
A

The XtreemOS Resource Selection Service

CORINA STRATAN, VU University Amsterdam

JAN SACHA and JEFF NAPPER, Bell Labs

PAOLO COSTA, Imperial College London

GUILLAUME PIERRE, VU University Amsterdam

Many large-scale utility computing infrastructures comprise heterogeneous hardware and software resources.

This raises the need for scalable resource selection services that identify resources that match application
requirements. Such a service must provide an efficient lookup in spite of changing resource attributes such

as disk size, changing application requirements such as installed software libraries, and changing system

composition as resources join or leave. We present a fully decentralized, self-managing Resource Selection
Service (RSS) algorithm by which resources autonomously select themselves when their attributes match a

query. An application specifies what it expects from a resource by means of a conjunction of (attribute,value-

range) pairs, which are matched against the attribute values of resources. The set of search attributes can
also be updated online to reflect new requirements. We show that our solution scales in the number of

resources and in the number of attributes, while being relatively insensitive to churn and other membership

changes like node failures. Our RSS continuously self-adapts its routing structure in response to variations
in the distribution of node attributes and queries. We show that this autonomous optimization maintains

performance and availability in a long-lived service even when the set of application requirements used to
select resources changes.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Sys-

tems; C.4 [Performance of systems]: Design studies; H.3.4 [Information Storage and Retrieval]:
Systems and Software

General Terms: Performance, Reliability

Additional Key Words and Phrases: XtreemOS, RSS, resource selection, self-adaptation.

1. INTRODUCTION

Applications are increasingly voracious in the computing resources they require to execute
efficiently. Moreover, the computing demand of many users changes over time. Instead of
statically assigning resources to applications, we observe a steady growth in the adoption
of the utility computing model in large-scale systems like Grids, Peer-to-Peer systems and
Clouds. According to this model, the execution of applications is outsourced to a (potentially
very large) shared external infrastructure of compute and storage resources that can manage
both long-term growth and short-term fluctuations in use.

In such large-scale systems, the capabilities of individual resources are often very di-
verse [Anderson and Reed 2009]. Therefore, an essential instrument is a resource selection
service capable of identifying suitable resources for executing each application. The resource
selection service should provide a lookup primitive that takes a specification of required
resource attributes and returns a list of machines suitable for running the concerned appli-
cation.

The research leading to these results has received funding from the European Union’s Sixth Framework
Programme under grant agreement IST-FP6-033576.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1556-4665/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 C. Stratan et al.

Although previous research work targets the problem of resource selection in distributed
systems, some challenges related to this problem have not been completely addressed yet.
An essential issue is the scalability, both in terms of the number of nodes the service can
support and in the supported number of node attributes; utility computing platforms might
need to maintain large numbers of attributes per node to represent hardware characteristics
as well as the (non-)availability of certain libraries or other administrative properties.

Besides scalability, another challenge in large scale distributed systems is their dynamic
and complex behavior: computing resources can join or leave the system at any time, creat-
ing so-called churn; whole data centers might become unreachable due to network failures;
operating systems and software systems might be upgraded or modified; and application
requirements might change over time. To maintain efficient behavior, the system needs
to dynamically self-adapt to all such changes. While some self-adaptation may occur in-
dependently at each node, other changes require coordination among a vast majority of
nodes to maintain the system’s correctness in the presence of churn. For example, nodes
can locally perform maintenance of the overlay by periodically checking for failed neighbors.
However, changing the attribute space to add or remove search attributes requires coordina-
tion among nodes to prevent conflicting views of the search space. Currently, such changes
requiring global coordination are done offline by administrators and are not amenable to
online dynamic control.

The resource selection solutions proposed previously range from centralized and hierarchi-
cal node directories to DHT-based solutions [Ranjan et al. 2008]. Most of these approaches
rely on delegation, where compute nodes register their attributes to registry nodes that
implement the lookup functionality. Registry nodes must then monitor the availability of
compute nodes and periodically refresh the registered attribute values to maintain accu-
racy. We claim that delegation should be avoided for four reasons: (i) it creates unnecessary
load on the system due to the periodic revalidations of the registered values and the need
to check node availability regularly; (ii) it creates inconsistency between the actual and
registered attribute values, for example, in the case of a failure of a compute node or its
corresponding registry node(s); (iii) it creates imbalanced workloads, requiring extra effort
to balance. DHT-based resource selection systems frequently divide the searchable space
on a per-attribute basis and each peer in the system is then responsible for keeping ref-
erences to the nodes in charge of those specific attribute values. This, however, generates
uneven load distribution when a particular attribute range becomes popular; (iv) it leads
to scalability problems: centralized and hierarchical registries can in principle handle any
number of attributes but have limited scalability in the number of nodes, particularly in a
dynamic environment that is exposed to failures, where managing a robust node hierarchy
is far from trivial [van Steen and Ballintijn 2002]. On the other hand, DHT-based solutions
usually scale very well with large numbers of nodes, but they do not efficiently support
multidimensional-range searches.

This paper extensively discusses the Resource Selection Service (RSS) implemented in
the context of the XtreemOS Grid operating system [Coppola et al. 2008]. RSS is a fully
decentralized system where each compute node is solely responsible for its own attributes
and self-organization is achieved through a gossip-based overlay comprising all the nodes.
Given the fact that in our system each computing resource acts as a node in the service’s
overlay, we will use the terms resource and node interchangeably.

Self-adaptation mechanisms enable RSS to automatically maintain performance in the
presence of churn, of changes in the query workload patterns and of changes in the distribu-
tion of node attribute values. These adaptation mechanisms enable good performance even
during online changes in the set of attribute values.

In RSS nodes are directly responsible for providing accurate and timely information
about their resources, and to minimize overhead queries are routed quickly to nodes that
can provide the desired resources. Each node is conceptually placed in a multi-dimensional

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:3

space where each dimension represents a resource-attribute type. A query is specified as
a list of (attribute, value interval) pairs, effectively demarcating a subregion in this multi-
dimensional space. Irrelevant attributes for a given job can be left unspecified. Nodes main-
tain a few links to other nodes in an overlay network so that queries can be forwarded to a
node that lies either in the associated subregion or is closer to that region. Once a query is
being processed within the associated subregion, it needs merely to be forwarded to enough
nodes within that subregion to satisfy the query. Gossip-based epidemic protocols [Voul-
garis and van Steen 2005] manage the overlay network, enabling high resilience to faults
with negligible overhead. A gossip-based aggregation protocol [Sacha et al. 2010] is used
to continuously estimate the statistical distribution of node attribute values and of query
ranges. Based on these estimations, RSS self-adapts the way the multi-dimensional space is
divided to minimize the routing overhead. This self-adaptation maintains routing efficiency
for queries even in the presence of large variations in the attribute values of resources or
the composition of queries. We are not aware of any other resource selection system that
can autonomically adapt to the dynamic composition of the attribute search space, the
distribution of attribute values, and the changing query workload.

This article is an extended version of a previous conference paper [Costa et al. 2009].
The additional contributions of this article are as follows: (i) we present and evaluate self-
adaptation algorithms that enable RSS to maintain high performance despite changes in
the query workload patterns and node attribute distributions; (ii) we present and evaluate
algorithms that allow system administrators to control the set of attributes considered by the
RSS without the need to stop the system; and (iii) we significantly extend the discussion on
the gossip-based overlay maintenance and present new algorithms that improve convergence
times.

The paper is organized as follows: Section 2 presents the RSS system model. Then, Sec-
tion 3 details the query routing protocol, and Section 4 shows how the overlay is constructed
and maintained in the presence of churn. Section 5 details the administration functionality
to change the attribute set, while Section 6 demonstrates the benefits and importance of
self-adaptation to attribute value and query load distributions. Section 7 discusses related
work, and Section 8 concludes the paper.

2. SYSTEM MODEL

In our model, each node is characterized by a set of (attribute,value) pairs such as memory,
bandwidth and CPU power. For the sake of simplicity, in this section we assume that
the number of attributes is fixed and known a priori. In Section 5 we discuss adding and
removing attributes online.

We represent the overlay as a d−dimensional space A , A1 × A2 × · · · × Ad, with Ai

being the set of all possible values for attribute ai and d the number of different attributes
considered. Every node X can therefore be represented as a single point with coordinates
(v1, v2, . . . , vd) where vi is the value of attribute ai for node X. A query is defined as a
binary relation over A, i.e., q : A → {0, 1} that selects nodes which satisfy the application
requirements. For simplicity, we focus on range queries so the query can be represented as
a range [min, max] such that only nodes within the range satisfy the query. More complex
queries can be represented as the union of different range queries. The set of nodes for which
q yields 1 represents the set of candidates to be allocated to the application. Note that q
identifies a subset Q(q) , Q1 ×Q2 × · · · × Qd, where Qi ⊆ Ai.

As an example, consider a space based on five attributes: CPU instruction set, mem-
ory size, bandwidth, disk space, and operating system. An example query could then be
formulated as:

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 C. Stratan et al.

(a) Nested Cells. (b) Neighboring Cells

Fig. 1. Attribute space partition with d = 2.

CPU = amd64
MEM ∈ [4GB,∞)
BANDWIDTH ∈ [512Kb/s,∞)
DISK ∈ [128GB,∞)
OS ∈ {Linux 2.6.19-1.2895, . . . , Linux 2.6.20-1.2944}

A query can be issued at any node; there is no designated node where queries should
initially be sent to. Finally, we assume that the underlying network is fully connected such
that each node can reach any other node, as it is common on the Internet.

3. QUERY ROUTING

This section discusses the base resource discovery protocol without self-adaptation. We
first describe the properties of the simple overlay, then detail query routing, building up an
understanding of why and how RSS self-adapts to large changes in the query distribution and
values of node attributes. Query routing in RSS can be optimized when the distribution of
node attribute values and query ranges are known. Learning and leveraging the distribution
of such values is the goal of the self adaptation mechanisms that are described in Section 6.

3.1. Overlay Network Topology

The model of node attributes described in Section 2 is naturally represented as a multi-
dimensional cube. In order to scale up to large numbers of nodes, we must limit the amount
of links that each node needs to maintain. A naive, inefficient solution is to connect every
node, for each dimension, with its most immediate neighbors, i.e., the nodes having the
most similar attribute values. When a node receives a query message q, it can then forward
it in a greedy fashion to the neighbor closest to the area Q(q). Unfortunately, this approach
creates dramatic latency and traffic overheads: since a query can be issued at any node, it
may need to traverse many nodes along every dimension to reach the area Q.

We instead opt for a hierarchical approach by recursively splitting the d-dimensional space
into smaller spaces, called cells, and providing each node with a link to the increasingly
larger subspaces of which it is a member. An example for d = 2 is shown in Figure 1(a).
The largest cell has been partitioned into four smaller cells which each, in turn, have been
split into four even smaller cells. Note that the attribute ranges of each cell do not have
to be regular: One cell may range over memory between 0 and 128 MB, and another one

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:5

(a) Neighbor links for node A.

