
Versatile Anycasting with Mobile IPv6

Michal Szymaniak Guillaume Pierre Maarten van Steen

Department of Computer Science, Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081HV Amsterdam, The Netherlands

Email: {michal,gpierre,steen}@cs.vu.nl

Abstract

Anycasting was introduced to facilitate efficient com-
munication between distributed Internet services and their
clients, as it allows client requests to be automatically
routed to nearby service instances. However, even though
several anycast implementations have been proposed, their
various limitations prevent them from being widely adopted
by large-scale distributed systems.

This paper identifies the key limitations of existing any-
cast implementations, and proposes how to implement any-
cast such that all these limitations are addressed without
harming the performance of anycast communication. Our
solution relies on address-translation capabilities present
in modern operating systems. These capabilities have orig-
inally been designed for communication with mobile nodes.
However, we demonstrate that one can exploit them to im-
plement versatile anycasting at low cost.

1 Introduction

Anycast is a network addressing and routing scheme
whereby data are routed to one of many possible nodes
forming an anycast group [24]. The chosen node is typi-
cally the “nearest” or “best” to the data sender as viewed
by the network topology, which enables Internet services to
easily redirect each of their clients to its proximal servicing
facility.

Anycasting by nature ensures communication locality,
which makes it very attractive to globally distributed sys-
tems. Various research efforts have proposed exploiting
anycast for content delivery [14], balancing load across root
DNS servers [17], or implementing multicast rendez-vous
points [21]. When implemented properly, anycasting can
also be used to develop distributed virtual servers in which
multiple nodes share the same contact address, or to identify
nearby members of peer-to-peer overlays.

However, even though several anycast implementations
have been proposed, none of them have been widely
adopted in large-scale distributed systems, which still tend
to implement anycast-like functionality on their own [4, 6].
We believe that the problem lies in a number of limita-
tions exhibited by existing and proposed anycast implemen-
tations. For example, many implementations do not provide
fine-grain control over traffic switching, cannot handle fail-
ures within anycast groups, and do not support connection-
oriented communication properly. While all these limita-
tions can be addressed using a proxying frontend, follow-
ing this approach makes anycasting inefficient and leads to
problems with scalability.

In this paper, we demonstrate that anycasting can be im-
plemented such that all these limitations are addressed, yet
without affecting the performance of anycast communica-
tion. Our solution exploits address-translation mechanisms
provided by Mobile IPv6, which has originally been pro-
posed to enable communication with mobile nodes. We
show that these mechanisms can also be used to switch
traffic among nodes forming anycast groups in a controlled
manner. Such switching enables our solution to transpar-
ently hand off traffic targeting the address of a given anycast
group to the address of any node within that group, which
effectively provides anycast functionality.

Our anycast implementation preserves the good proper-
ties of existing implementations. First, it exploits standard
network protocols, and so is readily available for global-
scale deployment. Second, it enables direct communication
between nodes forming anycast groups and their clients,
which makes that communication very efficient.

Equally important, our solution also addresses the lim-
itations exhibited by the current implementations. First, it
provides fine-grain control over traffic switching. Second,
it tolerates rapid changes in the composition of an anycast
group, as clients serviced by a node leaving the group can
transparently and swiftly be taken over by any other node
within the group. Third, it consistently routes traffic be-
tween an anycast group and its clients, thus allowing indi-

vidual nodes within that group to maintain connection state.
In our solution, switching a client to another node within the
group causes that connection state to migrate as well, imply-
ing that the client connection remains intact. The measure-
ments performed on our prototype anycast testbed demon-
strate that the only overhead of our implementation is the
short delay caused by traffic switching, which is a linear
function of network latencies between the nodes involved.

