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Abstract. BitTorrent users and consumer ISPs are often pictured as hav-
ing opposite interests, with end-users aggressively trying to improve their
download times, while ISPs throttle this traffic to reduce their costs. How-
ever, inefficiencies in both download time and quantity of long-distance
traffic originate in BitTorrent randomly selecting peers to interact with.
We show that biasing the link selection allows one to reduce both median
download times by up to 32% and long-distance traffic by up to 16%. This
optimization can be deployed by modifying only the BitTorrent trackers.
No external infrastructure nor specialized client-side software deployment
is necessary, thereby facilitating the adoption of our technique.

1 Introduction

Peer-to-peer applications have significantly changed the landscape of Internet traffic
management. While traditional client-server applications used to generate a major-
ity of localized download traffic, peer-to-peer applications generate large amounts
of global outgoing traffic. The impact is such that some fear the Internet will run
into serious capacity problems within a few years [1]. In particular, BitTorrent,
being reported as the foremost contributor of Internet traffic, has created a new
antagonism between end users and their ISPs. While BitTorrent implementations
deploy aggressive data transfer strategies to reduce file download times, consumer
ISPs are forced to buy transit from global networks, driving up their operational
costs. As a result some ISPs use throttling strategies to keep their costs under
control [2], which in turn impacts the download times of their customers.

The reason why BitTorrent generates so much global traffic is that each peer of a
given torrent selects other peers to exchange data with in a random fashion, without
any consideration of network distance. Each peer then continuously updates its
active connection set in a greedy fashion in favor of peers that can provide the best
upload rates. Although the relative worse performance of long-distance networks
may somewhat induce BitTorrent clients to eventually select peers located nearby,
no explicit mechanism exists in BitTorrent to balance the costs of each long-distance
data transfer vs. its contributed gain in terms of download time.

This paper shows that careful selection of the initial peer sets given to each
BitTorrent client can significantly reduce both the user-perceived download times
and the generated amount of long-distance traffic. While this idea is not new, all
existing implementations rely on the global deployment of either network mea-
surement infrastructures [3, 4] or client-side extensions [5, 6]. We argue that none
of these approaches are practical, since they both require massive deployment of
specialized software before beneficial effects become noticeable for the users and
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their ISPs. For example, while the authors of the Ono plug-in for Azureus can
legitimately be proud of having deployed their code over 400,000 clients [7], such
a number represents only a small fraction of all BitTorrent users and therefore has
little impact on global Internet traffic.

We propose to bias the connections maintained by BitTorrent clients towards
nearby nodes. Importantly, our approach requires no global software adoption or
deployment. The only required operation to optimize a whole torrent is to update its
tracker with our software, and install a handful of globally distributed “landmark”
servers. In our experiments we run a dozen of landmarks in PlanetLab, but in a
real setting we expect that multiple BitTorrent trackers would organize themselves
to become landmarks for each other. We refer to such reconciliation of both users
and ISPs interests as zero-day, in reference to zero-day security attacks which can
be launched at any time by mere exploitation of already deployed software.

Our approach relies on passive latency measurement. Peers are made to open
TCP connections with each landmark by adding the addresses of landmarks to
the first list of peers returned by the tracker. The measurements obtained from
the TCP connection are used to compute the location of the peer in a network
coordinate system [8]. The tracker can thus reply to any subsequent request from
that peer with a list of carefully selected peers in place of the usual random choice.
Applying this selection bias significantly reduces traffic cost for ISPs, while reducing
download times for the tracker’s end-users. We evaluate our approach through
carefully designed simulations, which we validate against PlanetLab. We show that
it allows to reduce the median download times by up to 32%, and the quantity of
global Tier-1 traffic generated by up to 16%.

2 Background

2.1 BitTorrent

BitTorrent is a peer-to-peer protocol for distributing large files [9]. Each file offered
for distribution uses a separate overlay, managed by one tracker responsible for
maintaining the overlay membership. To join a BitTorrent network, a client regis-
ters at the corresponding tracker, with the identity of the torrent to join and its
own contact address. The tracker adds the new peer to the membership list, and
returns a random subset of this list to the client to build its initial peer set.