A
B C

ED

F

G

H

L

P

R

Q

M N

I

O

T

U

S

Bandwidth
512 Kb/s

M
e
m

o
ry

256 Kb/s 1 Mb/s 2 Mb/s 4 Mb/s 10 Mb/s 100 Mb/s

256 Mb

512 Mb

1 Gb

2 Gb

4 Gb

8 Gb

128 Mb

(b) Query routing from node A

Fig. 2. Two-dimensional RSS system example. The dotted rectangle indicates a query area.

between 4 GB and 8 GB. This allows us to deal with skewed distributions of attributes
values. For the same reason, we do not impose an upper bound on attribute values: in our
example, all nodes with more than 8 GB of RAM will be placed in the lowest row of the
grid.

To distinguish among cells, we introduce the notion of level l. The smallest cells are at
level zero. These are denoted as C0. C1 cells are obtained by grouping four C0 cells. Similarly,
four C1 cells create a single C2 cell and so on. More formally, given a cube of d dimensions
and a level l, a Cl cell is obtained by joining 2d adjacent Cl−1 cells. Every node X belongs
to a unique Cl cell, denoted Cl(X).

The key to our approach is that when a node X is requested to handle a query q, X
forwards the query to the lowest level cell Cl(X) that overlaps with Q(q). This approach
requires that for each level l, X knows about nodes in Cl(X) \ Cl−1(X). We construct for
each dimension a neighboring subcell of Cl−1(X) by first splitting Cl(X) along dimension #0.
The half in which Cl−1(X) is contained, is then split along dimension #1. This procedure
is repeated until all dimensions have been considered, so that we will then have created d
subcells at level l of Cl(X), each of which is adjacent to one “side” of Cl−1(X). Figure 1(b)
shows the neighboring cells for a node A with the corresponding levels and dimensions.

We require that a node knows one other neighbor node falling in one of these subcells
for each level l > 0, and a set of neighbors for the subcell with the level l = 0. If no node
is present in a given subcell, then no link must be maintained. The nodes in C0(X) are
arranged in such a way that X can efficiently broadcast a message to each of them, for
example through an epidemic protocol [Jelasity et al. 2007]. Links need not be symmetric.
We denote the neighboring cell of node X at level l and dimension k as N (l,k)(X). Similarly,
the selected neighbor in N (l,k)(X) is denoted as n(l,k)(X). Notably, while the number of
Cl cells grows exponentially with the number of dimensions, the number of N (l,k) subcells
(and hence the number of neighbors required per node) grows only linearly, and will thus
not hinder scalability.

Figure 2(a) shows an example for node A (for the sake of clarity, we omit the connections
among the other nodes). First, A is connected with some other nodes in C0(A) i.e., B and
C. Then, for each neighboring cell N (l,k)(A) depicted in Figure 1(b), it must choose one
node n(l,k) to connect with. For l = 1, it has chosen nodes D (k = 1) and E (k = 0). For

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 C. Stratan et al.

l = 2, it has two available nodes for k = 0 (F is selected). There is no node in N (2,1)(A) so
no link is created. The same procedure is repeated for l = 3 (nodes O and H are selected).

Note that even if the nodes are initially uniformly distributed throughout the space,
over time changes in the node’s attribute value distribution can result in a highly skewed
distribution of nodes in the space. Our protocol benefits in some respects from a skewed
distribution. If most nodes fall within a small portion of the space, this means that on aver-
age nodes will have fewer neighbors because many neighboring cells will be empty (e.g., A
has no neighbor in N (2,1)(A)). However, as a previous example demonstrated query routing
can be adversely affected by extremely large cells because queries do not use hierarchical
routing within a cell. In Section 6, we describe our solution to eliminate large cells that can
develop after initial deployment.

3.2. Query Routing

We illustrate query routing in RSS by example as depicted in Figure 2(b). Assume that node
A is looking for σ = 4 nodes that have a network connection greater than 512 Kb/s and at
least 4 GB of RAM. Graphically, this is represented by the dotted rectangle in Figure 2(b),
representing the area Q. Node A will first find that itself does not fall into Q. A then
increases its scope starting from the highest level neighboring cells, until it finds one that
overlaps Q. In our example, this process ends immediately with l = 3, since an overlap is
found between N (3,0)(A) and Q. Hence, node A forwards the query to its neighbor n(3,0)(A)
responsible for that subcell (node O in the example). The latter will proceed in the same
way. However, to avoid backward messages, it considers only N (3,1)(O) or lower-level cells.

NodeO finds thatN (3,1)(O) partially overlapsQ. It therefore forwards the query to T , i.e.,
n(3,1)(O). T first includes itself in the candidate set as it matches the query requirements.
Then, since both N (3,0)(T) and N (3,1)(T) cannot be further considered to avoid backward
propagation of the query, it can just consider N (l,k)(T) with l < 3. It therefore routes the
query towards n(2,0)(T), namely U , which fulfills the query requirements. Since A asked
for 4 nodes, U continues to disseminate the query to S, in N (1,1)(U), which also matches.
Now, S cannot propagate the query further and thus replies back to U . Also U , T and O
do not have alternative paths so, following the return path, the query goes back to A. Node
A, however, can forward the query to H, since also N (3,1)(A) overlaps with Q. Here the
propagation occurs as above and in the end the query reaches node L, whose attributes
also match the query. This algorithm can easily be extended to support rapidly-changing
attributes, such as the available disk space of a node. Instead of representing this attribute
as an extra dimension, one can route queries according to other requested attributes, and
let resources check locally if they match the dynamic attribute as well. This is not feasible
in delegation-based systems.

As shown in Figure 2(b), query propagation follows a depth-first tree rooted at the orig-
inating node. This ensures that no loops are created. However, this tree is created dynami-
cally each time a new query is issued, exploiting the links of the overlay network and thus
dependent on the properties of the overlay. Compared with traditional approaches, where a
single tree is used, this solution is more efficient due to a better load distribution and much
lower maintenance costs, especially in presence of churn. With the self-adaptation discussed
later, maintenance of the cell boundaries is autonomous and efficiently distributes load even
in a highly dynamic system.

The query stops when all matching nodes have been found or the upper bound σ on the
number of requested nodes has been reached. We refer the interested reader to [Costa et al.
2009] for a formal description of the routing protocol.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:7

Table I. Default simulation parameters.

Parameter Default value

Network size (N) 100,000 (PeerSim)
1,000 (DAS)

Query selectivity (f) 0.125
Max. no. requested nodes (σ) 50

Dimensions (d) 4
Nesting depth (max(l)) 3

3.3. Evaluation

To assess the performance of our routing protocol with fixed cell boundaries, we built
two implementations. We deployed the first implementation on the DAS-3 cluster at VU
University Amsterdam [DAS-3]. We emulated a system with 1,000 nodes by running 20
processes per node on 50 nodes. The second implementation runs on top of the PeerSim
discrete event simulator [Montresor and Jelasity 2009]. This allows us to explore setups with
up to 100,000 nodes.

Based on these setups, we evaluated the performance of our system in terms of efficiency
and correctness. Efficiency is measured in terms of routing overhead, defined as the average
number of hops travelled by a query through nodes that did not match the query themselves.
Correctness means that each node that matches a query must be hit exactly once. We note
that we always obtained 100% delivery (i.e., all matching nodes receive the query message)
in all experiments where the system does not experience churn or changes in the node
attributes. We discuss the effects of churn and dynamic changes on delivery in Section 4.3
and Section 5.3.

In all experiments, including the ones on the DAS, we first randomly populate the space
with nodes following a uniform distribution and give them sufficient time to build their
routing tables. Effectively, this allows us to consider the space as nicely built up from
equally-sized d-dimensional cells. In later experiments, we drop the uniform distribution of
nodes and consider a skewed one. In these experiments we fix the cell boundaries to evaluate
the base protocol without self-adaptation.

We generate queries by selecting a subspace in the d-dimensional space such that it
approximately contains a desired fraction f of the total number of nodes N , which we refer
to as the query selectivity. Each query will therefore be satisfied by approximately f × N
nodes. Different queries refer to different subspaces. Each query is then issued repeatedly
from every node in the system. Unless otherwise specified, simulations are based on the
default parameters depicted in Table I.

Hereafter we focus on the performance of the routing protocol and basic overlay and defer
discussion of maintenance of the overlay to Section 4.

3.3.1. Effect of Network Size. Figure 3 plots the routing overhead of our system for different
network sizes N . In all configurations, the overhead remains very small, on average below
three messages per query. The overhead increases approximately logarithmically until 10,000
nodes, then decreases for large network sizes. This is due to the threshold σ = 50: when the
network is densely populated, a query often reaches its requested threshold very early and
does not need to iterate through all cells that may overlap with the query.

3.3.2. Effect of Query Selectivity. We now study the cost of queries with different selectivity,
that is queries that match different fractions of the total system nodes. We studied two
workloads. In the “best-case” scenario, each query is built such that it is satisfied by the
nodes in a single cell and matches exactly the required number of nodes. The “worst-
case” scenario consists of queries that require nodes from multiple subcells such that every
dimension and cell level is represented. This represents the worst-case scenario because this

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 C. Stratan et al.

 0

 1

 2

 3

 4

 5

 100 1000 10000 100000
R

ou
tin

g
ov

er
he

ad
Size

Fig. 3. Routing overhead vs. network size (PeerSim).

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

R
ou

tin
g

ov
er

he
ad

Selectivity

best case (σ=∞)
worst case (σ=∞)

worst case (σ=50)

(a) PeerSim

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.2 0.4 0.6 0.8 1

R
ou

tin
g

ov
er

he
ad

Selectivity

best case (σ=∞)
worst case (σ=∞)

(b) DAS

Fig. 4. Routing overhead vs. selectivity.

requires to route the query on every dimension and level, thus increasing the path to reach
all matching nodes.

Figure 4 shows results based on PeerSim and DAS. In the best-case scenario, the overhead
remains negligible for all selectivity values. The worst-case scenario, however, shows higher
overhead values, albeit still reasonable: e.g., in Figure 4(a), for f = 0.125 the overhead is
257 messages, to be compared with 12,500 matching nodes. This is due to the fact that
queries that span multiple subcells must be split to cover all requested cells. This overhead
decreases for queries with high selectivity: in these cases, the system contains less nodes
that do not match the query.

In most cases, we can assume that a user wants to identify a limited number of nodes out
of a large population of candidates that match the query. Due to the depth-first search of
our algorithm, such queries can be stopped when they reach the threshold σ. This explains
why experiments with σ = 50 always exhibit very low query overheads.

The overhead in the worst case does not change significantly between 100,000 (Fig-
ure 4(a)) and 1,000 nodes (Figure 4(b)). The reason is that the number of nodes to contact
to reach the matching ones does not depend on the size of the network but on the topolog-
ical properties of the space (i.e., the number of dimensions and the nesting depth), which
are the same in both systems.

