means of a
data driver. We discuss the architecture of the data driver in Section
2.3.

We assume that the data is split into n units, D1,D2,...,Dn. Ex-
amples of data units are files, database tables, and database records.
Each unit is assumed to have a unique identifier, which is used to
track it. This identifier can be simply a file name or database ta-
ble name (provided they are unique). However, for fine-grained
data units, such as database records, we assume that the data units
can be indexed based on one of their attribute values. This would
enable the data driver to locate the data required by the code. Un-
fortunately, this also limits the system to support only queries that
can be translated into indices-based access. It remains to be seen
how restrictive this assumption actually is. For example, in the
TPC-W benchmark [22], which represents a typical e-commerce
application, more than 90% of queries can be answered by indexed
data. For data that require non-indexable access, we choose the
granularity of the data unit to be higher.

Since data units are the granularity of placement, choosing the
correct granularity for data units has important performance impli-
cations. If the granularity is too coarse, we may lose the benefit of

 Replica Server

Web Application

 Code

Data Driver

Data Driver

Data

 Code

Web Application

 Replica Server

Data

Updates

Origin Server

Web Application

 Code

Data

Data Driver

 Responses

Requests/

Figure 2: System Architecture

partial replication as the constituents of the same data unit might
have different access patterns. On the other hand, if data units are
too fine grained, then it may become difficult to track them indi-
vidually. In our system, we employ an approach where data units
are chosen to be fine-grained and the system clusters the data units
with similar access patterns. The system handles replication at the
cluster level, thereby making the problem of tracking partial repli-
cas tractable without losing the advantages of partial replication (as
the constituents of clusters have similar access pattern). We discuss
clustering techniques in Section 3.

2.2 System Model
A system to support partial replication is presented in Figure 2.

Each application is hosted on a number of replica servers. Each
replica server has a full copy of the application code and a par-
tial copy of the data. Clients are automatically redirected to their
closest replica server that hosts the application using standard tech-
nologies such as DNS-based redirection.

In our system, updates may originate from multiple sites for the
same data cluster. In general, serializing concurrent updates is
preferred as this leads to sequential consistency, which is a well-
understood model and is also transparent to the application. This
is in line with our primary design constraint of keeping the appli-
cation development process simple. Hence, as a starting point, we
plan to limit ourselves to replication strategies that guarantee se-
quential consistency. We adopt the master-slave replica model as
our concurrency control model.

One of the replica servers is chosen to act as the origin server
for an application. In addition to hosting a replica, it also decides
how data should be clustered and where to place these clusters. The
origin server also selects the consistency mechanism to be adopted
by each replica.

2.3 Data Driver
The data driver acts as the interface between the code and the

data. The data driver preserves distribution transparency of the
data, as it hides (from the code) the fact that the data is partially
replicated. The data driver has a simple file-system like interface
(in case of data stored in files) or JDBC-like interface (in case of
data stored in databases). Code invokes these interfaces for access-
ing the data. A detailed architecture of the data driver is given in
Figure 3.

 Data

Interaction with Master, Origin ServerDriverData

Policy
ConsistencyMasterCopy

Local
Server
OriginID

 Code

Figure 3: Data Driver Design

The driver is responsible for locating the data unit requested by
the code. It does so by first identifying the cluster to which the data
unit belongs and then uses the cluster table to find more information
about the location of cluster and its policies. This table contains
(i) the origin server of the cluster, (ii) a pointer to the cluster in
the local system (if available), (iii) its master replica and (iv) the
consistency policy information. If the request is for reading a data
unit present in a cluster, then the driver locates the cluster using
the table and fetches it locally or from the origin server. If the
request updates a data unit, the driver updates the data based on the
consistency strategy assigned by the origin server. For example, if
the replica is configured as a cache, the driver forwards the update
request to the master replica.

The details regarding the algorithms used for data clustering,
replication of data units and mechanisms used for consistency main-
tenance are discussed in the subsequent sections.