BitTorrent relies on incentives to encourage participants to contribute their
upload bandwidth in the file distribution process. The incentive scheme is based on
reciprocation such that a peer uploads content only to those from which it receives
something in return. Each peer autonomously decides which peers to unchoke, that
is which peers to send file content to. Similarly, each peer can decide to choke a
peer that does not upload sufficient data and unchoke another peer in the hope
to obtain a better throughput. Each peer regularly contacts the tracker to request
a fresh list of peers as candidates for unchoking. BitTorrent thus uses only local
greedy policies in selecting the destination of uploaded traffic so as to maximize its
own download rate. Other possible optimization metrics such as the implied cost
of long-distance traffic are not taken into consideration.

Importantly, any form of a peer selection bias can be effective only when applied
to large enough networks. If the swarm is smaller than the peer set size (usually 50),
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Fig. 1. Swarm size distribution (number of peers in swarms with 2x − 1 < size ≤ 2x)

clients will have all peers in their peer set. We studied the distribution of network
sizes that any peer may be part of, by screen-scraping the number of peers from
150,000 torrents on a popular BitTorrent tracker. Figure 1 shows that about half
of the clients belong to a network of 82 peers or more, and are therefore likely to
benefit from biased link selection. In addition, we can expect the networks they are
in to generate the majority of traffic as many smaller networks are idle.

2.2 ISP economics

ISPs use two types of relationship to carry traffic between machines located in
different ISPs. First, two ISPs that exchange large amount of traffic may peer with
each other, that is establish a direct connection between their two networks. The
cost of a peering relationship is virtually constant regardless of the quantity of
traffic exchanged. Other traffic is sent through a Tier-1 ISP, whose business is to
carry traffic between ISPs. Tier-1 ISPs charge their service on a per-volume and
sometimes per-distance basis. Consumer ISPs therefore have a financial incentive
to reduce the volume of traffic that their users upload into Tier-1 ISPs.

BitTorrent, by uploading large quantities of traffic to randomly selected nodes
creates a financial burden to consumer ISPs. Since peering can only be done between
ISPs that are physically close, most of this traffic must be sent over Tier-1 networks.
Some ISPs have reportedly tried to reduce their costs by throttling BitTorrent
traffic. Although this may indeed reduce their peak traffic rate, it creates bad
customer experience. A better solution in our opinion is to deploy mechanisms
such that the majority of BitTorrent traffic is exchanged inside ISPs or through
peering relationships instead of Tier-1 ISPs. As we show later, such measures have
the favorable side effect of reducing user-perceived BitTorrent download times.

2.3 Peer-to-peer connection throughput

Download time improvements derive from the fact that reducing the latency of
paths has the side-effect of improving the connection throughput. We consider three
main parameters that together contribute to defining the throughput in BitTorrent.

Access link capacity Many users access the Internet through asymmetric cable
or ADSL connections. This has important implications for BitTorrent where each
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downloaded packet is in principle reciprocated with one uploaded packet: download
link capacities are rarely saturated by BitTorrent traffic. The only bandwidth bot-
tleneck concerns the upload capacity. Even though this limitation remains constant
regardless of the BitTorrent node selection strategy, upload capacities are not nec-
essarily utilized to their full extent in real scenarios, and potentially provide room
for download time improvement.

Internet throughput Although the core Internet links can be considered as well
provisioned compared to the end users access links, there exists a weak, inverse
correlation between latency and bandwidth [10,11]. Therefore, reducing the latency
of paths used for BitTorrent traffic can likely increase the throughput of these
connections. Similarly, shorter paths are likely to exhibit lower packet loss rates.

TCP throughput Any single TCP connection has a maximum achievable through-
put driven by inter-node latency, and regardless of the capacity of the underlying
network. This bottleneck is due to the fact that TCP window sizes are limited to
65536 bytes. In the total absence of packet loss, the maximum throughput of a
single connection is Wmax

RTT , where Wmax is the maximum window size and RTT is
the round-trip time. Any packet loss further reduces this maximum throughput.