In our experience, the (non-)alignment of queries with the cell boundaries is one of the
main factors which determines the performance of RSS. Ideally, cell boundaries would be
selected such that most queries cover exactly one cell. This is however very difficult to
impose, as users can in principle send any query workload to the system. We return to this

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:9

 0

 1

 2

 3

 4

 5

 2 4 6 8 10 12 14 16 18 20
R

ou
tin

g
ov

er
he

ad
Dimensions

PeerSim
DAS

Fig. 5. Routing overhead vs. dimensions.

issue in Section 6 where we discuss self-adaptation algorithms to dynamically control the
cell boundaries and minimize query cost.

3.3.3. Effect of the Number of Dimensions. A major difficulty in multidimensional peer-to-
peer systems is to be able to handle a large number of dimensions, which in our system
correspond to node attributes. Figure 5 charts the performance when using different num-
bers of dimensions, in both PeerSim and DAS setups. In PeerSim, the overhead increases
slightly with the number of dimensions, while in the DAS it remains roughly constant. These
variations, however, remain difficult to interpret, as such low overhead values typically fall
within statistical error margins. Note that in all cases the overhead remains very low.

3.3.4. Load Distribution. In a large-scale system, it is important that the load imposed by
the protocol is evenly distributed among nodes. Figure 6(a) shows the load in terms of
messages (queries and replies) dispatched by each node. We exercised PeerSim with two
different node distributions across the space. In the first one, each parameter of each node
is selected randomly in the interval [0, 80] using a uniformly random distribution. The second
configuration creates a hotspot around coordinate (60, 60, . . . , 60). Nodes were distributed
around that coordinate, with a standard deviation of 10.

In both cases, we observe that no node receives a load significantly higher than the others.
This is due to the way neighbor lists are constructed (see Section 4). Even in dense areas of
the hyperspace, each node selects its neighbors independently. The inherent randomness of
this neighbor-selecting protocol evenly distributes the links across all nodes of a given cell
which, in turn, leads to an even distribution of load among those nodes.

Figure 6(b) shows the load (as number of queries processed) seen by nodes comparing a
DHT-based implementation to our approach in the DAS setup using 16 dimensions. Node
attributes for each dimension are taken from the XtremLab BOINC project traces [Xtrem-
Lab Project] that record node properties seen for more than 10,000 hosts in BOINC projects
and are highly skewed. We use the Bamboo DHT [Rhea et al. 2004] and, as in SWORD [Al-
brecht et al. 2008], store a record of the nodes’ attributes in the DHT at a key for each
attribute value for each dimension. Searches are performed using a range query (imple-
mented as an iterated search) across a random dimension until the requested number of
nodes is found matching the query or the range is exhausted. Note that delegation pro-
duces a distribution with a heavy tail so that a few nodes receive a large number of queries
in the DHT approach while our approach sends relatively few queries to all nodes, thus
achieving an effective load-balancing. We chose SWORD for our comparison because it has
been successfully adopted as resource selection service in PlanetLab and it is based on the
publicly available Bamboo DHT. Nevertheless, the conclusions drawn can be extended to
other DHT-based approaches as well.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 C. Stratan et al.

 0

 10

 20

 30

 40

 50

 60

0-10
11-20

21-30
31-40

41-50
51-60

61-70
71-80

81-90
91-100

N
um

be
r o

f n
od

es
 (%

)

Number of messages per node (%)

Uniform
Normal

(a) Uniform vs. normal distribution (PeerSim)

 0.01

 0.1

 1

 10

 100

0 1-5
6-9

10-19
20-29

30-39
40-49

50-59
60-69

70-79
80-89

90-100

N
um

be
r

of
 n

od
es

 (
%

)

Number of messages per node (%)

Our protocol
DHT-based protocol

(b) RSS vs. DHT-based approach (DAS)

Fig. 6. Node load distribution

3.3.5. Number of Neighbors per node. The next evaluation concerns the number of links that
each node must maintain. Links belong to two categories. First, a node must maintain its
neighborZero list, which links to at most every other node present in the same lowest-level

cell. The number of cells in the system is
(
2d
)max(l)

, where d is the number of dimensions
and max(l) is the nesting depth. The cell number grows extremely fast with d and max(l),
so we expect that in practice a lowest-level cell will contain only nodes strictly identical to
each other (e.g., nodes belonging to the same cluster). However, even if that is not the case,
we can relax this condition by demanding that the nodes in the same lowest-level cell are
connected in an overlay. Such overlays are easy to construct and maintain [Jelasity et al.
2007].

Second, every node must maintain one link to a node in every neighbor cell for each
dimension and level. Each node thus has d × max(l) neighbor cells. However, because of
the huge number of cells, even a 100,000-node system such as our PeerSim example will
leave most cells empty. Nodes do not need to maintain a link to empty cells, so the actual
number of neighbor links per node will be much lower than d ×max(l). This is confirmed
in Figure 7(a): except for very low numbers of dimensions, the number of links per node,
both in its neighborZero list and in its neighbor cells, is virtually constant. Similar results
(omitted here for brevity reasons) are also obtained when varying max(l).

Figure 7(b) plots the distribution of the links per node in PeerSim, under uniform and
normal distribution. In both cases, this number remains under 20 links in total. We note,
however, that the normal distribution case requires slightly more links per node. This is due
to the fact that neighborZero lists will grow in the cells around the hotspot.

4. OVERLAY MAINTENANCE

An important issue in the RSS protocol is to efficiently maintain the overlay in the presence
of dynamic changes in the system. Nodes must be expected to join or leave the network
frequently, for example due to failures and recoveries. Also, a node’s attribute values may
change during the system’s lifetime. The distribution of requested values in queries will
change significantly, possibly even on short time scales. In this section we show how the
RSS overlay is proactively maintained in order to preserve routing correctness despite such
changes. In this section we do not address yet self-adaptation for performance optimization.

4.1. Principles

Overlay maintenance is realized using previous work from our group in which nodes can
dynamically self-organize into any pre-defined structure. The approach relies on a layered
gossip-based protocol [Voulgaris and van Steen 2005]. In this organization, each node takes

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:11

 0

 5

 10

 15

 20

 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 n

ei
gh

bo
rs

Dimensions

(a) Neighbors vs. dimensions

 0

 10

 20

 30

 40

 50

 60

 70

 80

0-3
4-6

7-9
10-12

13-15
16-18

19-21
22-24

25-27
28-30

N
um

be
r o

f n
od

es
 (%

)

Number of neighbors per node

Uniform
Normal

(b) Neighbors distribution

Fig. 7. Number of neighbors (PeerSim)

part in several overlays. Each overlay proactively maintains a list of links to other nodes in
the system according to a well-defined criterion. In the simplest setup we need two layers
to build and maintain the RSS overlay over time.

The bottom layer executes the Cyclon protocol [Jelasity et al. 2007], which aims to
connect all nodes into a randomly structured overlay. Each node maintains a small list of
Kc random links to other nodes in the system (with Kc � N). Each node periodically
selects one neighbor randomly among Kc and exchanges a few of its links with those from
its neighbor’s list. This way, all nodes are periodically provided with a refreshed set of links
to other randomly chosen nodes. The resulting overlay closely resembles a random graph
in which failing nodes are quickly replaced and removed from the lists of other nodes. Such
overlays have been shown to be extremely robust against partitioning even in the presence
of churn and massive node failures.

The upper layer, named Vicinity, aims to maintain links to semantically related nodes
rather than to random nodes. Vicinity executes a protocol very similar to Cyclon in that
each node has a set of Kv links to other nodes and periodically exchanges information about
a subset of its links Kc and Kv with its neighbors. However, unlike in Cyclon, nodes do
not select links to keep in their sets randomly but choose them according to a preference
function. All Vicinity links are associated with the attribute values of the nodes they
represent. The preference function is constructed in such a way that the node that runs
Vicinity selects at least one neighbor in each of its neighboring cells (assuming enough
neighbors are available). This way, RSS nodes build an overlay required to route queries
using the algorithm described in Section 3.

The two gossip layers interact in the sense that the underlying Cyclon layer continu-
ously feeds the top Vicinity layers with random nodes to make sure the system remains
connected. While the Vicinity layer are optimized for searching, the bottom Cyclon pro-
tocol is designed to handle network dynamics and to provide up-to-date information that
will allow proper adjustments in the semantic lists.

These gossip protocols involve a continuous succession of so-called gossip cycles, where at
the beginning of each cycle the node contacts one of its neighbors to exchange information
with. Typically, the length of a gossip cycle is in the order of seconds; for our experiments
we chose a gossip cycle length of 5 seconds.

In order to join the system, a new node needs to know the addresses of a few other
nodes (at least one) that already participate in the overlays, and with whom it will start
gossiping. No particular bootstrapping action is necessary beyond this point. The new node
will automatically be fed with the information it needs thanks to the regular gossiping
protocol.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 C. Stratan et al.

256 Mb

512 Mb

1 Gb

2 Gb

4 Gb

8 Gb

128 Mb

512 Kb/s256 Kb/s 1 Mb/s 2 Mb/s 4 Mb/s 10 Mb/s 100 Mb/s

Bandwidth

Mem
ory

E

C

F

G

H

L

I

P

R

Q

S

U

T

M

O

N

D

A
B

E

C

F

G

H

L

I

P

R

Q

S

U

T

M

O

N

D

A
B

CYCLON layer:
node A is linked
to a random
subset of
the whole
set of nodes.

1st VICINITY layer:
node A is linked
to one node per
neighbouring cell.

E

C

F

G

H

L

I

P

R

Q

S

U

T

M

O

N

D

A
B

2nd VICINITY layer:
node A is linked
to nodes from the
same zero-level cell.

Fig. 8. Example of links maintained by a node in different gossip layers.

As discussed in [Voulgaris and van Steen 2005] and Section 4.3, this approach for self-
organization converges very fast in the presence of major changes in node membership due
to the fact that if two nodes are neighbors of each other, then there is a high probability
that they have other neighbors in common.

4.2. Overlay maintenance implementation

In RSS we use two separate Vicinity layers on top of Cyclon. The role of the first layer
is to maintain links to nodes in neighboring cells. Specifically, each node X maintains, for
each level l and each dimension k, at least one link to a node placed in the neighboring cell
N (l,k)(X). When choosing their neighbors for this layer, the nodes also use their Cyclon
caches, which provide fresh lists of random overlay members.

The second Vicinity layer aims to maintain links to other nodes located in the same
zero-level cell. Unlike the first Vicinity layer which needs to find only one node in each
neighboring cell, here the overlay aims to discover as many zero-level neighbors as possible.
This dense inter-cell node mesh allows spreading queries efficiently within a zero-level cell
in order to discover matching nodes.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

ry
 R

a
te

Gossip Cycles

Query Delivery

(a) Churn = 0.1% per gossip cycle.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

ry
 R

a
te

Gossip Cycles

Query Delivery

(b) Churn = 0.2% per gossip cycle.