3. DATA CLUSTERING
As discussed before, fine-grained data segmentation introduces a

large number of individual data units, posing a scalability problem
for replication algorithms. We propose to cluster data units with
similar usage patterns and replicate data at the cluster level instead
of the data unit level. Upon clustering, we need a scalable way to
represent cluster membership, i.e., to identify if a data unit belongs
to a cluster. In this section, we discuss the issues of data clustering
and cluster representation in detail, and present solutions to solve
them.

3.1 Data Clustering
Our system consists of m replica servers R1, R2,...,Rm, holding

data units D1,D2,...,Dn. We want to group data units with similar
read and write access patterns. However, for the sake of simplicity,
we limit our discussion to only read access patterns. The techniques
presented here can be easily extended to accommodate write access
patterns.

Each data unit Di has an access pattern Ai ={ri,1,ri,2,...,ri,m},
where ri,j is the number of read accesses made by the replica server
Rj for a data unit Di. We want to group two data units Di and Dj

into the same cluster, if Ai and Aj are similar.
A similar problem of clustering has been studied before in the

context of collaborative filtering or recommender systems [13]. Rec-
ommender systems observe the access patterns of end-users to prod-

ucts, and try to cluster end-users who have similar interests. This
allows the system to issue personalized recommendations for prod-
ucts that can be of interest to each particular user. This problem
is similar to ours, where the role of end users is played by replica
servers and the role of products is played by the data units. The
only major difference between the two systems is the scale. Sim-
ilarity computation in recommender systems typically has ratings
of millions of users for millions of items. In our case, we expect
thousands of servers to have a access patterns for millions of data
units.

We consider two similarity metrics, cosine and correlation-based
similarity metric, which are popular in recommender systems.

In cosine-based similarity, the access patterns of data units are
treated as m-dimensional vectors and similarity between two data
units Di and Dj is given by

Sim(i, j) = cos(Ai, Aj) =

−→
Ai.

−→
Aj

‖
−→
Ai‖‖

−→
Ai‖

(1)

Another method is correlation-based similarity, where similarity
is computed as

Sim(i, j) =

∑m

k=1
(rk,i − r̄i)(rk,j − r̄j)

√
∑m

k=1
(rk,i − r̄i)2

∑m

k=1
(rk,j − r̄j)2

(2)

In both methods, data units Di and Dj are clustered if Sim(i, j) ≥
1 − x, for some threshold value x, where 0 ≤ x ≤ 1. We need
further evaluations to determine which method suits us the best.

This process of clustering can be computationally expensive, of
order O(m∗n). However, since the access vectors of data units are
sparse in nature, it can effectively be reduced to order O(m + n).

Another important step is to handle the creation of new data
units. In our system, creation of a new data unit is done at its ori-
gin server. Initially, the data unit is not replicated and all replica
servers access it from the origin server. The origin server collects
the access pattern for the new data unit and determines its clus-
ter by computing the similarity with the access vectors of cluster.
This process requires only ‖C‖ computations, where C is the total
number of clusters. If no suitable cluster is found, the origin server
creates a new cluster containing the new data unit. The data unit is
replicated as soon as it is inserted into a cluster.

3.2 Cluster Representation
Since the number of data units stored in a cluster is potentially

high, we need a scalable scheme to represent cluster membership.
A naive scheme would be to use a cluster-to-data- unit membership
table that lists the data units contained in each cluster. However,
such a scheme will not scale with large number of clusters or data
units.

For this reason, we propose to use Bloom filters to represent
the membership of items in a cluster [4]. Bloom filters were in-
vented for database systems and have been used in the context of
Web systems for the Common Knowledge server [17] and Sum-
mary caches [10].