3 Design and Implementation

Our approach relies on instrumenting the BitTorrent tracker so that it can estimate
inter-peer network latencies, and return biased selections of links to each peer. Each
time a peer P connects to the tracker, the tracker returns a set of other peers which
exhibit low latency paths to P . The client remains completely unaware of this bias
and behaves as usual. However, as we show in the next section, due to the low
latency of these paths, these connections are more efficient than in the traditional
BitTorrent and enable saving download time and reducing inter-AS hops.

To build this, one should address three questions: (i) the tracker must estimate
inter-peer latencies, although issuing N2 measurements in a torrent with N peers is
unacceptable; (ii) latency measurements must be realized with no explicit support
from the peers themselves to preserve our client-independent approach; (iii) the
tracker must select links to return to each peer so as to favor low latencies without
compromising other important properties of the BitTorrent swarm.

3.1 Latency estimation

Directly measuring the pairwise latencies between peers of a given torrent would
require O(N2) measurements, which is unacceptable for large torrents. A classical
solution to this problem is the use of GNP “network coordinates” where each node
is given a d-dimensional coordinate and inter-node latency is estimated as the
Euclidean distance between coordinates [8,12]. The advantage of coordinate-based
latency prediction is that it only requires latency measurements from each node to
d + 1 landmarks, as opposed to N2 for pairwise measurements.

In the initial phase, each landmark measures its round-trip-time to every other
landmark. Landmark coordinates can then be computed such that the Euclidean
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distance between coordinates matches the measured latencies. This translates into
a minimization problem over an error function ε. The procedure to determine the
coordinates for a regular node is similar to the initial phase. The round-trip-time
between the node and each landmark is measured and coordinates are computed
by minimizing the sum of the error function. GNP can predict over 90% of latencies
within 50% relative error. This is generally sufficient to find nearby hosts.

3.2 Passive latency measurements

Each time a new peer joins a torrent, we need to issue latency measurements
between the peer and each of the landmarks to derive the new peer’s coordinate.
However, we cannot expect any explicit support from the peer itself since we do not
want to rely on specialized software at the client side. Instead, we rely exclusively
on the BitTorrent protocol itself and on passive latency measurements.

Whenever a new peer registers at the tracker, the tracker returns a small set
of randomly selected peers (like a normal tracker), plus the addresses of the land-
marks. BitTorrent clients do not distinguish between actual peers and landmarks,
and thus open connections to the landmarks as well as other peers. Each landmark
can passively measure its latency to the peer by measuring delays between packets
during the TCP three-way handshake [13]. Once a connection is established, the
landmark gracefully closes the connection and reports the measured latency to the
tracker. When the tracker has received enough measurements from the landmarks,
it can compute the peers’ coordinate. The client, after several unsuccessful connec-
tions to landmarks, will contact the tracker again to obtain a fresh set of peers.
The tracker can then predict the latency between the client and other peers using
the Euclidean distance between the nodes’ coordinates.

While a tracker may decide to run landmarks itself, we expect small groups
of trackers to organize and provide each other with landmarks for their mutual
benefit. The associated workload is very low. Each client must be measured once
by each landmark, and the implied network overhead is only 68 bytes per client.
Landmarks are stateless and have a marginal footprint1.

3.3 Peer selection

When a BitTorrent client contacts the tracker for new peers, the tracker should
not systematically return the n closest peers to this client. First, doing this creates
a risk of partitioning the swarm into disjoint cliques. Second, it would reduce the
interest for a client to ask for new peer sets, since these sets would remain largely
identical from one request to another.

Instead, our modified tracker returns a number of peers selected randomly from
the 25% closest peers, plus a few more peers selected randomly in the whole swarm.
The first measure increases the gain of repeatedly contacting the tracker, while the
second keeps the swarm connected. We however note that in our experiments we
found it extremely difficult to partition BitTorrent swarms, even when the tracker
returns no long-distance link. We discuss this further in Section 4.5.

Another potential issue is that, when a new torrent is created, the tracker
initially has only few nodes that can be returned to the clients. If the tracker
1 All our implementations can be found at http://marcoslot.net/latorrent.htm.
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would return a full peer set, this would create a clique of nodes all connected to
each other. Any subsequent node that joins the torrent would find it difficult to
connect to any pre-existing node. We prefer returning a smaller number of links to
the first clients that show up, so that subsequent nodes can join more easily.