Fig. 9. Delivery vs. churn (PeerSim).

Figure 8 shows an example of the links maintained by a node in the three gossip layers.
Any node can simply lookup in its two Vicinity neighbor lists to find nodes in specific
cells, and thereby route queries.

4.3. Evaluation

Experiments presented so far assume that the list of nodes remains stable. This is clearly
unrealistic: any large network will exhibit a degree of dynamicity due to node joins and
leaves. In particular, ungraceful node departures may represent an issue, since the routing
tables of other nodes need to be updated to maintain correct routing. We claim, however,
that no particular measure should be taken to handle churn. Instead, the underlying gossip-
based protocol maintains correct routing tables continuously.

To support this claim, we evaluate our system with PeerSim in the cases of churn (a small
percentage of nodes continuously joining or leaving the system) and massive failure (a large
number of nodes failing simultaneously). We use as a metric the query delivery, which is
defined as the fraction of nodes that are delivered in response to a query, compared to the
total number of nodes that actually match the query. We also repeated the experiments on
the DAS, which shows results comparable to those obtained on PeerSim. We omitted the
charts for space reasons but they can be found in our previous paper[Costa et al. 2009].

4.3.1. Delivery under Churn. To evaluate the system under churn, we consider churn rates of
0.1% and 0.2% per gossip cycle. This means that respectively 0.1% and 0.2% of the nodes
leave the system and re-enter it under a different identity every gossip cycle. Considering
the gossip cycle length of 5 seconds, the 0.1% value corresponds to a churn rate of 0.2% per
10 seconds, which was observed in Gnutella [Saroiu et al. 2003]. However, many real-world
systems are considerably more stable [Iosup et al. 2007]. We use a network size N = 10, 000.

We measure the delivery over time by issuing one query every 5 seconds. Although in
these experiments the queries are issued with the same frequency as the gossip cycles, there
is no synchronization in the simulator between the query routing messages and the gossip
messages. In order to assess the effect of churn with the highest accuracy, we did not set
any threshold value for the queries, i.e., σ = ∞. Therefore, a delivery of 1 means that we
reached all the matching nodes. As shown in Figure 9, the delivery rate remains high both
for 0.1% and 0.2% churn rates. A delivery of 0.8 means that we retrieve 80% of all matching
nodes. However, we expect most users of a real system to issue queries with a threshold.
In such cases churn would only slightly reduce the number of reachable matching nodes
to choose from, but most queries would be satisfied according to their specification. For
instance, with a network size N = 10, 000 and a selectivity f = 0.125, a delivery of 0.8
yields around 1,000 nodes (i.e., N · f · 0.8), which will often be above the expected number
of nodes needed for a job.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 C. Stratan et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

D
e

liv
e

ry
 R

a
te

Gossip Cycles

Query Delivery

(a) Failure = 50% (PeerSim).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

D
e

liv
e

ry
 R

a
te

Gossip Cycles

Query Delivery

(b) Failure = 90% (PeerSim).

Fig. 10. Delivery vs. massive failure.

Also note that in these experiments, if a query cannot be propagated due to a broken
link, the message is dropped. An alternative is to delay the query until the overlay has
been restored by the underlying gossip protocols. This would have allowed delivery close
to 1. However, this approach would increase latency, because nodes, upon the detection of
a failed neighbor, would wait for the overlay to be repaired before forwarding the query.

4.3.2. Delivery under Massive Failure. This experiment studies delivery when a massive failure
of a large fraction of the system happens simultaneously. We measure the delivery over time
before and after the failure. Again, we do not use any threshold values or the previously
discussed mechanism to avoid evaluation bias.

Figure 10(a) and 10(b) shows delivery in PeerSim when we remove respectively 50% and
90% of random nodes from the network at once. We submit a query to the system once
in every 5 seconds (which is, once per gossip cycle). When the failure occurs many routing
paths get disrupted, so the delivery oscillates across a broad spectrum. However, the system
re-organizes itself rapidly. In the case of 50% simultaneous node failures, the system needs
less than 10 minutes to recover completely. Only in the case of 90% simultaneous failures,
the delivery could not be restored. The overlay gets partitioned by the massive failure so
full recovery is impossible. A fallback protocol could be used in this case to bootstrap the
system again.

5. ONLINE RECONFIGURATION

In a long-lived system, administrators will face the need to modify the set of attributes that
describe the computing resources. For example, if the users of a new application need a
specific library, the resource selection service must distinguish between the nodes on which
the library is available and the ones on which it is not; furthermore, it might also be necessary
to distinguish between different versions of the library. In this case, the administrators need
to add a new attribute corresponding to the library. Conversely, when a certain library
or feature is no longer used as a search criterion, the corresponding attribute should be
removed.

Changes to the attribute search set must be performed online because the resource se-
lection service is integral to using the system. Consequently, we designed a protocol that
allows RSS to update its attribute set at runtime. In essence, this translates into modifying
the dimensions of the RSS’s attribute space while simultaneously handling search queries.
In this section we introduce the update protocol and present a PeerSim-based evaluation.

In RSS, we consider three types of dimension set updates:

— Adding a dimension: this requires the administrator to specify the name of the new
attribute and provide a code module that can calculate the value for the new attribute at
any node in the system. Providing the appropriate security and access control mechanisms

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:15

UpdateDimensionSet(node):
neighbor ← select random neighbor
send (GossipRequest: my timestamp) to neighbor
receive (GossipResponse: neighbor timestamp) from neighbor
if my timestamp < neighbor timestamp then

receive(configuration) from neighbor
dimensions list← determine set of dimensions that need updates
send (DimensionsRequest: dimensions list) to neighbor
receive (DimensionsResponse: updated dimensions) from neighbor
update dimension set

if my timestamp > neighbor timestamp then
send(dimension set signature) to neighbor
receive (DimensionsRequest: dimensions list) from neighbor
send (DimensionsResponse: updated dimensions) to neighbor

Fig. 11. Pseudocode for a gossip exchange during which a node updates its dimension set.

is outside the scope of the paper. However, we envisage that every update (especially code)
is signed by an administrator and can be securely verified by every node in the system.

— Removing a dimension: for this operation, the administrator has to specify the name
of the dimension to be removed;

— Updating a dimension: this refers to changing the method by which an attribute value
is computed (for example, when a more accurate or efficient CPU usage method is devel-
oped); the administrator has to provide new code that computes the attribute value.

The two main challenges in performing such dynamic updates are to quickly propagate
the update to all system’s nodes and to handle the user queries consistently while the update
is in progress. The following two sections address these issues.

5.1. The update protocol

In RSS, new dimension sets are disseminated through a push-pull gossip protocol, which
allows for rapid (exponential rate) propagation and has advantages of high scalability, ro-
bustness, and low overhead. Specifically, we use the same Cyclon protocol that stays at
the base of the RSS overlay.

A dimension set update is introduced into the system by an administrator and can be
submitted to any node in the system. The administrator associates every update with a
timestamp. An update performed on a node creates a new node configuration, which consists
of a timestamp and a list of dimension specifications. A dimension specification contains
a dimension name, a code module for computing attribute values, and a timestamp of the
last modification done to that dimension (or the time when the dimension was introduced
if there have been no modifications).

We require that timestamps are totally ordered and newer configurations eventually over-
write an older configuration. We expect the frequency of updates be of the order of minutes,
if not hours. This means that a loosely clock synchronization among nodes such as the one
provided by the Network Time Protocol (NTP)1 is sufficient.

In the RSS, each node periodically gossips with a randomly-selected Cyclon neighbor in
order to check for dimension updates. We use a push-pull gossip model in which two gossip-
ing nodes both send and receive their current configuration timestamps. If the timestamps
are equal, nodes have the same configurations and no further communication is required.
Otherwise, the node with the older configuration sends its dimension timestamps to the
node with the newer configuration. The latter node then replies with the specifications for

1http://www.ntp.org

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 C. Stratan et al.

the dimensions that have been updated (i.e., those that have newer timestamps). The pseu-
docode for the gossip exchange is shown in Figure 11. As we show later in the evaluation
section, this simple push-pull protocol propagates updates to virtually all nodes in a large
system in just a few gossip cycles.

5.2. Query handling during updates

The RSS query routing protocol described in Section 3 requires that all nodes involved
in query processing must use the same configuration (i.e., the same set of dimensions).
Although the push-pull update protocol propagates new configurations very quickly to all
nodes in the overlay, inevitably there are moments during reconfiguration in which multiple
nodes have different dimension sets. Furthermore, since queries are processed in a certain
non-negligible time, even if all nodes could switch their configurations instantaneously and
synchronously, it might still happen that dimension sets are updated while queries are being
processed.

In order to be able to handle queries correctly during configuration changes, RSS nodes
temporarily cache old configurations. Each time a node receives a new configuration, it
caches its current configuration together with the current set of neighbors. To prevent a
maintenance overhead increase, the node runs the overlay maintenance protocols (Cyclon
and Vicinity described in Section 4) only for the most recent neighbor set. Cached config-
urations and corresponding neighbor sets are stored read-only and are eventually discarded
after a timeout.

When a query is generated by a node, it is associated with a configuration timestamp. All
nodes that receive this query must make sure that they use the same (potentially cached)
configuration to route the query consistently. In case a node receives a query for which it
does not yet have a configuration, it can obtain the needed configuration from the query
sender. However, as described later, we avoid such situations by delaying the use of new
configurations.

Another challenge in handling queries while dimension sets are being updated is related
to neighbor discovery. When a node receives a new configuration, it starts building a new
neighbor set based on the new dimension specifications. For a certain time the node has an
incomplete neighbor set because the overlay maintenance protocols need to run for a few
gossip cycles to discover all neighbors. In order to avoid routing queries over incomplete
neighbor sets, RSS nodes delay the use of new configurations. Specifically, when a node
generates a query and its current configuration is more recent than a certain threshold, the
query is associated with an old (cached) configuration. Using this mechanisms, nodes make
sure that queries are routed over fully converged and healthy overlays.

5.3. Evaluation

We evaluated the protocol for handling the reconfiguration of dimension sets in PeerSim.
The goals of the evaluation were to assess how fast the new configurations are propagated
in the system, and how much the query delivery rate is affected during such reconfiguration.

We present here the results of an experiment simulating a system with 10,000 nodes and
with 5 initial dimensions, in which we perform two reconfiguration operations: adding a new
dimension and then removing an older one. These operations are initiated, respectively, at
80 and 160 gossip cycles from the system startup.

This experiment shows that the updates are spread at an exponential rate among the
nodes, which is consistent with the theoretical results proved by the existing literature on
push-pull gossiping [Jelasity et al. 2007]. Figure 12(a) shows the results of our experiment
in this respect. On the y axis we represent the total number of nodes that are currently
using the updated dimension sets (each curve corresponding to one of the two updates).
The x axis represents the time. As can be seen from the figure, it takes only approximately
5 gossip cycles (25 seconds) to propagate an update in a 10000 nodes system. The curves

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:17

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200 250

N
o.

 o
f N

od
es

Gossip Cycles

Update Propagation

Update 1
Update 2

(a) Propagation of the dimension set updates
among nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

D
e

liv
e

ry
 R

a
te

Gossip Cycles

Query Delivery

(b) Query delivery rate.