The possibility of implementing anycast functionality
using Mobile IPv6 has already been identified in two ear-
lier publications. The first one proposes to exploit mobile
extensions of IPv6 to route requests in content delivery net-
works [3], whereas the second one sketches how to redirect
clients to anycast nodes using Mobile IPv6 signaling [16].
However, both these studies build on early versions of the
Mobile IPv6 specification, which differ significantly from
the final protocol covered by this paper. Also, besides em-
ploying Mobile IPv6 to implement (relatively straightfor-
ward) one-time traffic switching, we also demonstrate how
Mobile IPv6 can be exploited to ensure anycast address sta-
bility and to implement multi-layer wide-area client hand-
offs. Finally, while the two earlier studies are purely the-
oretical in nature, we base our considerations on practical
experience with our prototype anycast testbed.

For lack of space, the detailed description and evaluation
of our proposed techniques could not be included in this
paper. We refer the interested reader to the accompanying
technical report [31]. Instead, this paper focuses on a high-
level description of our approach and on extensive analysis
of its properties in comparison with existing approaches.

The rest of this paper is structured as follows. Section 2
describes the requirements that must be met by any prac-
tical anycast implementation. Section 3 discusses to what
extent these requirements are met by a number of existing
solutions. Section 4 presents our anycast implementation,
and explains why it meets the requirements better than its
earlier counterparts. Finally, Section 5 concludes.

2 Requirements

Anycast is a network addressing and routing scheme
whereby data are routed to one of many nodes forming an
anycast group [24]. The chosen node is typically the “near-
est” or “best” to the data sender as viewed by the network
topology. For the sake of brevity, we refer to members of
an anycast group as to “anycast nodes.”

Every anycast implementation must meet two functional
requirements. First, one must organize a number of nodes
into an anycast group. Typically, the group provides some
service. Whereas the service details are irrelevant, the im-
plementation must allow the anycast nodes to be distributed
over a wide-area network, as anycast is typically used in
Internet-scale deployments [14, 17, 21].

The second functional requirement is that each anycast
group can be assigned a contact handle, such as an IP ad-
dress or DNS name, which can be used by the clients to
send traffic to that group. The anycast implementation must
ensure that traffic sent by a given client to a contact handle
reaches exactly one anycast node within the respective any-
cast group, preferably the one closest to the client in terms
of some network distance metric. Selecting such a node and
re-routing the traffic should remain transparent to the client
even when the composition of the anycast group changes.

In addition to meeting the above functional require-
ments, an anycast implementation must also have a num-
ber of non-functional properties to be useful in practice.
First, the communication between the clients and the any-
cast nodes must be efficient in the sense that anycasting can-
not introduce too much overhead in comparison to direct
communication between a client and an anycast node. Sec-
ond, the anycast implementation should be scalable enough
to handle global communication. Finally, the anycast de-
ployment should not require any changes to the existing In-
ternet infrastructure.

All these base requirements are met by the standard
routing-based anycast implementation. However, we ob-
serve that it is relatively seldom used by Internet applica-
tions, which tend to implement anycast-like functions on
their own. This is, for example, what happens in content
delivery networks, whose request routing subsystems work
very similar to anycast. We believe that anycast implemen-
tations meeting only the above requirements are still not
flexible enough to be widely adopted by contemporary dis-
tributed systems, which typically expect anycast to provide
much more than primitive traffic scattering [33].

The primary additional function that many distributed
applications require from anycast is fine-grain control over
dispatching traffic to individual nodes. A practical anycast
implementation should therefore enable an anycast group
to route anycast traffic according to any metric and not
only to network distance between clients and anycast nodes.
For example, in classical load-balancing schemes, traffic is
routed based on both network distance and the current load
of each node servicing the traffic [9, 25].

Another useful property of a practical anycast imple-
mentation is its resilience to potentially frequent changes
in the composition of anycast groups, as large-scale dis-
tributed systems are increasingly often composed of unre-
liable nodes [23]. In particular, an anycast group should be
able to quickly adapt to ungraceful departures of anycast
nodes, such that the group traffic is always serviced by the
nodes remaining in the group. This requires that the client-
to-node traffic-control mappings are not only fine-grain, but
also that they can be rapidly updated.