4 Evaluation

Evaluating our BitTorrent optimization in a realistic setting is very challenging due
to the difficulty of involving hundreds of users across the world. We evaluate our
system on PlanetLab, although the large bandwidths between PlanetLab nodes are
not representative of most BitTorrent users. We therefore also developed a simu-
lator capable of reproducing the dynamics of the underlying network by modeling
propagation delay, TCP throughput and upload capacity sharing. We feed it using
data obtained from actual BitTorrent clients and use PlanetLab experiments to
validate the simulator.

The simulator implements the standard BitTorrent algorithms [14,15], including
choking, optimistic unchoking, strict piece priority, request pipelining and rarest
first piece selection. Messages are delayed based on latency data and TCP through-
put is estimated after the popular PFTK model [16] with a window size of 216 bytes.

4.1 Experimental settings

We first present a set of experiments using real measurements taken from Planet-
Lab. We focus here on validating our simulator by comparing the results obtained
in both approaches. We deployed the original BitTorrent client (version 5.2.0) on
141 PlanetLab nodes, and our landmark implementation on 7 nodes. We fed our
simulator with the same configuration using measured latencies and packet loss
rates between these nodes.

We tested our system under two scenarios with maximum sizes of 200 and 1,000
nodes to analyze the impact of biased selection in small and large-scale BitTorrent
networks. To extract a representative set of peers to use in our simulations we
used the data provided by iPlane [4], a service providing accurate loss and latency
predictions for several Internet hosts. iPlane periodically participates in BitTorrent
swarms to measure also access link bandwidths. We used a random sample from
the set of peers for which iPlane measured the access link bandwidth.

To reproduce a realistic join rate, both in the PlanetLab- and iPlane-based
experiments, we took segments out of the Izal tracker log [17]. We introduce new
peers based on the offset of the starting times in the log and continue doing so
until we reach the maximum number of peers. The peers download a 256MB file
originating from a single seed, which remains available during the whole experiment.
The seed has above-average upload capacity. Since our completion times will not
match the tracker log we do not use the tracker departure times. Instead we let peers
stay with mean departure time of 120 seconds after completing their download. The
departure times are drawn from a Poisson distribution.

We measure the following metrics: (i) the download time, defined as the time
required for a peer to download the whole file; (ii) the latency of network paths,
weighted by the quantity of traffic actually exchanged via each path; and (iii) the
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Download time Latency

PlanetLab Simulated ∆(%) PlanetLab Simulated ∆(%)

Standard(median) 357 s 347 s 2.08% 57 ms 49 ms 14.0%

Biased (median) 286 s 288 s 0.7% 55 ms 45 ms 18.2%

Standard (90-th percentile) 1700 s 1704 s 0.2% 268 ms 254 ms 5.2%

Biased (90-th percentile) 1251 s 1387 s 9.2% 267 ms 240 ms 10.1%

(a) Download time and latency

PlanetLab Simulated ∆(%)

Standard 41% 39% 4.8%

Biased 39% 38% 2.5%

(b) Tier-1 Traffic

Table 1. PlanetLab vs. Simulated performance.
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Fig. 2. Number of peers with download time < x.

fraction of traffic exchanged through a Tier-1 ISP [18]. Each experiment was re-
peated 5 times in each configuration.

4.2 Simulator validation

To validate the accuracy of our simulator on a real wide-area network, we run our system in
PlanetLab and compared the results against those obtained from the simulator, fed with
the real values of latency, bandwidth and packet-loss rate as measured on PlanetLab.
Table 1 shows that our simulator is indeed successful at reproducing the behavior of a
real network, providing a good approximation of the real performance for all three metrics
introduced above2.

This is a key result for two reasons. First, it allows us to concentrate on simulations
to evaluate the effectiveness of our approach in settings typical of real BitTorrent swarms.
Second, it shows that our biased tracker reduces the median download rate by 20% and
the 90-th percentile by 26%. Conversely, the improvement is much less in terms of Tier-
1 traffic. The reason is that most traffic in PlanetLab is routed through few different
university networks, so the incidence of Tier-1 traffic is relatively limited. As we will
observe later in this section, in realistic settings the Tier-1 traffic accounts for more than
80% of the whole traffic.