Fig. 12. System behavior during two reconfiguration operations.

are used to represent the latest update obtained by the nodes; thus, once the second update
is issued, the first update will be used by fewer and fewer nodes.

Figure 12(b) shows the query delivery rate for the same experiment. The queries are issued
in this experiment at every 5 seconds. We noticed that, after a reconfiguration, the system
needs approximately 20-30 gossip cycles (100 - 150 seconds) to completely rebuild the overlay
and achieve a high delivery rate. In this experiment we again performed an exhaustive search
in the system (i.e., asking for all the nodes that satisfy some given requirements), which is
more than users normally require.

The communication overhead associated with a dimension set update is small. The mech-
anism used to update the dimension set is similar to the one employed to update the cell
boundary sets for self-adaptation. We estimate this overhead in Section 6.6.5.

6. SELF-ADAPTATION

The cell boundaries in RSS can be chosen arbitrarily as the routing algorithm works correctly
for any division of the virtual space. However, we observed that the placement of cell
boundaries has a strong impact on RSS’s performance. In this section, we describe the self-
adaptive algorithm that continuously runs at all RSS nodes and makes autonomous decisions
on cell boundary placement based on the current system load and node characteristics. As
we show later, this self-adaptive algorithm reduces query routing overhead in RSS up to 4
times.

The self-adaptation mechanism is integral to a long-lived resource service that can survive
significant changes in query load and the composition of the nodes in the system. This
mechanism enables RSS to support occasional changes in attribute values. However, using it
to support fast-changing attributes such as the CPU load or the current amount of available
memory would incur very frequent reconfiguration of the RSS overlay and, hence, it would
be highly inefficient. To avoid this overhead, RSS supports fast-changing attributes using
local filters. Queries are routed only based on static (or moderately changing) parameters.
Each matching node can then locally check if it also matches additional dynamic properties,
and decide to add itself to the result or not based on this local information. This reduces
the RSS reconfiguration overhead and allows queries to always use up-to-date information
about dynamic parameters. A similar approach of performing the system-wide search based
on static parameters, and then checking the dynamic values, was recently used by [Sharma
et al. 2011].

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 C. Stratan et al.

-inf

+ i n f

node

query

A (n)1

A (n)2

q 1
min q 1

max

q 2
min

B (0)1 B (1)1 B (2)1

B (0)2

B (1)2

B (2)2

q 2
max

(a) Suboptimal cell boundaries.

node

query

-inf

+ i n f

A (n)1

A (n)2

q 1
min q 1

max

q 2
min

B (0)1 B (1)1 B (2)1

B (0)2

B (1)2

B (2)2

q 2
max

(b) Optimal cell boundaries.

Fig. 13. RSS query routing in two dimensions. Every node is placed in a multidimensional space according
to its attributes, and queries are represented by hyper-rectangles of the attribute space. Optimum boundary
placement for a given query forms a single cell coincident with the query.

6.1. Performance Model

As discussed in Section 3, the cost of a query routing from a node where a query is submitted
to the cell matching this query, in terms of message transmissions, is bounded byO(D logK).
Since all messages are sent sequentially, this cost also determines query latency. Further, the
cost of searching within a zero-level cell (depth-first search) is proportional to the number
of nodes that belong to that cell. Thus, large zero-level cells might generate a high overhead
as they potentially require sending messages to many nodes that do not match the query.
The boundaries between cells should therefore be defined such that the nodes be more or
less evenly distributed among cells.

User queries represent another factor that should be taken into account when defining
the cell boundaries. Let us consider an example shown in Figure 13(a). A sample query
overlaps with 4 cells in a 2-dimensional space. The query needs to be routed up to 4 different
cells and a number of non-matching nodes potentially needs to be visited in each of these
cells. For this query, a better boundary placement would have been the one represented in
Figure 13(b), where only one cell needs to be explored and no non-matching nodes have to
be traversed. As we have shown in Section 3.3.2, there is a significant difference in overhead
between best-case queries (those that fit into one cell in the multi-dimensional space) and
worst-case queries (those that span a large number of cells). Hence, as a general heuristic,
it is desirable to have cells that fully overlap with frequently specified user queries.

For the system administrator it would be difficult to guess the optimal RSS boundary
settings: firstly, because of the large number of nodes, and secondly because of the system’s
dynamism. The distribution of node attribute values changes in time due to churn (thus
changing the size of the cells), and so do the queries issued by users. Of course, tuning
the cell boundaries to adapt to each received query would be impractical; however, making
periodic boundary adjustments based on statistical information for the recently received
queries can bring important improvements. Thus, the goal of our adaptation algorithm is
to periodically re-configure cell boundaries, according to the heuristics introduced above, in
order to minimize the query handling overhead and distribution skew.

6.2. Decentralized Self-Adaptation Approach

It should be emphasized that although RSS is fully decentralized with respect to node mem-
bership and query management, the set of cell boundaries in the attribute space represents
a global configuration parameter on which all the nodes must agree. If the nodes have dif-
ferent views on the cell boundaries, several query routing errors may occur such as queries
not being routed to some of the matching nodes or even routing loops. Our self-adaptation

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:19

algorithm must guarantee that all nodes eventually agree on how the attribute space is
divided into multi-dimensional cells.

Addressing such a coordinated self-adaptation in a distributed system requires finding a
sweet spot between a fully decentralized design where each node may choose its own settings
autonomously and a centralized one in which a single leader chooses a global configuration
(such as an attribute space decomposition) and imposes it on the rest of the system. The
first design faces the risk that nodes choose inconsistent configurations, while the centralized
approach introduces a single point of failure and a potential performance bottleneck.

In order to perform efficient coordination, RSS relies on self-elected leaders, where each
leader is in charge of carrying out one instance of the adaptation protocol through the whole
system. Instances of the protocol are run periodically, with the purpose of re-computing the
optimal set of cell boundaries according to the current attribute values distribution and
query workload. At each round, each node may elect itself as a leader with a probability
inversely proportional to the number of nodes in the system. This allows maintaining the
average frequency at which leaders emerge from the system. However, it does not prevent
multiple adaptation instances from executing simultaneously in the system. We therefore
impose a global order between protocol instances using a totally ordered timestamp so that
newer instances can supersede older ones. This also allows nodes to garbage collect old
instances whose leader failed before the completion of its task.

To obtain a global order among the protocol instances, we use a combination of physical
timestamps and unique node identifiers. For the physical timestamps, we assume, as dis-
cussed in Section 5.1 that the nodes use a clock synchronization protocol like NTP. The
synchronization errors introduced by such protocols are at least two orders of magnitude
smaller than the typical gossip frequency.

6.3. Gathering Monitoring Information

An adaptation leader needs information about the global system state in order to select
new cell boundaries for the RSS attribute space. Here as well, we observe a necessary
tradeoff regarding the quantity of information made available to the leader. On the one
hand, bringing detailed information about each node may allow the leader to make accurate
complex choices, but the costs of gathering such exhaustive information may be prohibitive,
especially in large-scale distributed systems. On the other hand, distributed aggregation
algorithms can efficiently compute functions such as the average of some attribute value
across the system. However, a single aggregate value such as an average might not provide
enough detail to optimize the global configuration. In particular, average values are very
sensitive to the presence of a small number of outliers in the system.

We argue that a reasonable tradeoff consists of estimating the statistical distribution of
node attributes across the system. A statistical distribution captures essential information
about the system: it shows the full spectrum of node characteristics, and the proportion in
which they exist. This allows nodes to make complex decisions where a balance between
multiple contradictory requirements is often involved. In particular, in RSS we are interested
in the statistical distributions for node attribute values and also for query ranges.

Estimating the statistical distribution of an attribute across a large-scale distributed sys-
tem can be realized both accurately and inexpensively. In this paper we use our own Adam2
algorithm which efficiently approximates node attribute distributions in a fully decentral-
ized manner [Sacha et al. 2010]. Adam2 approximates cumulative distribution functions by
estimating their values in a few carefully selected points and interpolating between these
known points. Each distribution approximation is produced by a sequence of aggregation
instances composed of a fixed number of gossip rounds. Instances iteratively refine the in-
terpolation point placement. Adam2 is also able to tune its own approximation accuracy
during the refinement process.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 C. Stratan et al.

B(0) B(2)B(1)

1

0

0.50

0.25

0.75

Attr ibute

Query

Ranges
max0

max1

max2

1

0

0.33

0.66

Attr ibute

Nodes

k1 k3k2k0

Fig. 14. The boundary calculation algorithm first finds (k0, . . . , k3) to balance the number of nodes in each
partition (above), and then places a boundary B in each partition at the largest grouping of query endpoints
(below).

In the self-adaptive RSS, instances of Adam2 are continuously initiated by self-elected
leaders. A leader maintains two distribution approximations for each dimension d: the node
attribute distribution Attrd, and the query range distribution Queryd. The attribute dis-
tribution is a function Attrd : R→ R defined such that Attrd(x) is equal to the fraction of
nodes in the system that have a value for attribute Ad below x. This distribution provides
the leader enough information to place cell boundaries to balance the number of nodes in
each cell.

Monitoring the distribution of queries is harder than monitoring node attributes because
queries are composed of ranges in each dimension. As we discuss next, for the placement
of cell boundaries, the leader is interested only in the distribution of the endpoints of
query ranges. We thus define the query distribution for dimension d as a function Queryd :
R → R such that Queryd(x) is equal to the fraction of all the endpoints of query ranges
(upper or lower) for dimension d. In order to reduce the influence of old queries and to
reduce bookkeeping, nodes cache received queries for only T time units to form the query
distribution.

6.4. Computing New Configurations

Using the distributions of node attributes and query ranges obtained from Adam2, the
leader of the instance creates a configuration consisting of a new unique, totally-ordered
timestamp and (possibly new) cell boundaries. The new configuration is then installed by
the leader and will then be spread by gossip as discussed shortly. Note that the leader
installs a new configuration even if it differs only slightly from the previous configuration
because the precise placement of cell boundaries is important to reduce query overhead.

To create a configuration with good expected performance, the leader must solve an online
optimization problem with future queries assumed to be similar to recent past queries. As
discussed previously, the optimal placement of boundaries for a particular query creates a

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:21

cell precisely the same size as the query to minimize routing costs to only one cell and within
the cell all nodes match the query. A larger cell than the query runs the risk of routing to
some nodes within the cell that do not match the query, while smaller cells than the query
result in higher routing overhead between all the cells that overlap the query. The tradeoffs
in cell size are complex and interdependent.