Since anycast effectively converts a group of anycast
nodes into a single virtual node, it is also desirable to make

the communication with anycast groups as reliable as with
regular nodes. This means in particular that updating the
traffic-control mappings inside an anycast group should not
break the communication between that group and its clients.
However, when clients communicate with anycast groups
using connection-based protocols such as TCP, rapid traffic
switching between anycast nodes might result in such con-
nections to be accidentally terminated [29]. A practical any-
cast implementation should prevent such problems by en-
abling the anycast nodes to transparently handoff client con-
nections between each other so that communication with the
anycast group is not disrupted upon traffic switching.

Finally, deploying anycast in the current Internet should
be simple, and should not require any special privileges.
For example, the routing-based anycast implementation re-
quires that special routes to anycast nodes are advertised in
the Internet. This means in particular that anybody deploy-
ing routing-based anycast needs to control routers able to
inject new routes, which might already be beyond the reach
of most regular Internet users.

3 Alternative Implementations

A number of systems have been proposed to provide
anycast-like functionality. This section analyzes to what ex-
tent they meet the requirements discussed in Section 2.

Proxying Frontend In the most straightforward ap-
proach, one can use a proxying frontend, which would for-
ward client traffic to individual nodes within its anycast
group, and whose network address would be advertised as
the anycast address of that group [8]. Such a solution offers
real-time, fine-grain control over the client traffic and can
easily support connection handoffs. However, when used
in wide-area setups, frontends tend to become performance
bottlenecks, as they limit network bandwidth available to
each anycast group and introduce additional latency to the
communication between clients and anycast nodes [7].

Client-side Software Another simple anycast implemen-
tation relies on the client-side application to manage anycast
communication. In that case, the composition of each any-
cast group must be revealed to the clients, which thus obtain
the flexibility of selecting individual anycast nodes, switch-
ing between them, and handling their failures [11, 15, 22].
However, disclosing the group composition to the clients
introduces the problem of keeping that composition consis-
tent. This might become expensive, especially when the
group composition is very dynamic. Also, given that client
applications lack detailed information about the load, per-
formance, and availability of individual anycast nodes, they
are by nature poorly suited to select the best anycast nodes

to communicate with [32]. The last problem is that this
approach is only applicable when developing new applica-
tions. It does not allow for incorporating anycast into legacy
applications that were not initially designed to support any-
cast communication, such as the Web.

DHTs Anycast functionality can also be implemented
with distributed hash tables (DHTs) [10]. Similar to what
happens in client-based implementations, DHTs customize
the client-side software, which limits their applicability to
new systems only. However, instead of letting a single client
handle the anycast communication, DHTs organize clients
and anycast nodes into overlays enabling the former to route
messages to the latter. Routing protocols utilized by DHTs
are designed such that messages can be exchanged even in
the face of frequent changes in overlay composition. There
is also no need to disclose the complete composition to any
single client. However, the problem with DHT is that selec-
tion of anycast nodes is performed implicitly by the rout-
ing protocol, which limits the application’s control over the
mapping between clients and anycast nodes.

Routing-based Anycast The standard anycast implemen-
tation exploits the properties of Internet routing protocols,
which enable any unicast IP address to be turned into the
anycast address of some anycast group [24]. To this end,
every node belonging to a given anycast group attaches the
same unicast IP address to its own network interface, and
lets the route to that address be propagated by the routing
system. This results in advertising the same IP address via
multiple routes leading to different anycast nodes. Given
that routers automatically select shortest routes to each des-
tination IP address, the unicast IP address effectively turns
into an anycast address, and all the traffic sent to that ad-
dress naturally splits among the anycast nodes.