2 Note that even though the relative value of the median error for the latency is rather
high (∼15%), its absolute value (<10ms) makes it practically negligible.
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Network size Standard Biased Gain(%)

200 nodes 81% 73% 11%

1,000 nodes 81% 68% 16%

Table 2. Percentage of traffic routed through Tier-1 ISPs.
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Fig. 3. Traffic exchanged over links with latency < x.

4.3 Simulation results

We now turn our attention to the evaluation of our approach based on simulations, and
using a more realistic set of nodes and network metrics taken from iPlane.

Tier-1 traffic. Our goal is to reduce both the cost of ISPs and the user download times.
To analyze the cost of ISPs we determine how much traffic is routed through a Tier-1
ISP. Table 2 confirms that a large fraction of standard BitTorrent traffic is routed through
Tier-1 ISPs, and therefore results in a direct financial cost for consumer ISPs. However,
using the biased tracker the Tier-1 traffic is reduced by 11% for a network of 200 peers
and by 16% for a network of 1000 peers.

Note that these results have been obtained using a uniformly random sample of nodes
from the iPlane dataset. This means that nodes are uniformly spread around the globe,
therefore making Tier-1 traffic unavoidable. However, many torrents are only of regional
interest [19]. We expect that our approach would perform better in such settings, since
the tracker would have more short paths to choose from.

Download time. Figures 2(a) and 2(b) report the CDF of download times for a 200-
node and a 1000-node network. The biased approach delivers significantly better download
times, with improvement of the median download time of respectively 12% and 32%. As
expected, large networks are more favorable to our approach because the biased tracker
then has more nodes to choose from.

These two graphs represent a worst-case scenario in the sense that the swarm has only
a single seed. However, real torrents normally have several seeds available at any time. In
the data from Figure 1 we observed on average 5 seeds for every 3 leechers. Figure 2(c)
shows a 200-nodes scenario where the swarm contains 100 seeds and 100 leechers. The
median gain in download time raises from 12% to 22%.

Traffic latency. To get a better feel for the distance over which traffic is sent, Figure 3
shows the CDF of latency experienced by traffic. Results show a significant decrease of
traffic latency when using the biased tracker, with median improvements of respectively
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Fig. 5. Median and average download times for different bias degrees.

33% and 75%. Again, the large-scale network exhibits a greater improvement due to the
wider range of participating peers.

4.4 Adaptive sample size

In previous experiments, the tracker always returned a full peer sample size (50 peers).
However, as we discussed in Section 3.3, this strategy degrades the performance because
early nodes may establish links to distant nodes and later prevent closer nodes to contact
them. We now evaluate our system when the size of the sample returned is 2×

√
N , where

N is the current swarm size.
Figure 4 evaluates the adaptive strategy against the standard and biased ones in the

200-leechers scenario. To better isolate the phenomenon we focus only on the first 200
peers which completed the download. Clearly, the overall performance largely benefits
from the adaptive solution. While the biased tracker achieves a gain of 12% compared to
the standard tracker, adapting the sample size to the current size of the network brings an
improvement of 18%. Remarkably, even an unbiased tracker shows a small improvement
using this technique.

4.5 Bias degree

As detailed in Section 3.3, in our biased implementation the tracker returns a few random
nodes (10% in our experiments) to prevent network partitions. Figure 5 shows the effect of
varying the bias degree in the 200-leechers scenario, ranging from a fully random selection
(bias=0) to a fully biased one (bias=1). Even with a full bias no network partitioning
appears, and our system performs even better. The reason is that the default size of the
peer set (50 nodes) is large enough to ensure strong connectivity of the entire network.
On the other hand, for lower values of the peer set, it can foresee that partitions may
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Fig. 6. Median and average download times for a client-based implementation against
different deployment degrees.

occur. Investigating the impact of bias using different values of the peer sets is part of our
immediate research agenda.

4.6 Deployment degree

We claim that modifying only the tracker allows to optimize entire swarms at a time, while
client-based approaches depend on the number of clients which implement the latency-
based bias. Figure 6 shows the performance of an Ono-like approach [6] for different
fractions of Ono-enabled clients in the swarm. It is difficult for us to reproduce the ac-
curacy of Ono’s latency estimations. Instead, we assume here that enabled clients have
a perfect latency predictor among themselves to select nearby links. We observe that,
despite the very conservative assumptions taken (ideal latency prediction), in order to
achieve comparable performance to our approach, more than 50% of clients must partic-
ipate. In real settings, with inaccurate latency prediction, this number would reasonably
be even higher. Given the vast number of BitTorrent implementations, this would be very
hard to achieve in practice.