We use two heuristics to simplify the calculation of cell boundaries: (i) we attempt to
balance the number of nodes in each cell to prevent the formation of overly large or small
cells; and (ii) we attempt to place the boundaries of the cells coincident with the endpoints
of the most frequent query ranges. Specifically, the cell boundary algorithm calculates a
new set of K cell boundaries Bd(0), Bd(1), ...Bd(K−1) for each dimension d independently.
The calculation follows our two heuristics one after the other, as shown in Figure 14. In
the first step, the node attribute distribution is used to define initial intervals for bound-
ary values such that the nodes are roughly balanced between all cells. Specifically, K + 1
points are calculated, k0, k1, ...kK , such that Attrd(ki) = i

K . The calculation of ki points
is straightforward since Attrd is a non-decreasing function approximated by line segments,
which can be easily inverted. The final value for each Bd(i) boundary is later chosen such
that ki ≤ Bd(i) < ki+1 so that the cell determined by any two consecutive boundaries Bd(i)
and Bd(i+ 1) contains at most 2

K of all nodes.
In the second step, precise cell boundaries are calculated using the query distribution.

The goal of this phase is to place cell boundaries specifically at the most frequent query
range endpoints. The reason we chose the location of the most frequent endpoints instead
of using more complex clustering of endpoints was not the simplicity of this solution. The
benefits of reducing routing overhead only appear if the cell boundaries are exactly those of
the query: A small overlap of the query with another cell can force the query to be routed
to all nodes in the other cell. Hence, precise placement of cell boundaries is very important
to reducing routing overhead in the RSS.

The most frequent range endpoints are easily identified by the point of the largest change
in Queryd. The height of each change in the query distribution function is by definition
equal to the frequency of the corresponding query endpoint. Boundary Bd(i) is placed at
the greatest change in the query distribution between points ki and ki+1 as shown in the
bottom of Figure 14. If Queryd does not change between points ki and ki+1, boundary

Bd(i) is simply defined as ki+ki+1

2 . By aligning cell boundaries with common query ranges
we reduce both the hierarchical routing overhead since queries intersect with fewer cells,
and the intra-cell routing overhead since fewer non-matching nodes have to be visited when
exploring partially overlapping cells.

6.5. System Reconfiguration

Relying on self-elected leaders allows the RSS nodes to take unambiguous decisions on
the attribute space decomposition. However, to achieve a consistent system state we must
also ensure that all nodes receive the same new configuration and transition to the new
configuration in a coordinated manner, without a significant service disruption.

In order to spread the new set of boundaries from the leader to the rest of the system, we
extend the gossip protocol that we used in Section 5.1 for adding and removing dimensions.
In the extended protocol, a node configuration contains not only dimension specifications
but also current cell boundaries. Hence, when a self-elected leader decides on a new set of
cell boundaries, it generates a new configuration, which is then quickly propagated to other
nodes in the system by the push-pull gossip protocol.

Since the leaders are elected probabilistically, it is possible that multiple leaders choose
different cell boundaries and start concurrent reconfigurations. However, the total order on
timestamps guarantees that only one set of cell boundaries becomes the latest and eventually
overwrites all other boundary sets.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 C. Stratan et al.

6.6. Evaluation

The evaluation of our self-adaptation protocol aims to estimate the performance improve-
ment that this protocol brings to RSS. We evaluate our protocol in PeerSim, by comparing
two versions of RSS: one that uses the self-adaptation protocol, and one that does not use
it.

We consider two test cases in our evaluation: an adaptation to changes in the node
population, and an adaptation to changes in query workloads. In both test cases, we simulate
two types of changes: sudden changes (e.g., an addition of a new computing cluster to the
system, or a switch from one type of application to another), and gradual changes (e.g., a
system in which old machines are gradually replaced by new machines, or a slow transition
in the type of jobs that users tend to run in the system).

We assess the improvement in the RSS performance by measuring the RSS total query
cost, defined as the average number of nodes traversed by a query. This metric captures
both the query routing cost and query latency, since RSS queries traverse nodes sequentially.
We also investigate the impact of our self-adaptation protocol on the RSS responsiveness
by measuring the query delivery rate, defined as the average fraction of nodes correctly
discovered by a query. Finally, we measure the extra maintenance cost introduced in the
RSS by our self-adaptation protocol.

6.6.1. Experimental Setup. Although we evaluate our system through simulation, we use
real-world data to initialize node attribute values and several types of queries that closely
resemble the workloads from current Grid systems. Specifically, we obtained descriptions
of over 300,000 machines that participated in the the BOINC volunteer computing project
between 2004 and 2008 [Anderson and Reed 2009]. Based on these machine descriptions,
we initialize the following four node attributes in the RSS: measured CPU performance
in FLOPS, measured downstream bandwidth, amount of installed memory, and amount of
installed disk space.

We exercise the system with several types of synthetic query workloads that have similar
characteristics to the workloads observed in real Grid systems. Although a number of job
traces from Grid systems are available [Iosup et al. 2008], we could not use them directly in
our experiments because they mostly contain information about job runtime characteristics
(e.g., total running time, amount of used memory) and give very little information about
node characteristics required for job execution. In our experiments, we use the following
three workload types:

— Bag-of-tasks: a workload in which a few specific queries appear very frequently. This
corresponds to the “bag-of-tasks” type of jobs, that contain a large number of very similar
tasks (and thus, a large number of identical job submissions). We generate this workload
by creating three queries that account for 75% of all submissions (25% each) and drawing
all other queries randomly.

— Coarse-grained: a workload which simulates user-generated queries. In such queries,
attribute ranges are specified in course-grained units. For example, the amount of RAM
is specified in multiples of 512 MB. We generate these queries by rounding up random
attribute intervals.

— Random: a workload in which all the queries specify random intervals for attribute values.
We use this workload as a base for comparison with the other workloads.

6.6.2. Adaptation to Changes in Node Properties. The statistical distribution of node properties
may change dramatically when new machines are added to the system, or when they replace
older ones. To simulate such situations, we use two sets of node properties based on the
BOINC traces from years 2004 and 2008. For this particular experiment we replaced one
node attribute (available downstream bandwidth) with the installed kernel version: this
attribute suffers much more changes across the years, and allows to stress our system better.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:23

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600

M
e
s
s
a
g
e
s

Gossip Cycle

Query Cost

Nodes from 2004 Nodes from 2004 and 2008

(a) Without self-adaptation

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600

M
e
s
s
a
g
e
s

Gossip Cycle

Query Cost

Nodes from 2004 Nodes from 2004 and 2008

(b) With self-adaptation

Fig. 15. Total query cost for a sudden change in the node properties (with random queries).

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

M
e
s
s
a
g
e
s

Gossip Cycle

Query Cost

Gradual change

Nodes from 2004 Nodes from 2008

(a) Without self-adaptation

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

M
e
s
s
a
g
e
s

Gossip Cycle

Query Cost

Gradual change

Nodes from 2008Nodes from 2004

(b) With self-adaptation

Fig. 16. Total query cost for gradual changes in the statistical distribution of node properties (with random
queries).

The case when a new computing cluster is added to the system creates a sudden change in
the statistical distribution of node properties. We simulated this case by starting RSS with
5,000 nodes with attribute values obtained from the 2004 traces. After 300 gossip cycles,
we added 5,000 more nodes with attribute values from the 2008 trace. We used a workload
composed of random queries for these experiments. The total query cost, with and without
the self-adaptation protocol running, is shown in Figure 15.

The first part of Figures 15(a) and 15(b) show the effect of self-configuration in the RSS.
Both systems start with the same set of query boundaries chosen by the human operator,
and experience a query cost in the order of 800 messages per query. In the adaptive system,
these costs drop by a factor 4 after the first system reconfiguration. At time 300, both
systems see a cost increase. Part of this increase is due to the fact that the size of the
system is doubled, and therefore the number of nodes matching the queries also roughly
doubles. The adaptive system also sees an additional cost increase due to the fact that its
configuration is suddenly ill-suited to the workload. It however quickly adapts to this new
situation and returns to an average cost four times lower than the non-adaptive system.

The high cost values obtained in this experiment (and also in the other experiments
presented in this section) are due to the fact that, to stress the system, we did not set any
threshold for the number of nodes that should be returned by the queries. Thus, we perform
exhaustive searching in the overlay, which incurs a much larger cost than the limited search
requests which are usually issued by real-world applications.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 C. Stratan et al.

Figure 16 presents similar simulation results for a situation in which the node proper-
ties gradually change from one distribution to another. We create this change by starting
with 5,000 nodes from the 2004 BOINC trace, and subsequently replacing a few nodes at
each gossip cycle with new ones drawn from the 2008 trace. Again, the adaptive system
shows much better performance than the non-adaptive one. The non-adaptive system sees
a relative performance improvement until cycle 250. This is explained by the fact that,
in that phase of the experiment, there is a balance between the number of old and new
machines, and the nodes are distributed more evenly into cells. The adaptive system, on
the other hand, issues several relatively minor reconfigurations, and maintains a constant
performance despite the workload variations.

6.6.3. Adaptation to Varying Query Workloads. We now evaluate RSS adaptation to variations
in the query workloads it receives. We simulated 10,000 nodes, with attributes drawn from
the 2008 BOINC trace. We first consider sudden workload changes by switching the query
workload from one type to another every 300 gossip cycles. We start the experiment with
random queries. We then switch to bags-of-tasks, then coarse-grained queries, and then
bags-of-tasks again (similar to the first workload but with a different set of frequent queries).

Figure 17 shows the performance of the RSS in the adaptive and non-adaptive cases. The
non-adaptive system observes no significant cost difference between workloads, except for
the coarse-grained workload. This workload can in fact be considered as a best case for the
manual configuration of the system, since the query ranges are aligned to the same values
as the cell boundaries.

We can observe that here as well the self-adaptation protocol brings a significant cost
improvement. The first decrease in the cost, obtained at a short time after the experiment’s
startup, is due to the system adapting to the distribution of node properties. When the
workload changes at gossip cycle 600 and 900, we see a small cost increase due to the fact
that the previous configuration does not work best with the new workload. However, the
costs quickly decrease again thanks to self-adaptation. In particular, for the coarse-grained
workload, we can see that the self-adaptation algorithm finds a configuration very close to
the manually-configured “optimal” one from the non-adaptive system.

In order to evaluate the system’s behavior for a (more realistic) gradual change of work-
load, we model a slow transition from the coarse-grained workload to a bag-of-tasks. Fig-
ure 18 shows the results of this experiment. In the first 100 gossip cycles, all the queries
submitted to the system are coarse-grained. Then, we introduce bag-of-tasks queries with
an increasing frequency besides the coarse-grained queries, until the last 100 gossip cycles
when all the queries are bag-of-tasks. At the beginning of the experiment both systems use
the same “optimal” set of boundaries so their performance is similar. When the workload
starts to change, however, the non-adaptive system sees its costs increase twofold while the
adaptive system efficiently controls reconfigurations and maintains a constant performance.