While routing-based anycast has been used to implement
critical applications such as load balancing across root DNS
servers, it also has several disadvantages. First, similar
to the previous approach, clients are redirected to anycast
nodes irrespective of the situation within the anycast group,
which leaves that group with no control over client traffic.
Second, removing anycast nodes requires routing updates to
be propagated, which takes some time during which the af-
fected clients cannot contact the anycast group at all [27].
Third, routes to anycast addresses are difficult to aggre-
gate, which increases the overall number of routes to be
processed by routers worldwide [20]. Finally, since client
traffic is effectively redirected by third-party routers, on-
demand traffic switching between anycast nodes is practi-
cally impossible. While some of these limitations have been
addressed by various research efforts, the solutions typically
require either changes in routing protocols [13, 18, 28], or
upgrades to the Internet infrastructure [5, 20, 26, 30].

DNS Redirection Anycast-like communication can also
be implemented with DNS. To this end, all the anycast
nodes within a given group can share the same DNS name,
and the DNS server responsible for that name can split
client traffic by returning the IP addresses of different any-
cast nodes to different clients. This scheme has been suc-
cessfully employed by content delivery networks, as it inte-
grates transparently into the Internet communication model,
exploits the scalability of DNS, and provides fairly good
control over client redirection [12]. Some research projects
have even proposed to extend DNS with advanced anycast
functions such as performance-based selection of anycast
nodes [34]. However, DNS caching can severely delay up-
dating the redirection mappings, as many DNS servers are
configured to ignore short TTL values. This limits the appli-
cability of DNS-based anycast to very stable systems where
ungraceful node departures never occur. Also, since client
applications typically do not re-validate previously resolved
DNS names each time they access an anycast group, switch-
ing between anycast nodes is not possible until the DNS
name expires and is resolved anew.

Discussion The properties of all the above implementa-
tions are summarized in Table 1. Three stars are given to
implementations that meet a specific requirement well, two
stars mean limited support, and one star means no support
whatsoever. As can be observed, each implementation fails
to meet at least one requirement completely. This might
be why none of them is totally suitable for real large-scale
applications, and why systems like Akamai or Google use
complex combinations of multiple techniques to implement
efficient and reliable anycasting [4, 6]. On the other hand,
we believe that a single good implementation must meet all
the requirements at the same time. The following section
discusses how such anycasting can be implemented using a
small set of standard techniques adopted from mobile com-
munication.

4 Architecture

We propose to implement anycast free of all the previ-
ously discussed limitations by means of address-translation
capabilities provided by the Mobile IPv6 protocol. These
capabilities have originally been introduced to enable com-
munication with mobile nodes while they move among var-
ious networks. However, we demonstrate that one can also
exploit these capabilities to implement anycasting.

The general idea is to present an anycast group to its
clients as a single mobile node. The anycast functionality
is then implemented by informing each client that this (fic-
titious) mobile node has moved to the location of the actual
anycast node the client is going to communicate with. Sim-
ilar to what happens in mobile environments, announcing

the movement causes the client to redirect all its traffic tar-
geting the mobile node to the new location while keeping
the movement transparent to the client applications. This
effectively enables the anycast nodes to jointly service their
clients via a single anycast address.

The following section discusses some basic aspects of
Mobile IPv6, which is the standard protocol designed for
mobile communication. Then, we show how selected func-
tions of Mobile IPv6 can be used to implement versatile
anycast.

4.1 Mobile IPv6

Mobile IPv6 (MIPv6) consists of a set of extensions to
the IPv6 protocol [19]. MIPv6 has been proposed to en-
able any IPv6 mobile node (MN) to be reached by any other
correspondent node (CN), even if the MN is temporarily
away from its usual location. MIPv6 assumes that each MN
belongs to one home network, which contains at least one
MIPv6-enabled router capable of serving as a home agent
(HA). Such an HA acts as a representative for the MN while
it is away.

To allow one to reach an MN while it is away from
home and connected to some visited network, MIPv6 dis-
tinguishes between two types of addresses that are assigned
to MNs. The home address identifies an MN in its home
network and never changes. An MN can always be reached
at its home address. An MN can also have a care-of ad-
dress, which is obtained from a visited network when the
MN moves to that network. The care-of address represents
the current physical network attachment of the MN and can
change as the MN moves among various networks. The MN
reports all its care-of addresses to its HA.