A Bloom filter is a method for representing a set C = {C1,
C2,...,Cn} of n elements to support membership queries. The idea
behind Bloom filters is to allocate a vector v of M bits, initially all
set to 0, and then choose k independent hash functions. For each
element c ∈ C, the bits at position h1(c),...,hk(c) are set to 1 (a bit
can be set to 1 multiple times). For a membership query for c, we
check the bits h1(c),...,hk(c); if any of them is set to 0, then c is
certainly not in C. Otherwise, we guess that c is in C, even though
it can be a case of false positive. The parameters k and M must be

chosen such that the probability of a false positive is acceptable.
It is impossible to remove an element from a basic Bloom filter,

since the bits in a vector can be set multiple times. This pitfall
can be removed by replacing each bit with a counter. For addition
(deletion) of a new member c, the counter values corresponding to
h1(c),...,hk(c) are incremented (decremented).

In our system, we use one Bloom filter to represent the mem-
bership of each cluster. Filters are created by the origin server and
distributed to all replica servers. In addition to a cluster member-
ship table, the origin server also creates a cluster-to-replica- server
table, which details the list of replica servers that stores a cluster
(using Bloom filters or just a table, depending on the scale).

When a replica server R receives an access request for a data unit
Di, it first checks if Di is present locally. Otherwise, the replica
server finds the list of servers that have the cluster containing Di

(from the server-cluster table). It then forwards the request to the
closest one. In case of a false positive, the request is forwarded to
the origin server.

4. REPLICATION
Replicating an application requires that we replicate its code and

data. For the sake of simplicity, in this paper we assume that the
code is fully replicated at all replica servers. In this section, we pri-
marily discuss algorithms concerning data replication and focus on
three issues: replica placement, consistency mechanism selection
and master selection.

The system performance is affected by all the above three issues.
For example, the average client write latency to a given cluster is
determined by the placement of replicas and the choice of the mas-
ter. Similarly, the amount of bandwidth consumed in maintaining
consistency depends on the selected consistency mechanism, the
choice of the master and the placement of replicas. In our system,
we employ an approach where selecting the optimal replica place-
ment, consistency mechanisms and master-slave configuration are
not treated as separate problems but as a single problem of selecting
an optimal replication strategy.

A replication strategy consists of a placement mechanism, a con-
sistency mechanism and a master selection. Placement mecha-
nisms dictate the number and location of replicas. Examples of
placement mechanisms include placing replicas at x most popular
servers (for some value of x), and heuristics as suggested in [15].
Consistency mechanisms define the protocol that is used to enforce
consistency among replicas. Examples of consistency mechanisms
include pushing updates from the master to each slave, pulling up-
dates, both possibly combined with invalidations [16] or leases [12].
Master selection mechanisms decide the master replica responsible
for handling concurrent updates for a data cluster.

Different replication strategies are likely to provide different lev-
els of performance, so a system designer should be careful in select-
ing a replication strategy. In earlier work, we studied replication of
static Web documents. We showed that no single strategy can uni-
versally perform optimal for all Web documents [18]. An important
gain in performance can be obtained by associating each document
with the strategy that suits it best. We also showed that it is neces-
sary to periodically re-evaluate document-to-strategy associations,
as changes in documents’ access and update patterns are likely to
affect system performance [20]. These studies were performed for
static documents, whose updates originated from a single server.
We expect these results to be also valid in the case of application
replication. In view of these earlier findings, we propose to select
strategies on a per-cluster basis and re-evaluate selections periodi-
cally, or when there is a significant change in its access or update
patterns.

The “best” strategy for each cluster will be selected among a set
of candidate strategies. This is done by maintaining logs of read
and write accesses to the cluster and evaluating the performance
that each candidate strategy would have delivered in the recent past
with the recorded access patterns.