6.6.4. Impact on the Query Delivery. We now evaluate the impact of a runtime reconfiguration
on the query delivery – that is, the number of nodes found by RSS divided by the total
number of nodes that actually match the query.

When the system starts, it takes 100 to 200 gossip cycles for each node to build a full
set of neighbors. In a system with no churn nor runtime reconfiguration, the query delivery
converges to 100%. When a reconfiguration occurs, each node needs to rebuild a new list of
neighbors according to the new cell boundaries. However, when the reconfiguration is small,
most of the previous neighbors can be reused in the new list. Only very few neighbors need
to be found anew.

Reconfigurations have a second type of impact on query delivery: once a query is sub-
mitted to the system the routing algorithm assumes that all nodes use a single consistent
set of cell boundaries. When a node receives a query that refers to an old set of boundaries

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:25

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200

M
e

s
s
a

g
e

s

Gossip Cycle

Query Cost

Random queries Bags−of−tasks 1 Coarse grained Bags−of−tasks 2

(a) Without self-adaptation

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200

M
e

s
s
a

g
e

s

Gossip Cycle

Query Cost

Random queries Bags−of−tasks 1 Coarse grained Bags−of−tasks 2

(b) With self-adaptation

Fig. 17. Total query cost for sudden changes in query workloads (nodes from 2008 only).

that it does not maintain any more, all it can do is terminate the query, leading to poor
query delivery.

Figure 19 shows the query delivery during the same experiment as in Figure 18: the
workload gradually changes from coarse-grained queries to bags-of tasks. We show two cases:
one in which each node immediately forgets its previous configuration when it receives a new
one, and the case where nodes maintain a read-only cache of recent configurations. When
previous configurations are not cached, the system experiences a large drop in query delivery
at each adaptation. This is due to the fact that most queries present in the system at the
time of reconfiguration will be terminated prematurely due to configuration inconsistencies.
Figure 19(b) shows that this effect disappears when using the caching policy. In this case,
delivery decreases only at the times of major reconfigurations when nodes need to seek for
new neighbors. In all cases, even during reconfiguration, delivery remains high, which should
remain sufficient for ensuring continuous service of the RSS within the computing grid.

6.6.5. The Cost of Self-Adaptation and Overlay Maintenance. An important goal of the adap-
tation algorithm is to incur only a small cost overhead compared to the system that is
optimizing. The most significant part of this overhead is the protocol’s communication cost,
which we estimate as follows.

The two main protocol phases that involve communication among nodes are the attribute
CDF estimation through the Adam2 protocol and the dissemination of new boundary sets.
As shown in [Sacha et al. 2010], the Adam2 protocol needs up to 100 gossip cycles to

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 C. Stratan et al.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

M
e
s
s
a
g
e
s

Gossip Cycle

Query Cost

grained
Coarse

tasks
Bags−of−

Gradual transition

(a) Without self-adaptation

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600

M
e
s
s
a
g
e
s

Gossip Cycle

Query Cost

grained
Coarse

tasks
Bags−of−

Gradual transition

(b) With self-adaptation

Fig. 18. Total query cost for a gradual change in the query workload (nodes from 2008 only).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Q
ue

ry
 D

el
iv

er
y

R
at

e

Gossip Cycle

Query Delivery Rate

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Q
ue

ry
 D

el
iv

er
y

R
at

e

Gossip Cycle

Query Delivery Rate

(b)

Fig. 19. Query delivery rate, without (a) and with (b) caching older configurations.

generate an accurate distribution approximation. During this time, a node typically sends a
total of 160 kB of data for each attribute and receives a similar amount of data. Considering
a periodicity of one gossip round per 5 seconds, during the aggregation phase each node
would need an average upstream bandwidth of 0.32 kB/s for each attribute. For an overlay
with 4 attributes, as the one used in our tests, the needed bandwidth during aggregation is
2.56 kB/s for each node.

Besides the overhead brought by the self-adaptation protocol, there is also a communi-
cation cost associated with the overlay maintenance protocols: one Cyclon layer and two
Vicinity layers. These protocols use gossiping to exchange the list of neighboring nodes.
In our experiments, for each protocol layer a node sends and receives, in each gossip round,
a list containing 15 other nodes. Each node is uniquely identified by the (IP address, port)
pair, which requires 6 bytes per node. Therefore, the size of a message sent or received in
a gossip round by a protocol layer is therefore smaller than 100 B, assuming 6 bytes (IP
address and port) are used per node. Thus, the cumulative size of the messages sent or
received by the overlay maintenance protocols is at most 300 B. Considering a periodicity
of one gossip round per 5 seconds, each node would need an average upstream bandwidth
of 60 B/s and a similar downstream bandwidth. Cumulating this with the bandwidth used
by the aggregation protocol, we obtain a total used bandwidth of 2.68 kB/s for each node
during aggregation.

The dissemination of new boundary sets has a significantly lower communication over-
head. In order to decide whether it is necessary to reconfigure the boundary sets, the nodes

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:27

periodically exchange their current timestamps of the sets. This information can be added to
the regular gossip messages used to maintain the overlay, increasing their size with only 4 B.
When a new boundary set is issued, each node receives it only once; for one attribute, the
size of the set is normally less than 150 B. Updating the overlay’s dimension set (discussed
in Section 5.1) has a similar overhead to the one associated with updating the boundary
set.

Caching old configurations during boundary set or dimension set updates incurs a small
memory overhead in the order of a few kilobytes.

Taking into account the time needed to propagate the new boundary sets after they
are calculated, it takes a total of up to 200 gossip cycles to effectively reduce the routing
overhead after a change in the system. Considering a gossip cycle of 5 seconds, the system
will be properly reconfigured within 15-20 minutes. In case a faster reaction time is necessary,
gossip cycles can be initiated more frequently, for example once per second; this would result
in a reconfiguration time of 3-4 minutes.

7. RELATED WORK

In this section we discuss previous research works related to resource selection in large-scale
distributed systems. We also introduce some relevant works that approach decentralized self-
adaptation, which is essential in the RSS to maintain good performance despite variations
of workload and node attributes.

7.1. Resource Selection

Traditional approaches for resource selection in distributed environments use centralized
or hierarchical architectures in which a few servers keep track of all the resources in the
network and offer lookup functionality to the users [Zanikolas and Sakellariou 2005]. While
these solutions are well-suited for clusters or small collections of PCs, they exhibit scalability
issues when the system size increases [Anderson and Roscoe 2006]. Hence, in recent years,
researchers put forth a large effort to devise decentralized solutions addressing large-scale
scenarios [Foster and Iamnitchi 2003].

The vast majority of these systems exploit DHTs to map resources to nodes in order to
distribute the search operations across different nodes [Ranjan et al. 2008]. Early approaches
maintain a separate DHT per attribute: a query is executed in parallel on every overlay net-
work and results are then intersected [Spence and Harris 2003; Cai et al. 2003]. Alternative
approaches reduce the d-dimensional space to a 1-dimensional space by means of a Space
Filling Curve, thus reducing the problem to routing in 1-dimensional space [Ganesan et al.
2004; Schmidt and Parashar 2003]. More recent work, inspired by CAN [Ratnasamy et al.
2001], partitions the d-dimensional space into smaller blocks that are assigned to specific
nodes, which are responsible for all resources falling in that block [Bharambe et al. 2004;
Gupta et al. 2004; Schütt et al. 2007; Tanin et al. 2007]. Finally, SWORD [Albrecht et al.
2008] explores several centralized and decentralized solutions for resource discovery; in the
decentralized solution, a different DHT key is generated for each attribute based on its
current value and each node is responsible for a continuous range of values.

An important issue in large-scale resource discovery systems is load balancing. Some of
the DHT-based approaches described above provide mechanisms to address this issue. For
example, Bharambe et al. [2004] introduce an additional protocol to reallocate responsi-
bilities, while Albrecht et al. [2008] propose to split the attribute space unevenly in order
to uniformize the load. Although these approaches achieve the desired results, they come
at the cost of increasing the complexity and overhead of the protocol. In contrast, RSS
provides load balancing by design, without the need for any additional mechanisms. Most
of the protocols described above have been designed to operate in environments where the
number of resources largely exceeds the number of nodes. In our scenario, the published
resources are the nodes themselves. Instead of having each node delegating the registration

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 C. Stratan et al.

of its attribute values to another node, each node represents itself directly in the overlay.
With this approach the load is spread across nodes without any additional overhead. Our
evaluation results from Section 3.3.4 show a more even distribution than using a simple
DHT-based solution.

High churn rates also negatively impact DHTs [Rhea et al. 2004] and inconsistencies can
arise between a resource and its representation in the DHT. In case of resource failure,
a failure detector must explicitly update the DHT. Conversely, resources might become
unreachable because their representative in the DHT has disconnected. In our approach,
each resource represents itself in the overlay, removing the inconsistency problem: when a
node’s properties change, or if the node fails, no registry node must be updated. The overlay
merely reconfigures to repair the broken links.

Beaumont et al. [2007] exploit Voronoi diagrams to equally partition the d-dimensional
space among nodes. This approach is elegant and scales well with the number of nodes.
However, as the authors note, the complexity of Voronoi diagrams is exponential with
the number of dimensions, i.e., number of different attributes. This practically limits this
system to supporting only two different attributes. Conversely, as we show in Section 3.3.3,
our protocol scales well with the numbers of dimensions.

A requirement in many distributed applications is to have computing resources that
are close to each other in terms of network latency. Albrecht et al. [2008] address this
requirement by supporting inter-node parameters such as network latency and bandwidth.
Although this approach offers great flexibility, it also adds a significant overhead to the
search operations. Zorilla uses a flooding mechanism to identify available resources, and
implements locality awareness by searching for computing nodes in the proximity of the
first node that was selected for a given application [Drost et al. 2006]. While RSS does
not support inter-node attributes, it can perform locality-aware searching by using network
parameters that are associated with a single node (such as Vivaldi coordinates). Thus, RSS
can be used to select nodes that are close in terms of network latency to a given location.

The two systems closest to our approach are [Jelasity and Kermarrec 2006] and Astro-
labe [van Renesse et al. 2003]. Similar to us, both systems rely on gossip-based protocols to
keep track of resources in an overlay.

Jelasity and Kermarrec [2006] propose to use gossiping to dynamically order the nodes
of an overlay according to any metric such as available disk space and memory. Ordered
slicing differs from our approach in two ways. First, ordered slicing is directed towards
finding a fraction of best nodes in a collection. In contrast, we aim for finding any fixed
number of suitable nodes. This is a different problem that cannot be easily solved through
ordered slicing. Second, ordered slicing requires all nodes of the overlay to collaborate in
answering any query. In our system, a single gossip-based overlay operates continuously
in the background to maintain neighborship links between nodes. Query routing based on
these links is very efficient, akin to routing in a structured peer-to-peer overlay. In other
words, we separate overlay maintenance from the problem of resource selection. These two
are intertwined in [Jelasity and Kermarrec 2006], so that each new query causes a rerun of
the whole protocol.