The goal of MIPv6 is to ensure uninterrupted commu-
nication with MNs via their home addresses and indepen-
dently of their current network attachment. To this end,
MIPv6 provides two mechanisms to communicate with
MNs that are away from home. The first mechanism is tun-
neling, by which the HA transparently tunnels the traffic
targeting the home address of an MN to the care-of address
of that node (see Figure 1a).

The advantage of tunneling is that it is totally transpar-
ent to the CNs. Hence, no MIPv6 support is required from
any node other than the MN and its HA. However, tunneling
can also lead to two problems. First, if many MNs from the
same home network are away, then their shared HA can be-
come a bottleneck. Also, if the distance between an MN
and its home network is large, then tunneling can intro-
duce significant communication latency. These two prob-
lems are addressed by the second MIPv6 communication
mechanism, called route optimization. It enables an MN to
reveal its care-of address to any CN to allow direct commu-
nication (see Figure 1b).

Efficient Easy Traffic High-Churn Handoff
Communication Deployment Control Tolerance Support

Proxying Frontend * *** *** *** ***
Client-side Software *** * * *** ***

DHTs ** * * *** *
Routing-based Anycast *** ** * * *

DNS Redirection *** *** ** * *

Table 1. Comparison of alternative anycast implementations

Internet

Care−of Address

Home Address

Remote Network

Correspondent Node

Mobile Node

Home Agent

Home Network

Internet

Care−of Address

Home Address

Remote Network

Correspondent Node

Mobile Node

Home Agent

Home Network

(a) (b)

Figure 1. Communication in Mobile IPv6: tunneling (a), and route optimization (b)

Revealing the care-of address causes the CN to create
a translation binding between the home- and care-of ad-
dresses of an MN. The binding allows the CN to translate
between home- and care-of address in the incoming and out-
going traffic, which enables the CN to communicate with
the MN directly at its care-of address. This eliminates the
latency introduced by tunneling, and offloads the HA.

Route optimization is slightly less transparent than tun-
neling, as the IP layer at the CN is aware of the current
physical attachment of the MN. However, that information
is confined inside the IP layer, which effectively hides care-
of addresses from higher-level protocols such as TCP and
UDP. As a consequence, these protocols use only the home
address of an MN and the changes in the MN’s location re-
main transparent to applications running on CNs.

4.2 Versatile Anycast

Our anycast implementation exploits the fact that Mobile
IPv6 decouples home- and care-of addresses, effectively al-
lowing for the traffic directed to the former to be transpar-
ently redirected to the latter. This comes close to the any-
cast communication model, in which traffic sent to the any-
cast address of an anycast group is routed to the interface of
some anycast node within that group.

Recall that our solution causes each anycast group to ap-

pear to its clients as an MN. The anycast address X of that
group then becomes the home address of that fictitious MN.
The addresses of anycast nodes within the group, in turn, act
as care-of addresses to which the traffic can be redirected.
By disclosing different care-of addresses to different clients,
the anycast group can convince different clients that the MN
has moved to different locations (see Figure 2). Note that
the client’s higher (transport and application) layers retain
the illusion that they communicate with the one and only
node holding address X , as the translation between home-
and care-of addresses is confined in the network layer.

We implement the above communication model in two
steps. First, we make sure that any traffic targeting the
anycast address reaches one given anycast node within the
respective anycast group. Second, we enable that node to
transparently handoff clients to other anycast nodes within
the group. Realizing these two steps allows us to implement
versatile anycast, as we explain next.

4.2.1 Anycast Address Implementation

Constructing an anycast group requires creating its anycast
address first. Such an address should be independent of the
group composition, as the composition may change at any
moment. We achieve this independence in two stages. First,
we allow the anycast address to be provided by any anycast

INTERNET

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

MIPv6

APP

TCP

IPv6

MIPv6

APP

TCP

IPv6

I am connected to X

X’s current location is B

X’s current location is A

I am connected to X

Client 2

Client 1

Anycast Node A

Anycast Node B

at Anycast Address X
Anycast Group

believes
I am X

Client 2

Client 1
believes
I am X

Figure 2. Communication with an anycast group

node within the group, as IPv6 enables any node to generate
new IP addresses and attach them to its network interface.
Second, we ensure that the anycast address remains valid
despite changes in the group composition by allowing it to
be taken over by any other anycast node as necessary. We
refer to the anycast node holding the anycast address of its
group as a contact node.