The performance of each strategy is measured using a cost func-
tion. This function is designed to capture the inherent tradeoff be-
tween performance gain by replication to performance loss by con-
sistency enforcement [18]. An example of cost function that mea-
sures performance of a strategy s during a time period t is follows:

cost(s, t) = α ∗ r(s, t) + β ∗ w(s, t) + γ ∗ b(s, t)

where r is the read latency, w is the write latency, b is the amount
of bandwidth used for consistency enforcement, and α, β and γ are
weights associated to each metric. These weights must be set by
the system administrator based on the system constraints and ap-
plication requirements. A bigger weight implies that its associated
metric has more influence in selecting the “best” strategy.

In our system, the origin server computes this cost function value
for each candidate strategy using trace-driven simulations. The
“best” strategy is selected as the one that yields the minimum cost.
When necessary, the system will dynamically switch strategies.

The selection of the best strategy using this method can be com-
putationally expensive, as it requires to evaluate every combination
of replica placement, consistency mechanism and choice of mas-
ter. If the computational overhead turns out to be high, we propose
to reduce the search space. For example, one can statically select a
master using a heuristic such as selecting the server with most num-
ber of writes. Then, selecting a replication strategy only requires
to explore all combinations of replica placement and consistency
mechanisms. This selection method reduces the number of evalua-
tions, thereby reducing the computational overhead. Further work
is needed to determine the effectiveness of this method.

5. RELATED WORK
For the past decade, numerous solutions have been proposed in

the context of caching systems for delivering Web content [21].
Most systems assume that the temporal locality of the client re-
quests is high, as these systems were initially built for deliver-
ing static Web documents. Unfortunately, this assumption is of-
ten wrong for dynamic applications. To handle Web applications,
some CDNs employ an approach where only static fragments of
the dynamic documents are cached and complete documents are
re-assembled by the caches for each request [2, 1]. However, these
systems are not suitable for hosting applications characterized by
a large number of unique reads or a significant number of writes.
Such applications can be distributed only using replication, where
the application code is executed at the replica servers.

Many systems exist that perform code distribution [3, 6]. How-
ever, these systems do not perform data replication and are suited
for applications that require small amount of data transfer and spend
most of their time in local computations.

In [19], the authors present a CDN for application replication,
where the code is replicated along with the data. However, the
CDN is limited to applications, where data are updated only by the
origin server.

A similar CDN for application replication is built by Akamai and
IBM, using Edge Computing Infrastructure [14] and WebSphere [9].
In this system, the code is replicated at the edge servers. The
data are also stored in the local replica server using a Java embed-
ded database called Cloudscape [8]. However, in this system, the
database is configured as write-through cache, where each write is

forwarded to the origin server. This may increase the write latency
as each write will incur wide-area network latency.

In [11] the authors propose an application-specific edge service
architecture, where the application itself is supposed to take care
of its own replication. In such a system, access to the shared data
is abstracted by object interfaces and each replica communicates
to another using a persistent messaging layer. This system aims to
achieve scalability by using weaker consistency models that suits
the application. However, this requires the application developer
to be aware of application’s consistency and distribution semantics
so that this knowledge can be used while developing these objects.
This is in conflict with our primary design constraint of keeping the
process of application development simple.

6. CONCLUSION
This paper explores the design space of systems that perform ap-

plication replication. We adopt a simple application model for the
system, which we hope will ease the process of application devel-
opment. The novelty of our approach is that it employs partial repli-
cation by segmenting the application data into data units, group-
ing units with similar access patterns into a cluster and replicating
clusters independently from each other. We believe partial replica-
tion will reduce the consistency overhead as updates are sent only
to replica servers that access them. This allows the system to ex-
ploit location-specific interests in request patterns. Key issues that
must be addressed to build this system are data clustering, cluster
representation and cluster replication. We discussed the research
problem contained in these issues and suggested solutions to solve
them.

We are currently working on building a prototype and plan to
test it with the TPC-W benchmark. We are also planning to inves-
tigate and evaluate different heuristics for selection of replication
strategies.

7. REFERENCES
[1] Akamai Edgesuite Architecture,

http://www.akamai.com/en/html/services/
edge_proc_targeting.html.