In Astrolabe, nodes are organized along a tree structure. Each node gossips only with
other nodes at the same level. Information about available resources is incrementally sum-
marized as it is reported from the tree leaves toward the root. The main purpose of Astro-
labe is to provide aggregated information on the status of (a part of) the system. However,
reporting aggregate information is not sufficient for resource selection. As the authors ac-
knowledge [van Renesse et al. 2003], Astrolabe can easily provide (approximate) information
on how many nodes fit an application’s requirements, but cannot efficiently produce the list
of nodes themselves.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:29

7.2. Self-adaptation

As we saw in Section 6, the optimal performance of the RSS requires to continuously self-
adapt a number of internal system parameters. However, for query routing correctness it is
essential to coordinate adaptations across the entire system such that (almost) all nodes use
the same value of such parameters at any given time. To our surprise, previous work in self-
adaptation in large-scale decentralized systems focuses entirely on tuning parameters at the
local level rather than on “global” coordinated parameters. For example, tuning local node
parameters can be used for decentralized load balancing [Steele et al. 2008], load-balancing
storage and replication in DHTs [Aberer et al. 2005], adapting the critical exponent of
power-law networks [Scholtes et al. 2008], and maintaining the optimal ratio of super-peers
to subgroups [Sanchez-Artigas et al. 2008; Snyder et al. 2009]. Each of these is a difficult
problem in itself, and one of the paramount difficulties of tuning local node parameters is
to ensure that the system converges without coordination to an optimum global state. Our
work instead focuses on directly adapting global parameters requiring coordination while
still maintaining a completely decentralized system. To the best of our knowledge, this is the
first work specifically addressing the self-adaptation of global parameters in a decentralized
setting.

Our work uses a decentralized monitor for P2P systems. Some large-scale monitoring
systems use hierarchical aggregation by building a tree-like topology to collect data (for
example, [van Renesse et al. 2003; Yalagandula and Dahlin 2004]). However, the hierarchical
topology is difficult to construct and maintain in the presence of churn, which is always
present in P2P systems. A different direction builds on fully decentralized gossip-based
aggregation to obtain compact statistical results like averages or total counts. This method
is simple to implement, robust to churn, and provides any node in the system with the
computed statistics. The compact values obtained are however not always sufficient for
optimization tasks. The decentralized monitor we use in this paper provides the statistical
distribution of the values of a parameter at low cost, while retaining all the advantages of
other aggregation methods [Sacha et al. 2010].

8. CONCLUSIONS

Future utility computing platforms will be too large to support (semi-)centralized resource
discovery. We have presented a fully decentralized protocol to select nodes according to
their properties. Each node represents itself in an overlay where resource discovery queries
can be routed. Self-adaptation of the routing overlay ensures efficient lookup even as the
queries and composition of the system change over time.

We have shown through simulations and actual deployments that this protocol scales well
with the number of nodes and dimensions. The overlay adopts a gossip-based infrastructure
that continuously maintains its routing tables, making our system extremely resilient to
churn. Also, no intricate measures are necessary to ensure load balancing, to recover from
link or node failures, or to adapt to changes in a node’s attributes. By keeping management
localized and by following an autonomous approach of “continuous maintenance,” our sys-
tem achieves a high degree of simplicity from which the properties discussed in this paper
emerge naturally.

Finally, we note that resource selection is just the first step towards a complete decen-
tralized job execution system and other issues (e.g., scheduling [Fiscato et al. 2008], trust,
and incentives schemes) deserve further investigation and are part of our future research
agenda.

REFERENCES

Aberer, K., Datta, A., and Hauswirth, M. 2005. Multifaceted simultaneous load balancing in DHT-based
P2P systems: A new game with old balls and bins. In Self-star Properties in Complex Information
Systems, LNCS 3460.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 C. Stratan et al.

Albrecht, J., Oppenheimer, D., Vahdat, A., and Patterson, D. A. 2008. Design and implementation
trade-offs for wide-area resource discovery. ACM Transactions on Internet Technology 8, 4.

Anderson, D. P. and Reed, K. 2009. Celebrating Diversity in Volunteer Computing. In Proceedings of the
Hawaii International Conference on System Sciences.

Anderson, T. and Roscoe, T. 2006. Learning from PlanetLab. In Proceedings of the Workshop on Real,
Large Distributed Systems.

Beaumont, O., Kermarrec, A.-M., Marchal, L., and Rivière, E. 2007. VoroNet: A scalable object net-
work based on Voronoi tessellations. In Proceedings of the IEEE International Parallel and Distributed
Processing Symposium.

Bharambe, A. R., Agrawal, M., and Seshan, S. 2004. Mercury: Supporting scalable multi-attribute range
queries. In Proceedings of the ACM SIGCOMM Conference.

Cai, M., Frank, M., Chen, J., and Szekely, P. 2003. MAAN: A multi-attribute addressable network for
grid information services. In Proceedings of the International Workshop on Grid Computing.

Coppola, M., Jégou, Y., Matthews, B., Morin, C., Prieto, L. P., Sánchez, O. D., Yang, E., and Yu,
H. 2008. Virtual organization support within a grid-wide operating system. IEEE Internet Comput-
ing 12, 2.

Costa, P., Napper, J., Pierre, G., and van Steen, M. 2009. Autonomous resource selection for decentral-
ized utility computing. In Proceedings of the IEEE International Conference on Distributed Computing
Systems.

DAS-3. http://www.cs.vu.nl/das3/.

Drost, N., van Nieuwpoort, R. V., and Bal, H. 2006. Simple locality-aware co-allocation in peer-to-peer
supercomputing. In Proceedings of the Workshop on Global and Peer-2-Peer Computing.

Fiscato, M., Costa, P., and Pierre, G. 2008. On the Feasibility of Decentralized Grid Scheduling. In
Proceedings of the International Workshop on Decentralized Self Management For Grids, P2P, and
User Communities.

Foster, I. and Iamnitchi, A. 2003. On death, taxes, and the convergence of peer-to-peer and grid com-
puting. In Proceedings of the International Workshop on Peer-to-Peer Systems.

Ganesan, P., Yang, B., and Garcia-Molina, H. 2004. One torus to rule them all: multi-dimensional
queries in P2P systems. In Proceedings of the International Workshop on the Web and Databases.

Gupta, A., Sahin, O. D., Agrawal, D., and Abbadi, A. E. 2004. Meghdoot: Content-based pub-
lish/subscribe over P2P networks. In Proceedings of the ACM/IFIP/USENIX International Middleware
Conference.

Iosup, A., Jan, M., Sonmez, O., and Epema, D. 2007. On the dynamic resource availability in grids. In
Proceedings of the IEEE/ACM International Conference on Grid Computing.

Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., and Epema, D. H. J. 2008. The
grid workloads archive. Future Generation Computer Systems 24, 7.

Jelasity, M. and Kermarrec, A.-M. 2006. Ordered slicing of very large-scale overlay networks. In Pro-
ceedings of the IEEE International Conference on Peer-to-Peer Computing.

Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., and van Steen, M. 2007. Gossip-based
peer sampling. ACM Transactions on Computer Systems 25, 3.

Montresor, A. and Jelasity, M. 2009. PeerSim: A scalable P2P simulator. In Proceedings of the IEEE
International Conference on Peer-to-Peer Computing.

Ranjan, R., Harwood, A., and Buyya, R. 2008. Peer-to-peer based resource discovery in global grids: A
tutorial. IEEE Communications Surveys and Tutorials 10, 2.

Ratnasamy, S. et al. 2001. A scalable content addressable network. In Proceedings of the ACM Interna-
tional SIGCOMM Conference.

Rhea, S., Geels, D., Roscoe, T., and Kubiatowicz, J. 2004. Handling churn in a DHT. In Proceedings
of the Annual USENIX Technical Conference.

Sacha, J., Napper, J., Stratan, C., and Pierre, G. 2010. Adam2: Reliable distribution estimation in
decentralised environments. In Proceedings of the IEEE International Conference on Distributed Com-
puting Systems.

Sanchez-Artigas, M., Garcia-Lopez, P., and Skarmeta, A. F. G. 2008. On the feasibility of dynamic
superpeer ratio maintenance. Proceedings of the IEEE International Conference on Peer-to-Peer Com-
puting.

Saroiu, S., Gummadi, K. P., and Gribble, S. D. 2003. Measuring and analyzing the characteristics of
Napster and Gnutella hosts. Multimedia Systems 9, 2.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

The XtreemOS Resource Selection Service A:31

Schmidt, C. and Parashar, M. 2003. Flexible information discovery in decentralized distributed systems.
In Proceedings of the IEEE International Symposium on High-Performance Distributed Computing.

Scholtes, I., Botev, J., Hohfeld, A., Schloss, H., and Esch, M. 2008. Awareness-driven phase tran-
sitions in very large scale distributed systems. Proceedings of the IEEE International Conference on
Self-Adaptive and Self-Organizing Systems.

Schütt, T. et al. 2007. A structured overlay for multi-dimensional range queries. In Proceedings of the
International Euro-Par Conference.

Sharma, B., Chudnovsky, V., Hellerstein, J. L., Rifaat, R., and Das, C. R. 2011. Modeling and
Synthesizing Task Placement Constraints in Google Compute Clusters. In Proceedings of the ACM
Symposium on Cloud Computing.

Snyder, P. L., Greenstadt, R., and Valetto, G. 2009. Myconet: A fungi-inspired model for superpeer-
based peer-to-peer overlay topologies. Proceedings of the IEEE International Conference on Self-
Adaptive and Self-Organizing Systems.

Spence, D. and Harris, T. 2003. Distributed resource discovery in the XenoServer open platform. In
Proceedings of the IEEE International Symposium on High-Performance Distributed Computing.

Steele, T., Vishnumurthy, V., and Francis, P. 2008. A parameter-free load balancing mechanism for
p2p networks. In Proceedings of the International Workshop on Peer-to-Peer Systems.

Tanin, E., Harwood, A., and Samet, H. 2007. Using a distributed quadtree in peer-to-peer networks. The
VLDB Journal 16, 2.

van Renesse, R., Birman, K. P., and Vogels, W. 2003. Astrolabe: A robust and scalable technology
for distributed system monitoring, management, and data mining. ACM Transactions on Computer
Systems 21, 2.

van Steen, M. and Ballintijn, G. 2002. Achieving scalability in hierarchical location services. In Proceed-
ings of the International Computer Software and Applications Conference.

Voulgaris, S. and van Steen, M. 2005. Epidemic-style management of semantic overlays for content-based
searching. In Proceedings of the International Euro-Par Conference.

XtremLab Project. http://xw01.lri.fr:4320/.

Yalagandula, P. and Dahlin, M. 2004. A scalable distributed information management system. In Pro-
ceedings of the ACM International SIGCOMM Conference. 379–390.

Zanikolas, S. and Sakellariou, R. 2005. A taxonomy of grid monitoring systems. Future Generation
Computer Systems 21, 1.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