5 Related Work

Several approaches proposed to bias BitTorrent traffic towards nearby peers. However,
they all rely on large external infrastructures or client-side modifications, which largely
hampers their applicability.

Bindal et al. proposed bias based on peers’ ISPs [5]. A peer selects k peers within the
same ISP and the rest from other ISPs. Unfortunately this requires modified BitTorrent
clients which, as previously discussed, makes deployment difficult. Moreover, classifying
peers by ISPs is hard since this information is usually not public. The authors suggest
some alternatives (e.g., having ISPs publishing their IP ranges or append a tag to the
HTTP request to the tracker) but this relies on the unlikely collaboration from ISPs.
Finally, the whole approach depends on a high number of peers sharing the same ISP,
which rarely happens in practice.

The iPlane project monitors routes from hundreds of locations to build a single, co-
herent view of the Internet [4]. The authors show how iPlane can help build a biased
BitTorrent tracker. Rather than using only network distance, it also uses loss rates to es-
timate the TCP throughput between peers. The fine-grained network measurements and
models of iPlane may produce more accurate results than GNP, but they require a huge
infrastructure. This infrastructure is currently deployed on PlanetLab for research pur-
poses, but deploying a commercial or public alternative would be much more expensive
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than a cooperative GNP system. Finally, any iPlane-based tracker must issue N2 iPlane
lookups for a swarm of N peers. One may rather download an Internet map of several
GBytes on a daily basis, but that would waste bandwidth, thus dissolving the benefits of
the approach.

P4P allows ISPs to publish their network information and preference for peers to
connect with [3]. This solution exploits a network oracle akin to iPlane but here the
ISPs can provide fine-grain network information. However, this requires ISPs to publicize
sensitive information about their peering partnerships. Also users may raise some privacy
concerns since their IP address and ISP must be disclosed.

The Azureus BitTorrent client implements the Vivaldi network coordinate system [20].
Vivaldi strongly resembles GNP, but uses peer-to-peer interaction instead of fixed land-
marks. Although this approach could allow Azureus clients to bias the choice of peers to
unchoke, this technique is limited to Azureus clients only.

Finally, Ono is a plug-in for the Azureus BitTorrent client that relies on the redirec-
tion mechanism of Akamai [6]. Akamai owns servers in many locations, and redirects its
clients to the closest replica through DNS. Each Ono peer resolves DNS names of popular
websites hosted by Akamai. If two peers receive the same IP addresses, they are likely
to be relatively co-located. Ono uses this information to select peers to unchoke. Ono’s
applicability is however unclear. Although its has been downloaded 400,000 times, this
represents only a small fraction of all BitTorrent users. In addition, the authors show that
Ono-enabled clients experienced slightly lower median download rates than regular ones.
It is also unclear whether Akamai is comfortable with its services being exploited for other
tasks.

6 Conclusions

BitTorrent encourages peers to donate their unused networking resources to help dis-
tribute popular content. The tremendous success of this simple idea however sharply
increased the amount of global traffic uploaded by end users. We showed in this paper
that relatively simple optimizations can provide significant performance improvements,
with 11-16% reduction of expensive Tier-1 traffic in challenging scenarios. We also find
the median download times are reduced by 12-32%, providing strong incentive to deploy
these optimizations.

We explicitly aimed at easy deployment of our approach. We therefore excluded any
solution that would require code deployment at the client side, or the prior availability
of massive global services. Instead, optimizing a whole torrent requires only a modified
tracker and a handful of landmarks. We even expect that the need for explicit landmark
deployment will disappear if multiple trackers agree to cooperate and behave as each
other’s landmarks.

We present this work and make our implementations freely available in the hope
to attract the attention of major BitTorrent tracker operators. Should they adopt this
technique, the seemingly opposite interests of BitTorrent users and their ISPs might be
partially reconciled.
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