To enable the anycast group to move its anycast address
at will, the contact node registers that address with its HA,
which results in a secret key being shared between the con-
tact node and the HA. The contact node shares that key with
some backup nodes within the group so that each of them
can impersonate the contact node. Impersonating enables
each backup node to take over the anycast address once the
contact node has left the group, which causes the HA to tun-
nel all the traffic targeting the anycast address to the backup
node. Doing so preserves the reachability of the anycast ad-
dress as all the traffic addressed to the anycast group keeps
on reaching some anycast node.

Although the anycast address is now stable, the perfor-
mance of anycast communication might still turn out to be
poor because extensive tunneling to the new contact node
can overload the home agent and introduce communication
latency. These limitations are addressed by route optimiza-
tion wherein the care-of address of an MN is revealed to
a CN, allowing for direct communication between them.
Since each anycast group appears to its clients and HAs
as a single regular MN, it can also use route optimization,
causing the clients to communicate directly with the con-
tact node using its actual address. This results in the perfor-
mance of anycast communication remaining optimal.

Note that the anycast group can prevent the contact node
from becoming a potential single point of failure by pro-
viding multiple anycast addresses and registering them in
the DNS. In that case, different anycast addresses can be
handled by different anycast nodes, each acting as a con-
tact node for its respective anycast address. Since these ad-

dresses never change, they can safely be registered in the
DNS for a long time. Further details of our anycast address
implementation can be found in the accompanying techni-
cal report [31].

4.2.2 Anycast Traffic Handoff

Our implementation of the anycast address ensures that all
the client traffic reaches the contact node. However, this
node should not handle all the traffic by itself. It therefore
needs a mechanism that allows it to transparently handoff
the traffic to other anycast nodes, which later may transpar-
ently hand it off again. We refer to the anycast node that
hands off a client as a donor, and to the anycast node that
takes over the client as an acceptor.

Recall that address translation in MIPv6 is performed ac-
cording to bindings created during MIPv6 route optimiza-
tion. As we discussed in the previous section, anycast
groups already exploit this mechanism to establish direct
communication between contact nodes and their clients.
However, since route optimizations are performed sepa-
rately for each client, the anycast group can also use them
to hand off individual clients between any pair of anycast
nodes. To this end, the anycast group carefully mimics the
signaling of a mobile node performing route optimization.

Switching the network traffic alone might not be enough,
as many applications communicate with their clients using
stateful connections such as TCP. In that case, the donor
must provide the acceptor with the state of all the network
connections opened by the client, so that the acceptor can
continue to communicate with the client using these con-
nections and does not reset them. Depending on the appli-
cation, the same might hold for the application-level state
of the client. Our anycast implementation provides anycast
nodes with the ability to exchange all such state informa-
tion as necessary. Further details of how this is done can be
found in [31].

4.3 Discussion

Our anycast implementation meets all the base require-
ments described in Section 2. First, it meets both functional
requirements, as it allows one to organize widely distributed
nodes into anycast groups addressable by anycast addresses
indistinguishable from regular IPv6 addresses.

Second, since clients communicate directly with indi-
vidual anycast nodes, the only overhead of anycasting is
the small initial delay caused by client handoff. Our mea-
surements performed on a prototype anycast testbed con-
firm our delay analysis and indicate that this delay equals
6 ∗ LCS + 3 ∗ LSS , where LCS is the one-way latency
between the client and the contact node, and LSS is the
one-way latency between the contact node and the anycast
node that ultimately services the client. When handing off
clients that already communicate with some anycast node,
some parts of handoff signaling can be performed in ad-
vance [31]. This allows the handoff delay to be reduced to
4 ∗ LCS + LSS .