[2] ASP .NET Caching Features, http:
//authors.aspalliance.com/aspxtreme/
webapps/aspcachingfeatures.aspx.

[3] A. Awadallah and M. Rosenblum, The vMatrix: A Network
of Virtual Machine Monitors for Dynamic Content
Distribution, 7th Web Caching Workshop, August 2002.

[4] B. H. Bloom, Space/time tradeoffs in hash coding with
allowable errors, CACM (1970), 422–426.

[5] E. Brewer, Lessons from giant-scale services.
[6] P. Cao, J. Zhang, and K. Beach, Active Cache: Caching

Dynamic Contents on the Web, Middleware ’98 (Berlin),
IFIP, Springer-Verlag, September 1998, pp. 373–388.

[7] V. Cate, Alex – A Global File System, File Systems Workshop
(Berkeley, CA), USENIX, USENIX, May 1992, pp. 1–11.

[8] IBM Corporation, IBM Cloudscape.
[9] IBM Corporation, IBM Websphere.

[10] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder,
Summary Cache: A Scalable Wide-Area Web Cache Sharing
Protocol, IEEE/ACM Transactions on Networking 8 (2000),
no. 3, 281–293.

[11] Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng, and
Arun Iyengar, Application specific data replication for edge
services, 2003, pp. 449–460.

[12] Cary Gray and David Cheriton, Leases: An Efficient
Fault-Tolerant Mechanism for Distributed File Cache
Consistency, 12th Symposium on Operating System
Principles (New York, NY), ACM, ACM Press, December
1989, pp. 202–210.

[13] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and
John Riedl, An algorithmic framework for performing
collaborative filtering, Proceedings of the 22nd annual
international ACM SIGIR conference on Research and
development in information retrieval, ACM Press, 1999,
pp. 230–237.

[14] Akamai Inc., Akamai Edge Computing Architecture.
[15] J. Kangasharju, James Roberts, and K.W. Ross, Object

Replication Strategies in Content Distribution Networks, 6th
Web Caching Workshop (Amsterdam), North-Holland, June
2001.

[16] B. Krishnamurthy and C. Wills, Piggyback Server
Invalidation for Proxy Cache Coherency, Computer
Networks and ISDN Systems 30 (1998), 185–193.

[17] Hannes Marais and Krishna Bharat, Supporting cooperative
and personal surfing with a desktop assistant, ACM
Symposium on User Interface Software and Technology,
1997, pp. 129–138.

[18] Guillaume Pierre, Maarten van Steen, and Andrew S.
Tanenbaum, Dynamically selecting optimal distribution
strategies for Web documents, IEEE Transactions on
Computers 51 (2002), no. 6, 637–651.

[19] Michael Rabinovich, Zhen Xiao, and Amit Agarwal,
Computing on the edge: A platform for replicating internet
applications, Proceedings of the Eighth International
Workshop on Web Content Caching and Distribution
(WCW’03) (Hawthorne, NY, USA), September 2003.

[20] Swaminathan Sivasubramanian, Guillaume Pierre, and
Maarten van Steen, A case for dynamic selection of
replication and caching strategies, Proceedings of the Eighth
International Workshop on Web Content Caching and
Distribution (WCW’03) (Hawthorne, NY, USA), September
2003.

[21] Swaminathan Sivasubramanian, Michal Szymaniak,
Guillaume Pierre, and Maarten van Steen, Web replica
hosting systems, Tech. Report IR-CS-001, Vrije Universiteit,
Amsterdam, The Netherlands, May 2003.

[22] Wayne Smith, TPC-W: Benchmarking an e-commerce
solution.

[23] Haifeng Yu and Amin Vahdat, Design and Evaluation of a
Conit-Based Continuous Consistency Model for Replicated
Services, ACM Transactions on Computer Systems 20
(2002), no. 3, 239–282.