Third, even though switching client traffic using Mobile
IPv6 requires the contact node to maintain some state about
each client, the size of that state is very small. The state
essentially consists of a single integer number denoting how
many route optimizations have been performed between a
given client and the anycast group. MIPv6 uses that number
to order its messages properly. The small state size enables
each contact node to handle a huge number of clients, which
makes our anycast implementation extremely scalable.

Finally, our implementation does not require any special
changes to the Internet infrastructure as Mobile IPv6 is a
standard Internet protocol. Given that MIPv6 has already
been implemented in many popular operating systems, it
should be easy to exploit our anycast implementation once
IPv6 is widely adopted as well [1, 2].

Apart from meeting the base requirements, our any-
cast implementation also meets the three additional require-
ments. First, the contact node can handoff clients to other
anycast nodes according to any set of metrics. This provides
the anycast group with full control over how the client traf-
fic is split among anycast nodes.

Second, the ability to handoff clients at will enables any-
cast nodes to leave the anycast group at any moment, as
all the clients serviced by these nodes can be transparently
taken over by any other anycast nodes remaining in the
group. This makes anycast groups tolerant to high churn
of anycast nodes, allowing anycast groups to be formed in
highly dynamic environments such as peer-to-peer overlays.

Third, our anycast implementation causes each client to
communicate with its specific anycast node, whose address
is revealed to the client during route optimization. This
enables clients to communicate with anycast groups using
popular stateful protocols such as TCP.

5 Conclusion

In this paper, we have identified a number of limitations
specific to existing anycast implementations. We have pro-
posed how all these limitations can be addressed by a single
efficient implementation based on Mobile IPv6, so that any-
casting can be widely adopted by contemporary distributed
systems. Our solution exploits address-translation mecha-
nisms originally introduced to enable communication with
mobile nodes. We have demonstrated that these mecha-
nisms can also be used to implement anycast. The only
overhead of anycasting is the short delay caused by initial
traffic switching, which is a linear function of network la-
tencies between the nodes involved. We exploit our anycast
implementation to develop ad hoc distributed servers that
preserve their contact address despite rapid changes in their
composition [31].

References

[1] MIPL – Mobile IPv6 for Linux.
http://www.mobile-ipv6.org/.

[2] Mobile IPv6 Systems Research Lab.
http://www.mobileipv6.net/.

[3] A. Acharya and A. Shaikh. Using Mobility Support for
Request-Routing in IPv6 CDNs. In 7th Web Caching Work-
shop, Aug. 2002.

[4] M. Afergan, J. Wein, and A. LaMeyer. Experience with
some Principles for Building an Internet-Scale Reliable Sys-
tem. In WORLDS, Dec. 2005.

[5] H. Ballani and P. Francis. Towards a Global IP Anycast Ser-
vice. In SIGCOMM, Aug. 2005.

[6] L. A. Barroso, J. Dean, and U. Holzle. Web Search for
a Planet: The Google Cluster Architecture. IEEE Micro,
23(2), 2003.

[7] E. Brewer. Lessons from giant-scale services. IEEE Internet
Computing, 5(4), 2001.

[8] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu. The
State of the Art in Locally Distributed Web-Server Systems.
ACM Computing Surveys, 34(2), June 2002.

[9] V. Cardellini, M. Colajanni, and P. S. Yu. Request Redirec-
tion Algorithms for Distributed Web Systems. IEEE Trans-
actions on Parallel and Distributed Systems, 14(4), Apr.
2003.

[10] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
Scalable Application-Level Anycast for Highly Dynamic
Groups. In International Workshop on Networked Group
Communication, Sept. 2003.

[11] M. Conti, E. Gregori, and W. Lapenna. Replicated Web Ser-
vices: A Comparative Analysis of Client-Based Content De-
livery Policies. In Networking 2002 Workshops, May 2002.

[12] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and
B. Weihl. Globally Distributed Content Delivery. IEEE In-
ternet Computing, 6(5), Sept. 2002.

[13] S. Doi, S. Ata, H. Kitamura, and M. Murata. Design, Im-
plementation and Evaluation of Routing Protocols for IPv6

Anycast Communication. In IEEE 19th International Con-
ference on Advanced Information Networking and Applica-
tions, Mar. 2005.

[14] R. Engel, V. Peris, E. Basturk, V. Peris, and D. Saha. Using
IP Anycast for Load Distribution and Server Location. In
The 3rd Global Internet Mini-Conference, Nov. 1998.

[15] Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar.
A Novel Server Selection Technique for Improving the Re-
sponse Time of a Replicated Service. In INFOCOM, Mar.
1998.

[16] B. Haberman and E. Nordmark. IPv6 Anycast Binding using
Return Routability. Internet Draft, Oct. 2002.

[17] T. Hardie. Distributing Authoritative Name Servers via
Shared Unicast Addresses. RFC 3258, Apr. 2002.

[18] W. Jia, D. Xuan, and W. Zhao. Integrated Routing Algo-
rithms for Anycast Messages. IEEE Communications, Jan.
2000.

[19] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in
IPv6. RFC 3775, June 2004.

[20] D. Katabi and J. Wroclawski. A Framework for Scalable
Global IP-anycast (GIA). In SIGCOMM, Aug. 2000.

[21] D. Kim, D. Meyer, H. Kilmer, and D. Farinacci. Anycast
Rendevous Point (RP) mechanism using Protocol Indepen-
dent Multicast (PIM) and Multicast Source Discovery Pro-
tocol (MSDP). RFC 3446, Jan. 2003.

[22] M. Oe and S. Yamaguchi. Implementation and Evaluation of
IPv6 Anycast. In 10th Annual Internet Society Conference,
July 2000.

[23] A. Oram, editor. Peer-to-Peer: Harnessing the Power of
Disruptive Technologies. O’Reilly & Associates, 2001.

[24] C. Partridge, T. Medez, and W. Milliken. Host Anycasting
Service. RFC 1546, Nov. 1993.

[25] M. Rabinovich and A. Aggarwal. Radar: A Scalable Archi-
tecture for a Global Web Hosting Service. Computer Net-
works, 31(11–16), 1999.

[26] P. Rodriguez and S. Sibal. SPREAD: Scalable Platform for
Reliable and Efficient Automated Distribution. Computer
Networks, 33(1–6), 2000.

[27] S. Sarat, V. Pappas, and A. Terzis. On the Use of Anycast
in DNS. In International Conference on Measurements and
Modeling of Computer Systems, June 2005.

[28] M. Shand and M. Thomas. Multi-homed Host Support in
IPv6. Internet Draft, June 1997.

[29] A. Snoeren, D. Andersen, and H. Balakrishnan. Fine-
Grained Failover Using Connection Migration. In 3rd
USENIX Symposium on Internet Technologies and Systems,
Mar. 2001.

[30] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet Indirection Infrastructure. In SIGCOMM, Aug.
2002.

[31] M. Szymaniak, G. Pierre, M. Simons-Nikolova, and M. van
Steen. A Single-Homed Ad Hoc Distributed Server. Techni-
cal Report IR-CS-013, Vrije Universiteit Amsterdam, Mar.
2005.

[32] L. Wang, V. Pai, and L. Peterson. The Effectiveness of Re-
quest Redirection on CDN Robustness. In 5th Symposium on
Operating System Design and Implementation, Dec. 2002.

[33] S. Weber and L. Cheng. A Survey of Anycast in IPv6 Net-
works. IEEE Communications, Jan. 2004.

[34] E. W. Zegura, M. H. Ammar, Z. Fei, and S. Bhattacharjee.
Application-Layer Anycasting: a Server Selection Archi-
tecture and Use in a Replicated Web Service. IEEE/ACM
Transactions on Networking, 8(4), 2000.

